Simulating Threshold Circuits by Majority Circuits

Mikael Goldmann*

Dept. of Computer Science
Royal Institute of Technology
S-100 44 Stockholm

Marek Karpinskif

Dept. of Computer Science
University of Bonn
5300 Bonn 1
and
International Computer Science Institute
Berkeley, California

Abstract

We prove that a single threshold gate can be simulated by an explicit polynomial
size depth 2 majority circuit. In general we show that a depth d threshold circuit
can be simulated uniformly by a majority circuit of depth d + 1. Goldmann, Hastad
and Razborov showed in [9] that a non-uniform simulation exists. Our construction
answers two open questions posed in [9]: we give an explicit construction whereas [9]
uses a randomized existence argument, and we show that such a simulation is possible
even if the depth d grows with the number of variables n (the simulation in [9] gives
polynomial size circuits only when d is constant).

*Part of this work was done while visiting the Department of Computer Science at University of Bonn.
Email: migo@nada.kth.se.

TSupported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1
and by the ESPRIT BR Grant 7097. Email: marek@cs.bonn.edu.

1 Introduction

A threshold gate is a fairly simple device that computes a weighted sum of its input and
compares it to a threshold value and outputs 1 or 0 depending on the outcome of the
comparison. A threshold circuit is an acyclic network of threshold gates. The size of a
circuit is the number of wires.

Small weight threshold gates are a restricted type of threshold gates. In this case the
magnitude of the (integer) weights of the gate is polynomially bounded. The corresponding
circuits are called small weight threshold circuits. It is easy to see that a majority gate can
simulate a small weight threshold gate by simply duplicating input wires and adding some
constant inputs. This only leads to a polynomial increase in the number of wires. Hence,
depth d polynomial size majority circuits are equivalent to depth d polynomial size, small
weight threshold circuits.

Threshold circuits have been shown to be surprisingly powerful. It is implicit in work
by Beame, Cook and Hoover [4] that integer division can be carried out by polynomial size
threshold circuits of constant depth. Allender [1] (inspired by Toda [23]) shows that any
function in AC® can be computed by depth three majority circuits of quasi-polynomial size.

Yao [27] extends this to all of ACC? (see also [5]).

There are some strong lower bounds for majority circuits of very small depth. Hajnal et
al. [10] prove exponetial lower bounds on the size of depth two majority circuits computing
“inner product mod 2.” These results were extended in [12] to depth three majority circuits
where the gates on the bottom level have very small fanin, and recently superpolynomial
bounds were proved for depth three majority circuits where the gates on the bottom level
are arbitrary gates of fan-in n'=¢ [19]. For depth three majority circuits with no extra
restrictions, no super-linear lower bounds are known.

It one considers threshold circuits with arbitrary weights, even less is known. There is
no super-linear lower bound for depth two threshold circuits computing some function in
NP. As we mentioned above, such bounds exist for majority circuits [10]. It is therefore
interesting to explore the power of large weights in threshold circuits.

It is well known that a single threshold gate is strictly more powerful than a single small-
weight threshold gate. Also, it was recently shown that depth 2. polynomial-size threshold
circuits are more powerful than depth 2, polynomial-size, small-weight threshold circuits [9].

On the other hand, it was proved by Chandra, Stockmeyer, and Vishkin [8] that addition
of n binary encoded integers can be performed by constant depth majority circuits (see also
[17]). This implies that depth d, polynomial-size threshold circuits can be simulated by
depth O(d), polynomial-size, small-weight threshold circuits.

In [20] Siu and Bruck gave a non-constructive proof that depth d threshold circuits can
be simulated by depth 2d 4+ 1 majority circuits. Alon and Bruck gave a uniform construction
in [3] achieving this. Goldmann, Hastad, and Razborov showed in [9] that any function
computed by a depth d, polynomial-size threshold circuit is computable by a depth d + 1,
polynomial-size majority circuit (note that for d = 1,2 this is optimal). Two open questions
were posed in [9]: Can one make an explicit construction, and can one make it work also
for non-constant depth? (][9] uses a probablilistic argument, and the blowup in size is super-
polynomial if the depth depends on the number of variables.) We give positive answers to
both questions.

For a thourough survey of complexity theoretic results on threshold circuits, see [18].

2 Preliminaries

It will be convenient to work over {1, —1} rather than {0,1}. An n-variable Boolean function
thus maps {1, —1}" to {1, —1}. This is a simple transformation, and does not affect the power
of threshold gates. A threshold gate computes its output as the sign of a linear form:

g(x) = sign (wo + szl'z) ;

=1

where the w; are the weights. We assume that the argument to the sign function is nonzero
for all z € {1,—1}". The following well known result by Muroga [13] gives a bound on the
magnitude of the weights.

Theorem 1 ([13, Theorem 9.3.2.1]) Let f(x) be an arbitrary n-variable threshold func-
tion. Then f(x) can be written as

flxz) =sign (wo + Z wixi) \
1
where for all t = 0,....,n,
w; €Z and |w| <27%(n+ 1)(”""1)/2.

Remark 1 A recent result by Hastad [11] gives a lower bound on the weights required
for a particular threshold function. The lower bound nearly matches the upper bound in
Theorem 1.

The size of a circuit is the number of wires.

We use the following notation from [6].
Definition 1

o LT, is the class of functions computable by depth d polynomial-size threshold circuits.

o LT, is the class of functions computable by depth d polynomial-size threshold circuits
with polynomially bounded integer weights.

We define the following operator.
Definition 2 The operator rem is defined as follows. For integers a and b,
aremb=c,
where ¢ is the unique integer such that
a=c (modb) and —b/2<ec<b/2.

Our construction uses the following function of one integer variable y.

i . 1 . 1
M7 (y) = §S@gn<y+3p—m+—)——S@gn<y+3p—2m+—)

2 2 2
-I-l . (4oingt 1) 1. (449 1)
5 sign \y +jp+m—3 5 stgn \y +jp+2m— g

The function M*"(y) has some nice properties.

Lemma 2 If p > 4m then for any integer y the following is true.

Ify +jp = yremp and m < |yrem p| < 2m, then M""(y) = sign (y rem p). In all
other cases M;""(y) = 0.

PROOF. It is easy to see that the first two terms contribute 1 if m < y + jp < 2m and
0 otherwise. Similarly, the last two terms contribute —1 if —2m < y + jp < —m and 0

4

otherwise. This implies that we can get a nonzero contribution only when m < |y + jp| <
2m.

If |y + jp| # y rem p then [y 4 jp| > p/2 > 2m, and thus M""(x) = 0. This proves the
first part of the lemma.

The second part of the lemma follows by the choice of jq.

If |y rem p| ¢ [m,2m) then for all j we have |y — jp| ¢ [m,2m), and thus M;""(y) =0
for all y. O

3 The Idea Behind the Construction
Let f be an arbitrary threshold gate given by

fx) = sign (F(x)),

where

F(z)=wo+ sz:z/y

=1

Since we have integer weights, and we require that the argument of ‘stgn’ is nonzero, we

have |F'(x)] > 1 for all .

In the next section we will build a parametrized approximator for f. For a fixed input,
the approximator is good for randomly chosen parameters. To show the intuition behind the
construction, we build an approximator ¢ for f that computes correctly for a random input.

In the construction it will be convenient to use rational weights. Any circuit we construct
will have weights of the form w/2, where w is an integer. By multiplying all weights in the
circuit by 2 we get integer weights, and the increase in the magnitude of the weights is just
a factor 2.

To describe the construction we need a couple of parameters that we call W and m. It
will be convenient to assume the following:

W > max {wma.(f),2"}, (1)
10n < m < W. (2)

The parameter m controls how good the approximator is. If m is big, then the approximator
is good, but the weights in the approximator are polynomial in m.

Let us look at a fixed input x. Assume that 2 < |F(z)| < 2'*1. Given this information,
we can use less precision in the weights w;. Set

n

Fuy(z) = Lwom/ZlJ + Z Lwim/ZlJ x;.

=1
It we disregard the error introduced by the floor operation, we will have
m < | Foy(x)] < 2m.

It is plausible that for most values of F(z), the truncation error will not matter. Note that
sign (F(x)) = sign (F(l)(:zj)). To get the weights small, we just look at F(;(2) modulo some
small prime p > m?.

We are now ready to construct a small gadget ¢ (x) that implements the computation
described above.

w = [wim/2] rem p,
(I)(l)(x) = w(()l)—l—ZwZ(»l)xi,
=1
n+1
pulz) = X M (9 (). (3)
j=—n-—1

Let us establish some properties of () as defined by (3).

Proposition 3 For p > m? the following holds.

99(1)(1')‘ € {0, 1}.

2. 1If ‘F(;)(:L‘) rem p‘ ¢ [m,2m) then pg(z)=0.

1. For any =,

3. If m< ‘F(l)(l')‘ < 2m then ¢ (x) = sign (F(l)(:zj)).

Proor. All statments follow from Lemma 2. The first one is immediate. The second follows

by the observation that Fi;(z) = ®py(x) (mod p).

For the third statement we have the following. Assume that m < ‘F(l)(l')‘ < 2m. We
then have

() rem p = Fyy(x).
Let jo be the integer that satisfies
() rem p = ¢gy(x) + jop-

Since ‘(I)(l)(l')‘ < (n+41)(p—1)/2, jo occurs in the sum in (3). The third statement now
follows from Lemma 2.

It is tempting to set
px) =2 ew(), (4)

and hope that ¢(x) = sign (F(x)) = f(x). The idea is that there is always an [such that
2l < |F()| < 2”’1. It there was no error introduced by the floor operations, we would

have m ‘ (x ‘ < 2m and sign (F()(:L')) = sign (F(x)). By Proposition 3, ¢q)(z) =
sign (nlz)) nd for all other [we would probably have ¢(2) = 0. Then we would have

p(x) = puy(x) = sign (F(z)) = f(x).

Remark 2 We know that |F(z)| < (n+ 1)W. Thus, it is sufficient to sum over | such that
0<I<log((n+1)W)in (4).

The problems with (4) are of course that the floor operation sometimes introduces trun-
cation errors (e.g., when 2! < F'(x) but Fj;)(xz) < m), and sometimes the “wrong” I gives a
nonzero contribution to the sum (a modular error).

Equation (4) is not such a bad idea though, because it works for most x, or rather, for
most values of F(x).

4 The Approximator

To get an approximator based on the ideas in the previous section we want to spread the
value F(z) in some random fashion. This was done in [9] by considering sign (aF(z))
for a randomly chosen integer o € {1,2,...,2*"}. Since o > 0 one has sign (F(x)) =
sign (aF'(x)). It was shown that for any =z, the approximator would compute sign (aF(x))
correctly with high probability. By taking many independent a’s and taking the sign of the
average, one gets an approximator that behaves well on all inputs. If the range of o was
smaller, we could get an explicit approximator by taking the average over all a’s.

We will modify the construction. Our approximator will depend on two parameters, and
for any input, the approximator will be good with high probability if the parameters are
chosen at random. In our case the probability space is small enough that we may take the
average over all possible choices of parameter values.

We will modify the construction. Just like in [9] we will use a multiplier o, but it will be
much smaller. For a random «, the probability of a truncation error is small. To handle the
modular errors, we will also choose the prime p, used in the construction, randomly, and the
probability that we get a modular error for a random p is small.

Definition 3 We define the following sets. Let

[m] = {1727"'7m}7
PR™ is the set of the first m?* primes

that are greater than m?.

When a,and p are chosen randomly, they are picked as a pair (a,p) € [m] x PR™ according
to the uniform distribution.

Instead of looking at the weights w;, we make the approximator for weights aw;. Thus, in-
stead of looking at F'(x) we look at af'(x) but this works since sign (aF'(z)) = sign (F(z)) =

f(x). We call the corresponding truncated linear form F(j“)(:zj), that is

n

Fiy(z) = lawem /2] + 3 |awm /2] ;.

=1

Now we are ready to define the parametrized approximator ¢*?(x).
w, = {awim/ZlJ rem p

CI)EYI’)p(:I;) = w(()l) + Z wl(»l):zji
=1
n+1
ey (e) = > M(@Gf(r))
j=—-n—1
[3log W|+1
Pr) = X e (), (5)
=0
where the upper bound of the last summation follows from an argument analogous to Re-
mark 2, the assumptions (1) and (2), and the fact that o < m.

The following proposition is the («, p)-version of Proposition 3. The proof is completely
analogous.

Proposition 4 For p > m? the following holds.

i (2)] € {0,1}.

2. 1If ‘Fﬁ)(:p) rem p‘ ¢ [m.2m) then ¢y (z)=0.

1. For any =,

3. If m< ‘F(O;)(l')‘ < 2m then c,o?l’)p(x) = sign (F(O;)(l'))

Corollary 5 If we assume (1) and (2), then for all * € Z™ we have p**(x) € Z and
lo®P(x)| <2+ 3log W.

PROOF. It is not hard to see that statement 1 of Proposition 4 holds even for @ € Z". The
corollary follows since we sum over at most 2 + 3log W different [in (5). O

For any x there are usually a’s and p’s such that we get truncation errors or modular
errors. We will show that for any fixed & most pairs (o, p) do not give such errors.

Definition 4

1. We say that « is bad for x if there is some [such that ‘|ozF(:1;)| — 21‘ < 2%in/m.
Otherwise « is good for x.

2. We say that p is bad for x and « if there is an [such that ‘F(O;)(l')‘ > 2m but
‘Fﬁ)(:p) rem p‘ < 2m. Otherwise p is good for x and a.

3. We call a pair (a, p) bad for x if « is bad for x, or if p is bad for x and «. Otherwise
(a, p) is good for x.

We will show that when a pair (a,p) is good for x, then ¢*?(x) = f(x). We will also
show that a for any fixed x, a random pair («, p) is likely to be good.

First we show that ¢*?(x) = f(x) when (a, p) is good.

Proposition 6 Let x be an arbitrary fixed input. The following is true. if (a,p) is good
for x, then p*?(x) = f(x).

PROOF (SKETCH). If (a,p) is good for x then, by the definition of “good,” there will not
be any truncation errors or modular errors. Thus, the only contribution we get in (5) is the
contribution from the “right” [, which is segn (aF'(x)). O

We will show that for any fixed x most a’s are good, and for any fixed and « most p’s
are good.

Lemma 7 If W and m satisfy (1) and (2), then for any x
Pr[a is bad for] < (16log* W)/m.

PROOF. Let r = |F(x)|. We want to show that for most o we have ‘21 — ozr‘ > 2+1n /m for
all 1.

Look at a fixed [, if there is any « which is bad with respect to [, then r must satisfy the
following equations.

ro< 2 (6)
ro> 27 m, (7)

10

The bad interval for a has length 2+2n/(rm). If r and [do not satisfy (7), then all a’s are
too small to be bad. On the other hand, if r and [satisfy (7), there are at most 8n different
«’s that fit in the bad interval.

For any r, there are less than 2log m different [that satisfy (6) and (7). Thus, any « has
at most 16nlog m bad a. The lemma follows by our assumption that (1) and (2) hold. O

Lemma 8 If W and m satisfy (1) and (2), then for any x and «

Pr[p is bad for x and o] < (161og®> W)/m.

PrOOF. Once again consider a fixed [first, and assume that for input and multiplier «
we have |F(°l“)(:1;)| > 2m but ‘Fﬁ)(:p) rem p‘ < 2m for 4mlog W of the primes. By the pigeon
hole principle we must have more than log W primes that give the same remainder k, such
that |k| < 2m. By the Chinese remainder theorem, Fﬁ)(:p) is uniquely determined modulo

the product of those primes. That product is greater than m?°¢" . Since we assume (1) and

(2),

‘Fﬁ)(:l:)‘ < [maF(z)] < mi(n + D)W < m*es",

This implies that & = Fﬁ)(:p) which means that ‘F(Of)(l')‘ < 2m, and we have a contradiction.
Since there are at most 2 + 3log W < 4log W different [, the lemma follows. O

Lemma 7 and Lemma 8 imply the following lemma.
Lemma 9 If W and m satisfy (1) and (2), then for an arbitrary fixed input x,
Pr (e, p) is bad for x] < (32log> W)/m.

We conclude this section by showing how the approximator allows us to simulate a single
threshold gate (with large weights) by a depth 2, small-weight, threshold circuit. This is a
constructive version of Theorem 7.8 from [9].

Theorem 10 LT, C ﬁz.

11

ProoF. We will prove the inclusion. That it is strict follows from the fact that parity is in
LTy \LTy. Assume n > 100, smaller inputs are handled by writing the function on disjuntive
normal form.

We are given a threshold gate

flxz) =sign (wo + Zn: w:z;))

=1

Let W = max {wpax(f),2"} be the bound used in the construction, and set the parameter
m = 1281og” W (observe that W and m satisfy (1) and (2)). Consider the following function:

g9(x) = sign ((Z) @“’p(l‘)) :

We claim two things: f(z) = g(«) for all z € {1,—1}", and ¢(x) can be computed by a
depth 2, polynomial-size, threshold circuit with polynomially bounded weights.

The correctness of the construction follows from

E[f(z)e**(2)] >0, (8)

where x is arbitrary and fixed, and we take expectation over the uniform distribution on
pairs (a,p). Let us prove (8).

E[f(z)¢**(x)] = Prl(a,p) good] — (24 3log W) Pr (e, p) bad]
1 24 3logW
B 4log W a 4log W

Y

1

\

0,
where the first inequality follows from Corollary 5 and the second inequality follows from

Lemma 9. This shows that f(x) = g(x) for all .

Now, to implement ¢(x) as a circuit, let us look at a very schematic picture of what g(x)
does.

g(z) = sign ((E)ZZ:Z % sign (F((i),p)(ilf) .)) ‘

12

Since we only have two levels of sign-functions, and one is the outmost operator, g(x) can
be computed by a depth 2 threshold circuit. The size is the total number of terms in the
summations (recall that each F((Qp)(x) has fan-in n < log W). There are m® = O (10g9 W)

pairs (a, p), and O(log W) different [. This gives a total size of O(log"* W).

As for the weights, they are not necessarily inte%ers, but if we multiply them by two they
are. The only weights that are not +1 are the wy v w® and w(()l) + jp weights. All the
wl(»l) are reduced modulo some prime p that is among the first 2m? = O(log® W) primes. This
implies that p < O(log” W). Since —(n 4 1) < j < n + 1, the weights are all of magnitude
O(log® W).

It we assume Muroga’s bound on weights to hold for the original threshold gate f, then
logW < O(nlogn), and hence we have a polynomial-size, polynomial-weight threshold
circuit of depth 2 that computes f(x). Actually, we only need to have log W polynomial in
n. O

5 Extending the Construction to Circuits

In the previous section we showed that a single threshold gate can be simulated by a
polynomial-size majority circuit. We will now generalize this to show that a depth d,
polynomial-size, threshold circuit can be simulated by a depth d + 1, polynomial-size, ma-
jority circuit.

In [9] Goldmann, Hastad, and Razborov introduced a circuit class that mixes small and
large weights.

Definition 5 LT is the class of functions computable by depth d, polynomial-size, circuits
where the top gate has polynomially bounded weights.

We will show the following theorem.

Theorem 11 For any depth d, possibly depending on n, LT, =LTy.

Moreover, given a LT, circuit, for input size n, with weights bounded by 2°(") for some
polynomial p, there is an explicit LTy circuit that computes the same function.

PROOF. Let us look at a circuit C' for an LT -function. For simplicity, assume that the

13

weights at the top gate are all 1. Let the top gate be given by

o(0) = sian (360,

where the C; are depth d — 1 threshold circuits. Let s be the size of €. For each circuit C;
we construct an approximator I',"”. Below we describe how this is done.

Let W = max{wnq(C),2°}. Let Cy be one of the subcircuits of g. Let the gates of C
be fi,..., fr, where r < s. The fan-in of any f; is trivially bounded by log W, and all gates
have their weights bounded by W. Set the parameter m of the previous section as follows.

m = 2565t log® W.

For (a,p) € [m] x PR™, construct a gate approximator ¢;* for each gate f;. Now, connect
the approximators in the same way as the gates. That is, if the output of f; is the £’th input
to f;, then the output of ¢;"" is the k’th input to »;”. We call the constructed “circuit”
I',?. Note that for any fixed input z, if (a,p) is simultaneously good for all ;" of T')",
then I')"(x) = Ci(x).

Lemma 12 For any fixed input x, if («, p) is chosen uniformly at random from [m] x PR"™,

then Pr [P (z) # Cr(x)] < (Stlog W)™,

ProoF. We know that each gate f; of C}%, has fan-in bounded by log W, and will give
the correct output if (a,p) is good. By Lemma 9, the probability that (a,p) is bad is
(8stlog W)~ by the choice of m. Since there are at most s gates in C}, the lemma follows.
O

a7p

We say that (a, p) is good for x and I',”, if it is good for all gate approximators ;" of I'}"”
simultaneously.

What happens when («,p) is bad for I',’?7 The magnitude of the output of I'\"" is
bounded by the maximum output of the approximator of the top gate of Cj. Using Corol-
lary 5, we have for all 2 and all (a,p),

T3 ()] < 2+ 3log W. (9)

Since the corollary holds even when the inputs to the top gate are integers, this bound holds
even when some other approximator in I'}"” fails.

14

If we combine Lemma 12 and (9) we get

Lemma 13 For any fixed input x, if («, p) is chosen uniformly at random from [m] x PR",

then |E 13" ()] — Cy(e)] < L.

Do the same for all the circuits C; to get approximators I';”. Consider the following
function:

t
h(x) = sign (Z > F?’p(:p)) :
=1 (a,p)
Observe that this is equivalent to
h(x) = sign (E [Z F?’p(:zﬁ)]) . (10)
We claim the following.

Proposition 14 For all inputs x, h(z) = g(x).

ProoOF. We will prove this by showing that for any fixed =z,

<1/2. (11)

This is sufficient by (10) and the fact that ‘Zle CZ(J})‘ > 1. The inequality (11) follows by
straightforward application of Lemma 13. O

An argument analogous to that in the previous section shows that g(a) can be imple-
mented as a depth d threshold circuit. We call the circuit C'. It is not hard to see that each
wire in C' corresponds to a polynomially (in log W) many wires in C.

To get integer weights in the circuit it is sufficient to multiply all weights by 2. The
weights all have magnitude bounded by order of the largest prime used multiplied by s. The

15

largest prime in PR™ has size O(m?logm), so the weights are all O(s>*t%log® W (log(st) +
loglog W)). This completes the proof of Theorem 11.

Just as before, the construction is polynomial in n as long as log W is polynomial in n.
By Theorem 1, this is always possible. [

6 Conclusions and Open Problems

Our results entail the first explicit constructions for the optimal depth, polynomial size
majority circuits for the number of basic functions including, among others, powering (depth
2), integer multiplication and integer division (depth 3), see [22].

More generally, our results entail the uniformity of the classes of majority circuits simu-
lating the corresponding classes of threshold circuits. (We address this question in the full
version of this paper.)

We conclude with the list of open problems:

1. If the original circuit is monotone, our construction yields a non-monotone majority
circuit. It is an open question if an arbitrary monotone threshold gate can be simulated
by constant depth monotone majority circuits of polynomial size.

2. Alternating Turing machines are closely connected to circuits with AND-gates and
OR-gates, and counting Turing machines are connected to majority circuits. Is there
a reasonable machine model that has such a relationship to threshold circuits? If so,
what would be the corresponding notion of uniformity, and would our simulation still
work?

3. Any strong lower bounds for depth two threshold circuits or depth three majority
circuits computing some explicit function?

Acknowledgement

We are grateful to Johan Hastad for many valuable comments on an earlier version of this
paper. We also thank Jens Lagergren, Sasha Razborov, and Avi Wigderson for several
interesting discussions on the topic of this paper.

16

References

1]

[10]

[11]
[12]
[13]

[14]

[15]

E. Allender. A note on the power of threshold circuts. In Proc. 30th IEEE Symposium
on Foundations of Computer Science, pages 580-584, 1989.

N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7:1-22, 1987.

N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for comparison
and addition. Technical Report RJ 8300 (75661), IBM Research Division, August 1991.
To appear in SIAM J. Disc. Math..

P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related
problems. In Proc. 25th IEEFE Symposium on Foundations of Computer Science, pages
1-6, 1984.

R. Beigel and J. Tarui. On ACC. In Proc. 32nd [EFEE Symposium on Foundations of
Computer Science, pages 783792, 1991.

J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM J. Disc. Math.,
3(2):168-177, May 1990.

J. Bruck and R. Smolensky. Polynomial threshold functions, AC? functions and spectral
norms. In Proc. 31st IEEFE Symposium on Foundations of Computer Science, pages 632—
641, 1990.

A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. STAM J.
Comp., 13:423-439, 1984.

M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general weighted thresh-
old gates. In Proc. 7th Annual Structure in Complexity Theory Conference, pages 2—13,
1992. To appear in Computational Complexity.

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of
bounded depth. In Proc. 25th IEEE Symposium on Foundations of Computer Science,
pages 99-110, 1987.

J. Hastad. On the size of weights for threshold gates. Manuscript, 1992.

J. Hastad and M. Goldmann. On the power of small-depth threshold circuits. Compu-
tational Complexity, 1(2):113-129, 1991.

S. Muroga. Threshold Logic and its Applications. Wiley-Interscience, 1971.

P. Orponen. Neural networks and complexity theory. In Proc. 17th International
Symposium on Mathematical Foundations of Computer Science, pages 50-61. Springer-
Verlag, 1992. Lecture Notes in Computer Science 629.

I. Parberry. A primer on the complexity theory of neural networks. In Formal Techniques
in Artificial Intelligence: A Sourcebook. Elsevier, 1990.

17

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[26]

[27]

[. Parberry and G. Schnitger. Parallel computation with threshold functions. Journal
of Computer and System Sciences, 36(3):278-302, June 1988.

N. Pippenger. The complexity of computation by networks. IBM J. of Research and
Development, 31(2):235-243, March 1987.

A. A. Razborov. On small depth threshold circuits. In Proe. 3rd Scandinavian Workshop
on Algorithm Theory, pages 42-52. Springer-Verlag, 1992. Lecture Notes in Computer
Science 621.

A. A. Razborov and A. Wigderson. n*(°¢™ lower bounds on the size of depth 3 threshold
circuits with AND gates at the bottom. Manuscript, 1992.

K. Y. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAM
J. Disc. Math., 4:423-435, 1991.

K. Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth-efficient neural networks
for division and related problems. Technical Report RJ 7946, IBM Research Division,
January 1991. To appear in IEEE Trans. Information Theory.

K. Y. Siu and V. Roychowdhury. On optimal depth threshold circuits for multiplication
and related problems. Manuscript, 1992.

S. Toda. On the computational power of PP and &P. In Proc. 30th IEEE Symposium
on Foundations of Computer Science, pages 514-519, 1989.

J. Toran. An oracle characterization of the counting hierarchies. In Proc. 3rd Annual
Structure in Complexity Theory Conference, pages 213223, 1988.

J. Toran. A combinatorial technique for separating counting complexity classes. In Proc.
16th International Colloquium on Automata, Languages and Programming, pages 732—
744. Springer-Verlag, 1989. Lecture Notes in Computer Science 372.

K. W. Wagner. The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica, 23:325-356, 1986.

A. C. Yao. On ACC and threshold circuits. In Proc. 31st IEEE Symposium on Foun-
dations of Computer Science, pages 619-627, 1990.

18

