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IntroductionThe problem of testing membership to a semialgebraic set � was considered bymany authors (see, e.g., [B 83], [B 92], [BKL 92], [BL 92], [BLY 92], [MH 85],[Y 92], [Y 93], [YR 80] and the references there). Here we consider a problemof testing membership to a convex polyhedron P in n-dimensional space Rn.Let P have N facets of all the dimensions. In [MH 85] it was shown, in par-ticular, that for this problem O(logN)nO(1) upper bound is valid for the depthof linear decision trees, in [YR 80] a lower bound 
(logN) was obtained. Asimilar question was open for algebraic decision trees. In the present paper weprove a lower bound 
(logN) for the depth of algebraic decision trees testingmembership to P (see the theorem below).Several topological methods were introduced for obtaining lower bounds forthe complexity of testing membership to � by linear decision trees, algebraicdecision trees , algebraic computation trees (the de�nitions one can �nd in, e.g.,[B 83]).In [B 83] a lower bound 
(logC) was proved for the most powerful amongthe considered in this area computational models, namely algebraic compu-tation trees, where C is the number of connected components of � or of thecomplement of �. After that, in [BLY 92], a lower bound 
(log�) for linear de-cision trees was proved , where � is Euler characteristic of �, in [Y 92] this lowerbound was extended to algebraic computation trees. A stronger lower bound
(logB) was proved later in [BL 92], [B 92] for linear decision trees, where Bis the sum of Betti numbers of � (obviously, C; � � B). In the recent paper[Y 93] the latter lower bound was extended to the algebraic decision trees.Unfortunately, all the mentioned topological tools fail when � is a convexpolyhedron, because B = 1 in this situation. The same is true for the methoddeveloped in [BLY 92] for linear decision trees, based on the minimal numberof convex polyhedra onto which � can be partitioned.To handle the case of a convex polyhedron, we introduce in section 1 anotherapproach based on a short description of a set of all sharp points of a semialge-braic set W which is accepted by a branch of an algebraic decision tree. Sharppoints of W are its singular (nonsmooth) points of a special kind. In order toobtain such a description we use complexity bounds for quanti�er eliminationin the theory of real closed �elds (see [GV 88], [G 88], [R 92], [HRS 90]).In section 2 we give an upper bound for the number of facets of P whichintersect by a full dimension with the setW (using lemma 3 from section 1 whichstates that these are exactly the facets having intersections of a full dimensionwith the subset of sharp points).In section 3 we complete the proof of the theorem.We conclude the paper discussing a much easier (than obtained in the theo-rem) lower bound 
(logN0), withN0 being the number of all (n�1)-dimensionalfacets, which is valid also for a more powerful model of algebraic computaiontrees.Now let us formulate precisely the main result.We consider algebraic decision trees of a �xed degree d (see, e.g., [B 83],1



[Y 93]). Suppose that such a tree T , of the depth k, tests a membership toa convex polyhedron P � Rn. Denote by N the number of facets of P of alldimensions from zero to n. In this paper we agree that a facet is \open", i.e.,does not contain facets of smaller dimensions.Theorem. k � 
(logN);provided that N � (dn)cn2 for some c > 0.Let us �x a branch of T which returns \yes". Denote by fi 2 R[X1; : : : ;Xn];1 � i � k the polynomials of degrees deg(fi) � d, attached to the vertices ofT along the �xed branch. Without loss of generality, we can assume that thecorresponding signs of polynomials along the branch aref1 = � � �= fk1 = 0; fk1+1 > 0; : : : ; fk > 0:Then the (accepted) semialgebraic setW = ff1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0glies in P . Our main technical problem is to give an upper bound for a numberof facets � of P such that dim(�) = dim(� \W ).1 Sharp pointsFor an m-plane Q � Rn and a point x 2 Rn denote by Q(x) the m-plane,collinear to Q and containing x.For a facet � denote by � the dim(�)-plane, containing �.Two planes Q1; Q2 of arbitrary dimensions are called transversal ifdim�Q1(0)\ Q2(0)� = maxf0; dim�Q1(0)�+ dim�Q2(0)�� ng:Lemma 1. For any pair i; j with 1 � i; j � n and any i-plane Q � Rn thereexists a subset fl1; : : : ; ljg � f1; : : : ; ng such that Q is transversal to j-subspacewith coordinates Xl1 ; : : : ; Xlj :Proof. There exists a subset fm1; : : : ; mig � f1; : : :ng such that Q projectsbijectively onto i-subspace with coordinates Xm1 ; : : : ; Xmi (along all the restcoordinates). It is su�cient to prove that the subset fl1; : : : ; ljg exists for thelatter. If n� i � j then an arbitrary subset of j elements from fl1; : : : ; ln�ig =f1; : : : ; ng n fm1; : : : ; mig satis�es the requirement. Else, the set fl1; : : : ; ln�i;ln�i+1; : : : ; ljg where fln�i+1; : : : ; ljg is an arbitrary subset of i+ j�n elementsfrom fm1; : : : ; mig, satis�es the requirement.2



Lemma 2. There exists a rotation of coordinates X1; : : : ; Xn such that afterthis rotation for every subset fl1; : : : ; ljg � f1; : : : ; ng and for every facet �of P , the subspace with the coordinates Xl1 ; : : : ; Xlj and the plane � becometransversal.Proof. Consider the algebraic varietyR of all rotations of coordinatesX1; : : : ;Xn. The nontransversality of a coordinate subspace to a facet � imposes alge-braic conditions (in the form of polynomial equations) on R.These equations do not vanish simultaneously at every point of R. Indeed,�x an i-facet � and a subspace with coordinates Xl1; : : : ; Xlj . Due to lemma 1,there exists a coordinate j-subspace which is transversal to �. Choose a rota-tion which forces this subspace to coincide with the subspace with coordinatesXl1 ; : : : ; Xlj .It follows that for a �xed pair of i-facet and j-subspace the subvariety ofall rotations satisfying the equations has the dimension smaller than dim(R).Since the family of all facets is �nite, almost all rotations from R satisfy therequirement of the lemma.Below we suppose that the coordinate system meets the requirements oflemma 2.De�nition. For arbitrary i; 0 � i � n; a point x 2 W is called i-sharp in Wif there exists a real c < 1 such that for every real " > 0 and for every subsetfj1; : : : ; jig � f1; : : : ; ng, for any two points x(1); x(2) 2 W \ fXj1 = � � � =Xji = 0g the following holds: ifk x� x(1) k=k x � x(2) k= "then k x(1) � x(2) k< 2"c:Here k � k denotes the Euclidean norm in Rn.Denote the semialgebraic set of all i-sharp points by Si.Lemma 3. Let for a i-facet � of P the set W \ � contain a neighbourhoodof some point x in �. Then x is i-sharp.Proof. Due to the supposed property of the rotation of the coordinate system(see lemma 2), x is a vertex (zero-facet) of the polyhedronP = P \ �fXj1 = � � � = Xji = 0g(x)�for any subset of i elementsfj1; : : : ; jig � f1; : : : ; ng:Fix one of such subsets fj1; : : : ; jig. For every " > 0 and each pairx(1); x(2) 2 W \ fXj1 = � � � = Xji = 0g3



such that k x� x(1) k=k x � x(2) k= "the relation k x(1) � x(2) k< 2"holds according to triangle inequality because x is a vertex of P . The existenceof the required c in the de�nition for the subset fj1; : : : ; jig follows from theexistence of the maxima (less than �) among all possible at angles in P withthe vertex in x (taking into the account that the set of all such at angles iscompact). Then we take the maxima over all subsets fj1; : : : ; jig � f1; : : : ; ng.Lemma 4. dim(Si) � i.Proof. Suppose that, contrary to our claim,dim(Si) = i1 � i+ 1:Let a point x 2 Si have a smooth i1-dimensional neighbourhood in Si (infact almost all the points of Si are smooth) and denote by Tx the tangenti1-plane to Si at x.Due to lemma 1, there exists a subset fj1; : : : ; jig � f1; : : : ; ng such that Txand fXj1 = � � � = Xji = 0g(x) intersect transversaly, i.e.,dim�Tx \ �fXj1 = � � �= Xji = 0g(x)�� = i1 � i:By the implicit function theorem, for a neighbourhood � of x in Si, theintersection � \ �fXj1 = � � � = Xji = 0g(x)�is smooth and its dimension is i1� i (its tangent plane at x is Tx\fXj1 = � � � =Xji = 0g(x)): Since the dimension i1 � i � 1 this contradicts to i-sharpness ofx, because by the de�nition of a smooth neighbourhood, for a sequence f"rgsuch that limr!1 "r = 0 there exist two sequences fx(1)r g; fx(2)r g 2 �\ �fXj1 =� � � = Xji = 0g(x)� such that for each su�ciently large rk x� x(1)r k=k x� x(2)r k= "rand limr!1 k x(1)r � x(2)r k2"r = 1:2 The proof of the theoremLemma 5. For every i; 0 � i � n � 1, the number �i of all i-facets � of Psuch that dim(� \W ) = i, does not exceed (kd)O(n2).4



Proof. First let us reduce the lemma to the case of compact P . Observe thatthere exists a linear form L = �1X1+ � � �+�nXn with �i 2 R; 1 � i � n suchthat for every  2 R the intersection fL+  � 0g \ P is compact.For each i-facet � of P with dim(�\W ) = i choose a point x� 2 (�\W )such that a suitable neighbourhood of x� in � is contained in W . Take  suchthat x� 2 P 0 = fL+  � 0g \ P for all �. The number of all i-facets �0 of P 0such that dim(�0 \W ) = i is greater or equal to �i. From now on we assume,without loss of generality, that P is compact.Following the de�nition, one can determine the set Si of all i-sharp pointsby a formula �i of �rst-order theory of reals. Formula �i involves quanti�ersand free variables X1; : : : ; Xn.We can assume that �i is in a prenex form with the pre�x of the followingkind: 9c8"8X(1)1 � � � 8X(1)n 8X(2)1 � � �8X(2)n :The quanti�er-free part of �i is a Boolean combination of atomic subfor-mulas of the kind h > 0 or h = 0 where h is a polynomial in variablesc; "; X(1)1 ; : : : ; X(1)n ; X(2)1 ; : : : ; X(2)n ; X1; : : : ; Xnof a total degree at most maxf2; dg. The number of atomic subformulas is lessthan O(k).One can apply to �i an algorithm for quanti�er elimination in the theoryof real closed �elds (see [GV 88], [G 88], [HRS 90], [R 92]). The result wouldbe an equivalent to �i quanti�er-free formula in a disjunctive normal form:_1�j�J(h(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0):Here h(j); g(j)1 ; : : : ; g(j)Ij 2 R[X1; : : : ;Xn]. Moreover, according to [R 92] (cf.also the estimates in [GV 88], [G 88], [HRS 90]) the following bounds hold:Ij < (kd)O(n);J < (kd)O(n2); (1)degX1;:::;Xn(h(j)); degX1;:::;Xn(g(j)s ) < (kd)O(n):Due to lemma 3, for an i-facet � of P , the equality dim(� \ W ) = i isequivalent to dim(� \ Si) = i, so we can replace in the formulation of thelemma the former equality by the latter one. Moreover, taking into the accountthe inequality J < (kd)O(n2), it is su�cient to prove the lemma separately forthe conditions dim(� \ S(j)i ) = i for all 1 � j � J instead of dim(� \W ) = i,where S(j)i = fh(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0g � Si:Thus, we shall prove that the number �(j)i of all i-facets � of P such thatdim(� \ S(j)i ) = i does not exceed (kd)O(n2).5



In case i = 0, the set Si consists, due to lemma 4, of a �nite number ofpoints. Their number is less than (kd)O(n2) according to the estimates from[M 64], [T 65], taking into the account the bounds (1). In the remaining partof this proof we shall assume that i � 1.In the space Rn one can introduce the Zariski topology (for its propertiesused below, see, e.g., [H 77]), in which each closed set coincides with a set ofall zeros of a multivariate polynomial with real coe�cients.The Zariski topology on Rn is Noetherian. In relation to it, the con-cepts of an irreducibility (over R) of a set, and of the Krull dimension of aset are de�nable (note that for semialgebraic sets Krull dimension coincideswith the Euclidean dimension). The theorem on the dimension of intersectionis valid, which implies that for two closed irreducible subsets V1; V2 � Rn,either dim(V1 \ V2) < minfdim(V1); dim(V2)g, either V1 � V2 or V2 � V1.Each subset of Rn can be (uniquely) represented as a �nite union of itsirreducible components. Let V be an irreducible component of S(j)i (by lemma 4,dim(V ) � i), and � be an i-facet of P such that dim(�\V ) = i. Applying thetheorem on the dimension of intersection to the Zariski closure V of V and to�, we conclude that V � �, hence V = �. Using this property, represent S(j)ias a union of its irreducible components:S(j)i = [1�l�r1 V (l) [ [r1+1�l�r V (l) (2)where for each l; 1 � l � r1, there exists an i-facet � of P such that V (l) � �and for each l; r1 + 1 � l � r, for every i-facet � of Pdim(V (l) \�) < i:Consider an irreducible component V (l); 1 � l � r1 and the correspondingi-facet � (such that dim(�\V (l)) = i). Since V (l) is closed in S(j)i and V (l) = �,we get that V (l) � � \ S(j)i , hence V (l) = � \ S(j)i . Because dim(� \ S(j)i ) = i,we conclude that h(j) vanishes identically on �, thereforeV (l) = � \ S(j)i = � \ fg(j)1 > 0 & � � �& g(j)Ij > 0g: (3)Introduce a polynomial g = Y1�l�Ij g(j)l ;and choose a real " > 0 satisfying the following requirements:(a) " is smaller than the absolute value of any nonzero critical value of therestriction of g on � for any i-facet � of P (by Sard's theorem [Hi 76], thereexist only a �nite number of critical values);(b) polynomial g � " does not vanish identically on any irreducible com-ponent of every intersection V (l) \ �; 1 � l � r (there exists at most �nite6



number of possible values of " such that g� " vanishes identically on V (l)\�).The property (a) implies (involving the implicit function theorem) that �\fg = "g is a nonsingular hypersurface in �.> From the property (b) it follows thatdim(fg = "g \ V (l) \ �) < i� 1 (4)for each r1 + 1 � l � r.Observe that, due to (a) and according to elementary facts from Morsetheory [Hi 76], every connected component of the set V (l) = � \ fg(j)1 >0 & � � �& g(j)Ij > 0g (see (3)) containes at least one (necessarily compact)connected component of the hypersurface fg = "g in � 1 (note that the signsof all polynomials g(j)1 ; : : : ; g(j)Ij are constant on each connected component offg = "g). Thus, in order to estimate the number �(j)i of all i-facets � of Psuch that dim(� \ S(j)i ) = i, it is su�cient to bound properly the number ofall connected components of fg = "g in � \ fg(j)1 > 0 & � � �& g(j)Ij > 0g for alli-facets �.The rest of the proof of the lemma closely follows [GKS 93].Because of the property (a) of ", for a �xed i-facet �, each compact con-nected component G� of �\fg = "g divides �nG� into exactly two connectedcomponents (according to Jordan-Brouwer theorem, see, e.g., [D 72]). Hence,the zero Betti number b0(�nG�) = 2. Then, Alexander's duality principle (see,e.g., [D 72]) implies that the (i� 1)th Betti number,bi�1(G�) = b0(� nG�)� 1 = 1:It follows that �(j)i �X� XG� bi�1(G�)where the exterior sum ranges over all i-facets � of P and the interior rangesover all connected components G� of �\ fg = "g \ fg(j)1 > 0 & � � �& g(j)Ij > 0g.Relations (2) and (3) imply:S(j)i \ fg = "g = �[� [G�G�� [ � [r1+1�l�r V (l) \ fg = "g� (5):Here the union [� ranges over all i-facets � of P .Let us analyse the pairwise intersections of the sets involved in the union(5).(i) For a �xed �, any two di�erent sets of the kind G� do not intersect beingtwo di�erent connected components.1Actually there exists exactly one connected component of fg = "g of this kind [GV 92],we do not use this fact here. 7



(ii) For two di�erent facets � and �0, two sets G� and G�0 do not intersect.Indeed, G� and G�0 lie in the Euclidean closures cl(�); cl(�0) of the facets�; �0 respectively. Suppose that there exists a point x 2 G� \ cl(�) \ cl(�0),thus x 2 cl(�) n �. Then each point of a neighbourhood of x satis�es all theinequalities g(j)l > 0; 1 � l � Ij . Hence (because h(j) vanishes identically on�), S(j)i \ (� n cl(�)) 6= ;which contradicts to S(j)i � P .(iii) According to (4), for each i-facet � of P the following holds:dim�G� \ ( [r1+1�l�r V (l) \ fg = "g)� < i� 1:Properties (i)|(iii) imply that (i � 1)-th Betti numbers of all pairwise in-tersections of the terms of the union (5) are zeroes. Therefore, applying Mayer{Vietoris theorem (see, e.g., [D 72]) to the union (5), we get:bi�1  [� [G�G�! [  [r1+1�l�r V (l) \ fg = "g!! ��X� XG� bi�1(G�) + bi�1 [r1+1�l�r V (l) \ fg = "g!: (6)The right side of the inequality (6) is obviously not less than the �rst itemX� XG� bi�1(G�)which is an upper bound for �(j)i (see above).On the other hand, the left side of (6), being (see (5)) equal tobi�1(fh(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0 & g = "g);does not exceed (kd)O(n2), according to [M 64], [T 65] and taking into the ac-count the bounds (1).Hence the estimate �(j)i < (kd)O(n2) is established. Since, by (1), J <(kd)O(n2), we get: �i � X1�j�J �(j)i < (kd)O(n2):The lemma is proved. 8



3 Algebraic computation treesConsider now algebraic computation trees which constitute a more powerfulcomputational model than algebraic decision trees (of a �xed degree) which wewere dealing with so far (see, e.g., [B 83]).Let an algebraic computation tree T0 of the depth k0 test a membershipto an n-dimensional polyhedron P � Rn. Denote by N0 the number of all(n� 1)-facets of P .We claim that k0 � 
�log(N0)�.In order to prove that, consider any branch of T0 with the output \yes".Let W1 = ff (1)1 = � � � = f (1)k2 = 0 & f (1)k2+1 > 0 & � � �& f (1)k0 > 0g � Pbe the semialgebraic (accepted) set, corresponding to this branch. In this for-mula f (1)i 2 R[X1; : : : ;Xn]; 1 � i � k0 are all the polynomials occuring alongthe branch.Obviously, deg(f (1)i ) � 2k0 (cf. [B 83]).Assume that for a (n�1)-facet � of P , the dimension dim(W1\�) = n�1.Here, the (n� 1)-plane � is de�ned by� = f X1�j�n�jXj � � = 0gfor some �j ; � 2 R.Denote f (1) = X1�i�k2�f (1)i �2:Evidently, f (1) 6� 0, otherwise the dimension of the open setW1; dim(W1) =n, which means that W1 \ (Rn nP) 6= ;.Because polynomial f (1) vanishes on �, the linear expression P�jXj � �divides f (1), therefore the number of (n�1)-facets such that dim(W1\�) = n�1does not exceed deg(f (1)) < 2O(k0):Since there are at most 3k0 branches in T1, arguing as at the end of the proofof the theorem, we get the lower boundk0 � 
�log(N0)�:Note that the number of all facets of all dimensions N � �maxf2; N0n g�n,and this estimate is sharp. Thus, the bounds log(N) (from the theorem) andlog(N0) can di�er by a factor O(n).An interesting open problem remains lower bound 
�log(N)� for the depthof algebraic computation trees. 9
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