
Simulating Threshold Circuits by Majority CircuitsMikael Goldmann�Dept. of Computer ScienceRoyal Institute of TechnologyS{100 44 StockholmMarek KarpinskiyDept. of Computer ScienceUniversity of Bonn5300 Bonn 1andInternational Computer Science InstituteBerkeley, CaliforniaAbstractWe prove that a single threshold gate can be simulated by an explicit polynomialsize depth 2 majority circuit. In general we show that a depth d threshold circuitcan be simulated uniformly by a majority circuit of depth d+ 1. Goldmann, H�astadand Razborov showed in [9] that a non-uniform simulation exists. Our constructionanswers two open questions posed in [9]: we give an explicit construction whereas [9]uses a randomized existence argument, and we show that such a simulation is possibleeven if the depth d grows with the number of variables n (the simulation in [9] givespolynomial size circuits only when d is constant).�Part of this work was done while visiting the Department of Computer Science at University of Bonn.Email: migo@nada.kth.se.ySupported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1and by the ESPRIT BR Grant 7097. Email: marek@cs.bonn.edu.1



1 IntroductionA threshold gate is a fairly simple device that computes a weighted sum of its input andcompares it to a threshold value and outputs 1 or 0 depending on the outcome of thecomparison. A threshold circuit is an acyclic network of threshold gates. The size of acircuit is the number of wires.Small weight threshold gates are a restricted type of threshold gates. In this case themagnitude of the (integer) weights of the gate is polynomially bounded. The correspondingcircuits are called small weight threshold circuits. It is easy to see that a majority gate cansimulate a small weight threshold gate by simply duplicating input wires and adding someconstant inputs. This only leads to a polynomial increase in the number of wires. Hence,depth d polynomial size majority circuits are equivalent to depth d polynomial size, smallweight threshold circuits.Threshold circuits have been shown to be surprisingly powerful. It is implicit in workby Beame, Cook and Hoover [4] that integer division can be carried out by polynomial sizethreshold circuits of constant depth. Allender [1] (inspired by Toda [23]) shows that anyfunction in AC0 can be computed by depth three majority circuits of quasi-polynomial size.Yao [27] extends this to all of ACC0 (see also [5]).There are some strong lower bounds for majority circuits of very small depth. Hajnal etal. [10] prove exponetial lower bounds on the size of depth two majority circuits computing\inner product mod 2." These results were extended in [12] to depth three majority circuitswhere the gates on the bottom level have very small fanin, and recently superpolynomialbounds were proved for depth three majority circuits where the gates on the bottom levelare arbitrary gates of fan-in n1�� [19]. For depth three majority circuits with no extrarestrictions, no super-linear lower bounds are known.If one considers threshold circuits with arbitrary weights, even less is known. There isno super-linear lower bound for depth two threshold circuits computing some function inNP. As we mentioned above, such bounds exist for majority circuits [10]. It is thereforeinteresting to explore the power of large weights in threshold circuits.It is well known that a single threshold gate is strictly more powerful than a single small-weight threshold gate. Also, it was recently shown that depth 2, polynomial-size thresholdcircuits are more powerful than depth 2, polynomial-size, small-weight threshold circuits [9].On the other hand, it was proved by Chandra, Stockmeyer, and Vishkin [8] that additionof n binary encoded integers can be performed by constant depth majority circuits (see also[17]). This implies that depth d, polynomial-size threshold circuits can be simulated bydepth O(d), polynomial-size, small-weight threshold circuits.2



In [20] Siu and Bruck gave a non-constructive proof that depth d threshold circuits canbe simulated by depth 2d+1 majority circuits. Alon and Bruck gave a uniform constructionin [3] achieving this. Goldmann, H�astad, and Razborov showed in [9] that any functioncomputed by a depth d, polynomial-size threshold circuit is computable by a depth d + 1,polynomial-size majority circuit (note that for d = 1; 2 this is optimal). Two open questionswere posed in [9]: Can one make an explicit construction, and can one make it work alsofor non-constant depth? ([9] uses a probablilistic argument, and the blowup in size is super-polynomial if the depth depends on the number of variables.) We give positive answers toboth questions.For a thourough survey of complexity theoretic results on threshold circuits, see [18].2 PreliminariesIt will be convenient to work over f1;�1g rather than f0; 1g. An n-variable Boolean functionthus maps f1;�1gn to f1;�1g. This is a simple transformation, and does not a�ect the powerof threshold gates. A threshold gate computes its output as the sign of a linear form:g(x) = sign w0 + nXi=1wixi! ;where the wi are the weights. We assume that the argument to the sign function is nonzerofor all x 2 f1;�1gn. The following well known result by Muroga [13] gives a bound on themagnitude of the weights.Theorem 1 ([13, Theorem 9.3.2.1]) Let f(x) be an arbitrary n-variable threshold func-tion. Then f(x) can be written asf(x) = sign w0 + nX1 wixi! ;where for all i = 0; : : : ; n,wi 2Z and jwij � 2�n(n+ 1)(n+1)=2:Remark 1 A recent result by H�astad [11] gives a lower bound on the weights requiredfor a particular threshold function. The lower bound nearly matches the upper bound inTheorem 1. 3



The size of a circuit is the number of wires.We use the following notation from [6].De�nition 1� LTd is the class of functions computable by depth d polynomial-size threshold circuits.� dLTd is the class of functions computable by depth d polynomial-size threshold circuitswith polynomially bounded integer weights.We de�ne the following operator.De�nition 2 The operator rem is de�ned as follows. For integers a and b,a rem b = c;where c is the unique integer such thata � c (mod b) and � b=2 < c � b=2:Our construction uses the following function of one integer variable y.Mm;pj (y) = 12 sign�y + jp�m+ 12�� 12 sign�y + jp� 2m+ 12�+12 sign�y + jp+m� 12�� 12 sign�y + jp+ 2m � 12�The function Mm;pj (y) has some nice properties.Lemma 2 If p > 4m then for any integer y the following is true.If y + jp = y rem p and m � jy rem pj < 2m, then Mm;pj (y) = sign (y rem p). In allother cases Mm;pj (y) = 0.Proof. It is easy to see that the �rst two terms contribute 1 if m � y + jp < 2m and0 otherwise. Similarly, the last two terms contribute �1 if �2m < y + jp � �m and 04



otherwise. This implies that we can get a nonzero contribution only when m � jy + jpj <2m.If jy + jpj 6= y rem p then jy + jpj � p=2 � 2m, and thus Mm;pj (x) = 0. This proves the�rst part of the lemma.The second part of the lemma follows by the choice of j0.If jy rem pj =2 [m; 2m) then for all j we have jy � jpj =2 [m; 2m), and thus Mm;pj (y) = 0for all j. �3 The Idea Behind the ConstructionLet f be an arbitrary threshold gate given byf(x) = sign (F (x)) ;whereF (x) = w0 + nXi=1wixi:Since we have integer weights, and we require that the argument of `sign' is nonzero, wehave jF (x)j � 1 for all x.In the next section we will build a parametrized approximator for f . For a �xed input,the approximator is good for randomly chosen parameters. To show the intuition behind theconstruction, we build an approximator ' for f that computes correctly for a random input.In the construction it will be convenient to use rational weights. Any circuit we constructwill have weights of the form w=2, where w is an integer. By multiplying all weights in thecircuit by 2 we get integer weights, and the increase in the magnitude of the weights is justa factor 2. 5



To describe the construction we need a couple of parameters that we call W and m. Itwill be convenient to assume the following:W � maxfwmax(f); 2ng ; (1)10n � m �W: (2)The parameter m controls how good the approximator is. If m is big, then the approximatoris good, but the weights in the approximator are polynomial in m.Let us look at a �xed input x. Assume that 2l � jF (x)j < 2l+1. Given this information,we can use less precision in the weights wi. SetF(l)(x) = bw0m=2lc+ nXi=1 bwim=2lcxi:If we disregard the error introduced by the 
oor operation, we will havem � jF(l)(x)j < 2m:It is plausible that for most values of F (x), the truncation error will not matter. Note thatsign (F (x)) = sign �F(l)(x)�. To get the weights small, we just look at F(l)(x) modulo somesmall prime p > m2.We are now ready to construct a small gadget '(l)(x) that implements the computationdescribed above.w(l)i = bwim=2lc rem p;�(l)(x) = w(l)0 + nXi=1w(l)i xi;'(l)(x) = n+1Xj=�n�1Mm;pj ��(l)(x)�: (3)Let us establish some properties of '(l) as de�ned by (3).Proposition 3 For p > m2 the following holds.6



1. For any x, ���'(l)(x)��� 2 f0; 1g.2. If ���F(l)(x) rem p��� 62 [m; 2m) then '(l)(x) = 0.3. If m � ���F(l)(x)��� < 2m then '(l)(x) = sign �F(l)(x)�.Proof. All statments follow from Lemma 2. The �rst one is immediate. The second followsby the observation that F(l)(x) � �(l)(x) (mod p).For the third statement we have the following. Assume that m � ���F(l)(x)��� < 2m. Wethen have�(l)(x) rem p = F(l)(x):Let j0 be the integer that satis�es�(l)(x) rem p = �(l)(x) + j0p:Since ����(l)(x)��� � (n + 1)(p � 1)=2, j0 occurs in the sum in (3). The third statement nowfollows from Lemma 2. �It is tempting to set'(x) =Xl '(l)(x); (4)and hope that '(x) = sign (F (x)) = f(x). The idea is that there is always an l such that2l � jF (x)j < 2l+1. If there was no error introduced by the 
oor operations, we wouldhave m � ���F(l)(x)��� < 2m and sign �F(l)(x)� = sign (F (x)). By Proposition 3, '(l)(x) =sign �F(l)(x)� and for all other l we would probably have '(l)(x) = 0. Then we would have'(x) = '(l)(x) = sign (F (x)) = f(x).Remark 2 We know that jF (x)j � (n+ 1)W . Thus, it is su�cient to sum over l such that0 � l � log((n+ 1)W ) in (4). 7



The problems with (4) are of course that the 
oor operation sometimes introduces trun-cation errors (e.g., when 2l � F (x) but F(l)(x) < m), and sometimes the \wrong" l gives anonzero contribution to the sum (a modular error).Equation (4) is not such a bad idea though, because it works for most x, or rather, formost values of F (x).4 The ApproximatorTo get an approximator based on the ideas in the previous section we want to spread thevalue F (x) in some random fashion. This was done in [9] by considering sign (�F (x))for a randomly chosen integer � 2 f1; 2; : : : ; 22ng. Since � > 0 one has sign (F (x)) =sign (�F (x)). It was shown that for any x, the approximator would compute sign (�F (x))correctly with high probability. By taking many independent �'s and taking the sign of theaverage, one gets an approximator that behaves well on all inputs. If the range of � wassmaller, we could get an explicit approximator by taking the average over all �'s.We will modify the construction. Our approximator will depend on two parameters, andfor any input, the approximator will be good with high probability if the parameters arechosen at random. In our case the probability space is small enough that we may take theaverage over all possible choices of parameter values.We will modify the construction. Just like in [9] we will use a multiplier �, but it will bemuch smaller. For a random �, the probability of a truncation error is small. To handle themodular errors, we will also choose the prime p, used in the construction, randomly, and theprobability that we get a modular error for a random p is small.De�nition 3 We de�ne the following sets. Let[m] = f1; 2; : : : ;mg ;PRm is the set of the �rst m2 primesthat are greater than m2.When �,and p are chosen randomly, they are picked as a pair (�; p) 2 [m]�PRm accordingto the uniform distribution.Instead of looking at the weights wi, we make the approximator for weights �wi. Thus, in-stead of looking at F (x) we look at �F (x) but this works since sign (�F (x)) = sign (F (x)) =8



f(x). We call the corresponding truncated linear form F �(l)(x), that isF �(l)(x) = b�w0m=2lc+ nXi=1 b�wim=2lcxi:Now we are ready to de�ne the parametrized approximator '�;p(x).w(l)i = j�wim=2lk rem p��;p(l) (x) = w(l)0 + nXi=1w(l)i xi'�;p(l) (x) = n+1Xj=�n�1Mm;pj (��;p(l) (x))'�;p(x) = b3 logW c+1Xl=0 '�;p(l) (x); (5)where the upper bound of the last summation follows from an argument analogous to Re-mark 2, the assumptions (1) and (2), and the fact that � � m.The following proposition is the (�; p)-version of Proposition 3. The proof is completelyanalogous.Proposition 4 For p > m2 the following holds.1. For any x, ���'�;p(l) (x)��� 2 f0; 1g.2. If ���F �(l)(x) rem p��� 62 [m; 2m) then '�;p(l) (x) = 0.3. If m � ���F �(l)(x)��� < 2m then '�;p(l) (x) = sign �F �(l)(x)�.Corollary 5 If we assume (1) and (2), then for all x 2 Zn we have '�;p(x) 2 Z andj'�;p(x)j � 2 + 3 logW .Proof. It is not hard to see that statement 1 of Proposition 4 holds even for x 2Zn. Thecorollary follows since we sum over at most 2 + 3 logW di�erent l in (5). �For any x there are usually �'s and p's such that we get truncation errors or modularerrors. We will show that for any �xed x most pairs (�; p) do not give such errors.9



De�nition 41. We say that � is bad for x if there is some l such that ���j�F (x)j � 2l��� � 2l+1n=m.Otherwise � is good for x.2. We say that p is bad for x and � if there is an l such that ���F �(l)(x)��� � 2m but���F �(l)(x) rem p��� < 2m. Otherwise p is good for x and �.3. We call a pair (�; p) bad for x if � is bad for x, or if p is bad for x and �. Otherwise(�; p) is good for x.We will show that when a pair (�; p) is good for x, then '�;p(x) = f(x). We will alsoshow that a for any �xed x, a random pair (�; p) is likely to be good.First we show that '�;p(x) = f(x) when (�; p) is good.Proposition 6 Let x be an arbitrary �xed input. The following is true. if (�; p) is goodfor x, then '�;p(x) = f(x).Proof (Sketch). If (�; p) is good for x then, by the de�nition of \good," there will notbe any truncation errors or modular errors. Thus, the only contribution we get in (5) is thecontribution from the \right" l, which is sign (�F (x)). �We will show that for any �xed x most �'s are good, and for any �xed x and � most p'sare good.Lemma 7 If W and m satisfy (1) and (2), then for any xPr [� is bad for x] < (16 log2W )=m:Proof. Let r = jF (x)j. We want to show that for most � we have ���2l � �r��� > 2l+1n=m forall l.Look at a �xed l, if there is any � which is bad with respect to l, then r must satisfy thefollowing equations.r < 2l+1; (6)r > 2l�1=m: (7)10



The bad interval for � has length 2l+2n=(rm). If r and l do not satisfy (7), then all �'s aretoo small to be bad. On the other hand, if r and l satisfy (7), there are at most 8n di�erent�'s that �t in the bad interval.For any r, there are less than 2 logm di�erent l that satisfy (6) and (7). Thus, any x hasat most 16n logm bad �. The lemma follows by our assumption that (1) and (2) hold. �Lemma 8 If W and m satisfy (1) and (2), then for any x and �Pr [p is bad for x and �] < (16 log2W )=m:Proof. Once again consider a �xed l �rst, and assume that for input x and multiplier �we have jF �(l)(x)j � 2m but ���F �(l)(x) rem p��� < 2m for 4m logW of the primes. By the pigeonhole principle we must have more than logW primes that give the same remainder k, suchthat jkj < 2m. By the Chinese remainder theorem, F �(l)(x) is uniquely determined modulothe product of those primes. That product is greater than m2 logW . Since we assume (1) and(2), ���F �(l)(x)��� � jm�F (x)j � m2(n+ 1)W � m2 logW :This implies that k = F �(l)(x) which means that ���F �(l)(x)��� < 2m, and we have a contradiction.Since there are at most 2 + 3 logW < 4 logW di�erent l, the lemma follows. �Lemma 7 and Lemma 8 imply the following lemma.Lemma 9 If W and m satisfy (1) and (2), then for an arbitrary �xed input x,Pr [(�; p) is bad for x] � (32 log2W )=m:We conclude this section by showing how the approximator allows us to simulate a singlethreshold gate (with large weights) by a depth 2, small-weight, threshold circuit. This is aconstructive version of Theorem 7.8 from [9].Theorem 10 LT1 (dLT2: 11



Proof. We will prove the inclusion. That it is strict follows from the fact that parity is indLT2nLT1. Assume n � 100, smaller inputs are handled by writing the function on disjuntivenormal form.We are given a threshold gatef(x) = sign w0 + nXi=1wixi! :Let W = maxfwmax(f); 2ng be the bound used in the construction, and set the parameterm = 128 log3W (observe thatW and m satisfy (1) and (2)). Consider the following function:g(x) = sign0@X(a;p)'�;p(x)1A :We claim two things: f(x) = g(x) for all x 2 f1;�1gn, and g(x) can be computed by adepth 2, polynomial-size, threshold circuit with polynomially bounded weights.The correctness of the construction follows fromE [f(x)'�;p(x)] > 0; (8)where x is arbitrary and �xed, and we take expectation over the uniform distribution onpairs (�; p). Let us prove (8).E [f(x)'�;p(x)] � Pr [(�; p) good]� (2 + 3 logW ) Pr [(�; p) bad]� 1� 14 logW � 2 + 3 logW4 logW> 0;where the �rst inequality follows from Corollary 5 and the second inequality follows fromLemma 9. This shows that f(x) = g(x) for all x.Now, to implement g(x) as a circuit, let us look at a very schematic picture of what g(x)does. g(x) = sign0@X(�;p)Xl Xj 12 sign �F (l)(�;p)(x) � � �� � � �1A :12



Since we only have two levels of sign-functions, and one is the outmost operator, g(x) canbe computed by a depth 2 threshold circuit. The size is the total number of terms in thesummations (recall that each F (l)(�;p)(x) has fan-in n � logW ). There are m3 = O �log9W�pairs (�; p), and O(logW ) di�erent l. This gives a total size of O(log12W ).As for the weights, they are not necessarily integers, but if we multiply them by two theyare. The only weights that are not �1 are the w(l)1 ; : : : ; w(l)n and w(l)0 + jp weights. All thew(l)i are reduced modulo some prime p that is among the �rst 2m2 = O(log6W ) primes. Thisimplies that p � O(log7W ). Since �(n + 1) � j � n + 1, the weights are all of magnitudeO(log8W ).If we assume Muroga's bound on weights to hold for the original threshold gate f , thenlogW � O (n log n), and hence we have a polynomial-size, polynomial-weight thresholdcircuit of depth 2 that computes f(x). Actually, we only need to have logW polynomial inn. �5 Extending the Construction to CircuitsIn the previous section we showed that a single threshold gate can be simulated by apolynomial-size majority circuit. We will now generalize this to show that a depth d,polynomial-size, threshold circuit can be simulated by a depth d + 1, polynomial-size, ma-jority circuit.In [9] Goldmann, H�astad, and Razborov introduced a circuit class that mixes small andlarge weights.De�nition 5 gLTd is the class of functions computable by depth d, polynomial-size, circuitswhere the top gate has polynomially bounded weights.We will show the following theorem.Theorem 11 For any depth d, possibly depending on n, gLTd =dLTd.Moreover, given a gLTd circuit, for input size n, with weights bounded by 2p(n) for somepolynomial p, there is an explicitdLTd circuit that computes the same function.Proof. Let us look at a circuit C for an gLTd-function. For simplicity, assume that the13



weights at the top gate are all 1. Let the top gate be given byg(x) = sign tXi=1Ci(x)! ;where the Ci are depth d � 1 threshold circuits. Let s be the size of C. For each circuit Ciwe construct an approximator ��;pk . Below we describe how this is done.Let W = maxfwmax(C); 2sg. Let Ck be one of the subcircuits of g. Let the gates of Ckbe f1; : : : ; fr, where r � s. The fan-in of any fi is trivially bounded by logW , and all gateshave their weights bounded by W . Set the parameter m of the previous section as follows.m = 256s t log3W:For (�; p) 2 [m]�PRm, construct a gate approximator '�;pi for each gate fi. Now, connectthe approximators in the same way as the gates. That is, if the output of fi is the k'th inputto fj , then the output of '�;pi is the k'th input to '�;pj . We call the constructed \circuit"��;pk . Note that for any �xed input x, if (�; p) is simultaneously good for all '�;pi of ��;pk ,then ��;pk (x) = Ck(x).Lemma 12 For any �xed input x, if (�; p) is chosen uniformly at random from [m]�PRm,then Pr [��;pk (x) 6= Ck(x)] � (8t logW )�1.Proof. We know that each gate fi of Ck, has fan-in bounded by logW , and will givethe correct output if (�; p) is good. By Lemma 9, the probability that (�; p) is bad is(8s t logW )�1 by the choice of m. Since there are at most s gates in Ck, the lemma follows.�We say that (�; p) is good for x and ��;pk , if it is good for all gate approximators '�;pi of ��;pksimultaneously.What happens when (�; p) is bad for ��;pk ? The magnitude of the output of ��;pk isbounded by the maximum output of the approximator of the top gate of Ck. Using Corol-lary 5, we have for all x and all (�; p),j��;pk (x)j � 2 + 3 logW: (9)Since the corollary holds even when the inputs to the top gate are integers, this bound holdseven when some other approximator in ��;pk fails.14



If we combine Lemma 12 and (9) we getLemma 13 For any �xed input x, if (�; p) is chosen uniformly at random from [m]�PRm,then jE [��;pk (x)]� Ck(x)j � 12t.Do the same for all the circuits Ci to get approximators ��;pi . Consider the followingfunction:h(x) = sign0@ tXi=1 X(�;p)��;pi (x)1A :Observe that this is equivalent toh(x) = sign E "Xi ��;pi (x)#! : (10)We claim the following.Proposition 14 For all inputs x, h(x) = g(x).Proof. We will prove this by showing that for any �xed x,�����E " tXi=1 ��;pi (x)# � tXi=1Ci(x)����� � 1=2: (11)This is su�cient by (10) and the fact that ���Pti=1 Ci(x)��� � 1. The inequality (11) follows bystraightforward application of Lemma 13. �An argument analogous to that in the previous section shows that g(x) can be imple-mented as a depth d threshold circuit. We call the circuit bC. It is not hard to see that eachwire in C corresponds to a polynomially (in logW ) many wires in bC.To get integer weights in the circuit it is su�cient to multiply all weights by 2. Theweights all have magnitude bounded by order of the largest prime used multiplied by s. The15



largest prime in PRm has size O(m2 logm), so the weights are all O(s3t2 log2W (log(st) +log logW )). This completes the proof of Theorem 11.Just as before, the construction is polynomial in n as long as logW is polynomial in n.By Theorem 1, this is always possible. �6 Conclusions and Open ProblemsOur results entail the �rst explicit constructions for the optimal depth, polynomial sizemajority circuits for the number of basic functions including, among others, powering (depth2), integer multiplication and integer division (depth 3), see [22].More generally, our results entail the uniformity of the classes of majority circuits simu-lating the corresponding classes of threshold circuits. (We address this question in the fullversion of this paper.)We conclude with the list of open problems:1. If the original circuit is monotone, our construction yields a non-monotone majoritycircuit. It is an open question if an arbitrary monotone threshold gate can be simulatedby constant depth monotone majority circuits of polynomial size.2. Alternating Turing machines are closely connected to circuits with AND-gates andOR-gates, and counting Turing machines are connected to majority circuits. Is therea reasonable machine model that has such a relationship to threshold circuits? If so,what would be the corresponding notion of uniformity, and would our simulation stillwork?3. Any strong lower bounds for depth two threshold circuits or depth three majoritycircuits computing some explicit function?AcknowledgementWe are grateful to Johan H�astad for many valuable comments on an earlier version of thispaper. We also thank Jens Lagergren, Sasha Razborov, and Avi Wigderson for severalinteresting discussions on the topic of this paper.16



References[1] E. Allender. A note on the power of threshold circuts. In Proc. 30th IEEE Symposiumon Foundations of Computer Science, pages 580{584, 1989.[2] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean functions.Combinatorica, 7:1{22, 1987.[3] N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for comparisonand addition. Technical Report RJ 8300 (75661), IBM Research Division, August 1991.To appear in SIAM J. Disc. Math..[4] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and relatedproblems. In Proc. 25th IEEE Symposium on Foundations of Computer Science, pages1{6, 1984.[5] R. Beigel and J. Tarui. On ACC. In Proc. 32nd IEEE Symposium on Foundations ofComputer Science, pages 783{792, 1991.[6] J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM J. Disc. Math.,3(2):168{177, May 1990.[7] J. Bruck and R. Smolensky. Polynomial threshold functions, AC0 functions and spectralnorms. In Proc. 31st IEEE Symposium on Foundations of Computer Science, pages 632{641, 1990.[8] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM J.Comp., 13:423{439, 1984.[9] M. Goldmann, J. H�astad, and A. Razborov. Majority gates vs. general weighted thresh-old gates. In Proc. 7th Annual Structure in Complexity Theory Conference, pages 2{13,1992. To appear in Computational Complexity.[10] A. Hajnal, W. Maass, P. Pudl�ak, M. Szegedy, and G. Tur�an. Threshold circuits ofbounded depth. In Proc. 28th IEEE Symposium on Foundations of Computer Science,pages 99{110, 1987.[11] J. H�astad. On the size of weights for threshold gates. Manuscript, 1992.[12] J. H�astad and M. Goldmann. On the power of small-depth threshold circuits. Compu-tational Complexity, 1(2):113{129, 1991.[13] S. Muroga. Threshold Logic and its Applications. Wiley-Interscience, 1971.[14] P. Orponen. Neural networks and complexity theory. In Proc. 17th InternationalSymposium on Mathematical Foundations of Computer Science, pages 50{61. Springer-Verlag, 1992. Lecture Notes in Computer Science 629.[15] I. Parberry. A primer on the complexity theory of neural networks. In Formal Techniquesin Arti�cial Intelligence: A Sourcebook. Elsevier, 1990.17



[16] I. Parberry and G. Schnitger. Parallel computation with threshold functions. Journalof Computer and System Sciences, 36(3):278{302, June 1988.[17] N. Pippenger. The complexity of computation by networks. IBM J. of Research andDevelopment, 31(2):235{243, March 1987.[18] A. A. Razborov. On small depth threshold circuits. In Proc. 3rd Scandinavian Workshopon Algorithm Theory, pages 42{52. Springer-Verlag, 1992. Lecture Notes in ComputerScience 621.[19] A. A. Razborov and A. Wigderson. n
(logn) lower bounds on the size of depth 3 thresholdcircuits with AND gates at the bottom. Manuscript, 1992.[20] K. Y. Siu and J. Bruck. On the power of threshold circuits with small weights. SIAMJ. Disc. Math., 4:423{435, 1991.[21] K. Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth-e�cient neural networksfor division and related problems. Technical Report RJ 7946, IBM Research Division,January 1991. To appear in IEEE Trans. Information Theory.[22] K. Y. Siu and V. Roychowdhury. On optimal depth threshold circuits for multiplicationand related problems. Manuscript, 1992.[23] S. Toda. On the computational power of PP and �P . In Proc. 30th IEEE Symposiumon Foundations of Computer Science, pages 514{519, 1989.[24] J. Tor�an. An oracle characterization of the counting hierarchies. In Proc. 3rd AnnualStructure in Complexity Theory Conference, pages 213{223, 1988.[25] J. Tor�an. A combinatorial technique for separating counting complexity classes. In Proc.16th International Colloquium on Automata, Languages and Programming, pages 732{744. Springer-Verlag, 1989. Lecture Notes in Computer Science 372.[26] K. W. Wagner. The complexity of combinatorial problems with succinct input repre-sentation. Acta Informatica, 23:325{356, 1986.[27] A. C. Yao. On ACC and threshold circuits. In Proc. 31st IEEE Symposium on Foun-dations of Computer Science, pages 619{627, 1990.
18


