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Abstract

We design an algorithm for computing the generalized (algebraic circuits with root
extraction) additive complezxity of any rational function. It is the first computability

result of this sort on the additive complexity of algebraic circuits (cf. [SW 80]).
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1 Introduction

It is a well known open problem in the theory of computation, whether the additive com-
plexity of functions is computable (cf. [SW 80]). Note that both multiplicative and total
complexities of functions are computable. In this paper we prove the computability of the
generalized additive complexity for algebraic circuits with root extraction. It is the first

computability result of this sort on the additive complexity of algebraic circuits.

We say that a rational function f € Q(Xp, ..., X) has a generalized additive complexity

at most ¢, if there exists a sequence of algebraic functions:

. (t+1) (i+1) (t+1) (i-l—l) . (t+1) (i+1) 5(i+1) S(i-l-l)
ui-l—l — 5(2+1)X1al e X??n ufl e uiﬁ’ _I_ /Q(Z—I'l)X?l e X;Z" ull . ui’
for 0 < i < t, where k) = 0, f = wyq and all the exponents oz(12+1),...,52(2+1) e Q,

0 < i <t are rationals, coefficients e(F1), k(+1) € Q are algebraic. The rationality of the
exponents (rather than being integers) differs the generalized additive complexity from the
usual additive complexity. In another words we consider the algebraic circuits in which in

addition to the usual arithmetic operations also extracting an arbitrary root is admitted.

If ¢ equals to the generalized additive complexity of f then we say that computation
Uy, ..., Uy of fis generalized additive-minimal.

In the first section we consider the computations in which the exponents oz(lH_l), ey 52(”1),
0 < <t are admitted to be algebraic and the adjusted for this situation notion of the
quasi-additive complexity. The computation of the quasi-additive complexity is reduced (see

lemma below) to the problem of quantifier elimination in the theory of differentially closed

fields (solved in [Se 56], for its complexity see [G 89]).

In the section 2 we prove (see proposition below) that any quasi-additive minimal com-
putation of a rational function can be transformed into a generalized additive-minimal com-
putation with the same number of additions which contains only rational exponents, thus
quasi-additive and generalized additive complexities coincide. Moreover, corollary in the
section 2 gives a possiblitiy to construct the rational exponents of a generalized additive-
minimal computation. In the section 3 we describe an algorithm for producing a generalized
additive-minimal computation. In the case of one variable (n = 1) we give an (elementary)

complexity bound of the designed algorithm (see theorem below) as it uses the quantifier



elimination algorithm from [G 89]. In the general case (n > 2) we do not give complexity
bounds as the quantifier elimination method from [Se 56] is invoked which relies in its turn

on the efficient bounds in Hilbert’s Idealbasissatz which are unknown to be elementary.

Note that a lower bound on additive complexity of f in terms of the variety of real roots
of f was obtained in [G 83] (see also [Ri 85]) where one can find also a survey on other lower
bounds, in particular for additive complexity (see also [G 82] [SW 80]). The lower bound
from [G 83] is used (see the end of section 3) to show that there are polynomials with the

generalized additive complexity equal to 3 and arbitrary large additive complexity.

2 Describing quasi-additive complexity in terms of the
first-order theory of differentially closed fields

First, we design an algorithm to test, whether there exist (and if this is the case to produce)

algebraic exponents oz(lH_l), . ,52(“1) € Q in the computation uy, ..., uwq providing an iden-

tity usy1 = f holds. In this case we say that f has the quasi-additive complexity at most ¢.

For this purpose we introduce the (differential) unknowns

~(i4+1) o~ (i+1) ~(i+1)
99 ¥n » U1 9 o0y Wy s Y1 7"'7Un 7w1 7"'7wi

ipr, AT GO D) plit1) o () WD D)

for all 0 < ¢ <t and the system of (partial) differential equations (denote D; = % and by
D any of the operators Dy,..., D,, by §(l, ) denote the Kronecker symbol):

D) = = D) =0 (1a)i
Do) = S50y DY) = T sUs(L ), 1<hj<n (16
D(wf ™y = Bt 2 Py = G2 << (Te)i
wigy = ol D (D g R D) G () ) (1d)is1

for all 0 <1 < t together with the equation u;yy = f. The resulting system we denote
by (1).

Note that the equations (1@)24_1 1mply that oz(f—l_l),...,g(“l)

) (t+1)

(16)i11 imply that U(H-l) — (Z“)X 2 7U(Z+1) [L(H'I)X% for the appropriate constants
' (i+1) . . $(i41)

M§Z+1)7 lH—1 S Q (10) (i+1) 1mp1y that wl(H—l) = Vl(l-l—l)ulﬁl 77])l(l+1) = DI(Z-H)U?Z for the

€ Q are the constants;



(1) 5+ ¢ )

appropriate constants v , U
Thus, the following lemma is proved.

Lemma.  The solvability of system (1) (in all its differential unknowns) is equivalent to

the fact that the quasi-additive complexity of f is at most t.

Now we consider the statement of solvability of the system (1) as an existentional formula
of the first-order theory of differentially closed fields [Se 56]. Applying to it a quantifier

elimination algorithm [Se 56] one can eliminate unknowns

Uig1s UY-H), ey vff"'l), wy“), cees wl(»H_l), ﬁY—H), ol IT)Y-H) . ,LDZ(»Hl)for all 0 <0 <t

n Y b

As a result we get an (existentional) equivalent formula containing only the unknowns
i41) ey

yoeey0; 700 <0 < t. Because of (la) the latter formula can be considered as a

a
formula in the language of polynomials (so, without derivatives), thus as a system of poly-

nomial equations and inequalities with integer coefficients.

Thus, given a rational function f the algorithm tries ¢t = 1,2,..., and for each ¢ tests
(using [CG 83]), whether the above constructed system of polynomial equations and in-
equalities has a solution (over Q). For a minimal such ¢ we take any of these solutions

(i+1) S0+

oy L0, ) € Q,0 < i < t. In the next section we show that in this case there exists as

well a rational solution of this system and moreover we show how to construct it.

To solve the system (1) of differential equations we applied the algorithm from [Se 56]
for which elementary complexity bound is unknown since it relies on an efficient bound in
Hilbert‘s Idealbasissatz. But the complexity of quantifier elimination is elementary in the
case of ordinary differential equations for the algorithm designed in [G 89], i. e. when n =1,
in another words when there is only one independent variable X. In this case the system
(1) contains O(¢?) unknows, the order of highest occurring derivatives in the equations is at
most 1, the degree of the equations is at most O(¢) + deg f and the number of equations is
at most O(t?), the bit-size of the coefficients of the occuring equations is at most O(1) + M,
where M is the bit-size of the coefficients of f. Therefore (see the bounds in [G 89]), one
can eliminate quantifiers and produce a system of polynomial equations and inequalities
with integer coefficients (see above) in the unknowns &(1i+1)7 . ,SZ(H_I),O <1 < tin time
N = MOW(degfy ™
exceed N} = (degf)

; the degrees of the polynomials occurring in this system do not

o) o .
2 the number of these polynomials is at most A} and the bit-size of
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(integer) coefficients occurring in this system can be bounded by V.

Thereupon to solve this system of polynomial equations and inequalities we apply the

algorithm from [CG 83] which requires time Mo(l)(degf)zz)O(tZ)) . The algorithm from [CG 83]
finds (provided that the system is solvable) a solution aﬁ””,...,é}i“) €Q0<: <t
in the following form. The algorithm produces an irreducible over @ polynomial ¢(7) €
Q[Z], also polynomials 6z(1i+1)(Z),...,52(i+1)(Z) € Q[Z],F < 3 < = such that oz(lH_l) =
a (), ... §0HY = 5(”1)(0) where 0 € Q is a root of p(f) = 0. From [CG 83] we obtain
the following bounds:

s Y4 7

22O(t2

. . )
deg (), deg(al™™), ..., deg(6"™) < (deg f) 0<i<t

K3

and the bit-size of every coefficient occurring in the listed polynomials does not exceed
520(%)

MOW(degf)> .

3 Rational exponents in the quasi-additive minimal
computation

In this section we prove (see the proposition below) the coincidence of the generalized addi-
tive and quasi-additive complexities for rational functions. Moreover, we show (see Corollary
below) how for given algebraic exponents of a quasi-additive minimal computation to produce
the exponents of a certain generalized additive-minimal computation of the same rational
function, thus containing only rational exponents. The similar statements were proved also
for the rationality of the exponents in the minimal sparse representations of a rational func-
tion [GKS 92a] and of a real algebraic function [GKS 92a]. But the latter statements have
different (from the one in the present paper) nature, also another difference is that we prove

here the existence of the rational exponents rather than the rationality as it was the case in

[GKS 92a], [GKS 92a).

So, let

. (i+1) (i+1) g+ (i+1) . (i+1) (i+1) s+ sU+1)
ipr = TV XN xS e e e B

where 0 < i < ¢, £(*1) = 0 and all the exponents and coefficients

agﬂ_l) 5(i+1)7€(i+1)7 K(H—l) c Q ]

REEPLY;



Proposition.  Assume that f = v € Q(X4,...,X,) is a rational function and t is the

minimal possible (sot equals to the quasi-additive complexity of f). Then there exist rational

exponents a(li—l_l), . .,dgi—l_l) € Q.F <1 < =, respectively, providing also a computation of f

(thus, t equals also to the generalized additive complexity).

Proof. For each 1 < 5 < n consider a Q-basis (9;1) S = Q of the Q-linear hull

RS

Q{ozj ,’yj }H‘<~<~+H‘ If 1 (thereby Q) is contained in the latter linear hull, then we set
'Y = 1. Denote {41V,0%) .3 = {6V 0D . 3\ {1},

] b

Consider a differential field F},0 < j < n generated over Q(Xy,...,X,) by the ele-
(1) (2) (1) (2)
ments logXl,Xfl ,Xfl ,...,long,XjJ ,ij ,.... Then in the terminology of [RC 79]

each F;,0 < j < n is a log-explicit extension of its field of constants Q (one can represent

X? = exp(Blog X)).

PO
We claim that the elements X }4", X35, ... € Fjy; are algebraically independent over

the field Fj(log X;41). Assume the contrary. Then the corollary 3. 2 [RC 79] (see also

[Ro 76]) implies the existence of a constant x € Q, rational numbers

0 (1 0 (0 0
I I | N L U= o)
such that not all lﬁ_)l, lﬁ_)l, ... are zeroes and
VDY 5;1219;?1 0+ l§k)9§k) P+ > l;k)eﬁk)
X k>1 — kX, k>1 X k>1

but this leads to a contradiction since the derivative of the left side is nonzero, but of

d
dX; 41
the right side equals to zero.

For each 1 < ¢ < ¢ consider a Q-basis 772(1),772(2),... € Q of the Q-linear hull
Q{ﬁéN),5£—l~)}3+Ha<~<~+Ha If 1 (thereby Q) is contained in the latter linear hull, then we

set 7" = 1. Denote {n\", ¥, ...} = (7™M, 7% 3\ {1}

Denote by FE;, 0 <1 <t a field generated over F,, by the elements

(1) (2) (1) (2)
log uy, u)! u771 log u;, ut ,u
g Uy, Uy 1 e 08U U U e

It is a log-explicit extension of its field of constants Q.

(1) (2)
We claim that for 0 < ¢ < ¢ — 1 the elements ulfﬁl,u?_’ﬁl, ... € Eiyy are algebraically

independent over the field F;(logu;y1). Assume the contrary. Then again using corollary
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3.2 [RC 79] we conclude that there exist a constant ¢ € Q, rational numbers

1) (2 1) (2 (2
plvp(l )7p(1 )7' o 7pn7p7(11)7p7(12)7' . '72172£ )7Z§ )7' . '7Zi+1722(+)1722(+)17' .. € Q
such that not all Zg_)l, Zg_)l, ... are zeroes and

Zl+1+2]>1 z+)1771(+)1 . Xpl-l—Z]le(lj)eg]) Xp"+zjz1p£lj)€£lj) 21+Z]21Z£])”5]) Zi+2]21zgj)nz(J)
Z-|—1 = &N, Tt An Uy ce U .

This provides an expression of u;1; as a product of powers of Xy,..., X,,,uy,...u; and

thereby we can diminish ¢ by one in the computation of f, this contradiction with the
(1)

2)
minimality of ¢ proves the algebraic independency of ulff , u?_’l_f), ... over E;(log ).

Consider the expansions

P ale = gl 1<i<n 1<s <t

k>1 k>1 (2)
=0 4 300 6 = P 13T dle, 1 <i<i41, i<s<t41
E>1 E>1

where a(s) ...,dgsk) € Q are suitable rationals. Remark that if 1 ¢ {(9 (9 2) ..} then
al? = ( ) = 0, also if 1 & {772 ,772 ..} then b( ) = d§ *) = 0. Then the initial Computatlon

J
Uy, Uz, ... We can rewrite as follows:

; (:+1) gtV | G+D) o® (+1) (i41) (1) . (i+1)
Uip1 = 5(2+1)Xfl (Xll )“1,1 (Xll )al N (in )“n,l
plit+1) (1), (+1) () ,(i+1) plitD) (1) (i41) @) (i41)
o™ P Pl Y 3)
» 1) gy ) () (i+1) 1) i+
li(H—l)chl (Xll 12 Xﬁ" (in )Cn !

From the latter expression one can show by induction on ¢ that w41 (and thereby each
of the previous elements ui,...,u;) is algebraic over the field E! C FE; generated over

Q(Xi,...,X,) by the elements
D @) RNE) oL@

(1) \ \
Xfl ,Xfl ,...,Xgnl,Xz",...,u;h cupt Lt
Above we have proved that the latter elements are algebraically independent over
Q(X1,...,X,). As uygy = f € Q(Xy,...,X,) we can substitute in the expression (3)

instead of the elements

(1) (2) (1) (2) (1) (2)
9 9 ol 902 n n n n
Xot Xy X XD s ugt ugt gt ut



almost (in the sense of Zariski topology) arbitrary constants

(1) (2 (1) () EONE) M@ eQ

yl 7y1 7“‘7yn 7yn 7"'721 721 yo 9 Rt

respectively, with the mere requirement that in the intermediate computations of
U, Uz, ..., Upr = f there is no taking nonpositive powers of zero (each time we choose

some branch of a rational power).

As a result we get a computation of @y, ty, ..., ;11 = f in which only rational exponents

occur, namely

(i+1) (i41) _gli+D) D)

1yl (1) D N
al-l—l = 5(2+1)X11 e Xg"-l-l ulil e u?’ _I_ /f(l—l_l)Xll e Xi" ull . ui’ (4)
for some 0+D | z(+1 ¢ Q. The proposition is proved.
From the proof of the proposition we extract the
Corollary. For every 1 < ¢ < t, 1 € Q{ﬁéf), 5£—1~)}3+H4§~§:+H4. For
any Q-basis 5;1), 5;2), ... of Q{QSN),VZ(‘N)}%SNS:_% and any Q-basis 772(1), 772(2), ... of

Q{ﬁéN),5é~)}3+%§~§:+% we get the rational exponents of the resulting computation of

Uty ..y Upyr (see (4)) from the expansions (2).

In order to show that 1 € Q{ﬁéN),(SSN)}N observe that otherwise bgs) = dgs) = 0 for all
1+ 1< s <t+1 and we could diminish ¢ by deleting @; from the computation @y, ..., G

and get a contradiction with a minimality of ¢.

Remark that the corollary together with lemma 12 [GKS 92a] entail that for any ¢ the con-
(:41) ﬁ(t-l—l) NGV 5(75)) € Q2!

structible set of all the possible exponent vectors (5, /, ..., 08, "/, & /..

is contained in a finite union of the hyperplanes of the kind

T 4 Y s = d

1< j<t+1 iH1<5<t

[ 7

Q*+'. But we will not use this remark.

where l;(j), czgj), d € Z. The similar holds also for the vectors (ozgl), e ,ozgt—l_l), ’y»(l), . 7%(75)) €

Note also that in the resulting computation (4) the rational exponents depend on the
choice of the Q-basis (see the corollary). The following simple example demonstrates that

the dependency really can happen:

up = XX +1),up = X7 4+ X0 = (X + 1)+ (X 4+ 1)°



where a € Q\ Q,D, € Q. Choosing a basis a + z,1 € Q{¥, a}, for arbitrary
z € Q, we get

U = (on—l—z)Xl—z _I_ (on—l—z)X—z
uy = (X))o X"y 4 (X)) 7P X 7heb
and by the corollary
u; = wX'TTHwXF
uy = w Xl 4w X

for arbitrary w € Q\ {0}.

4 Constructing a generalized additive-minimal compu-
tation

The first two sections (see lemma and corollary) give us a possibility to compute a gener-
alized additive complexity ¢t of a rational function f. Now we complete an algorithm which
finds some generalized additive-minimal circuit computing f. Using the corollary from the
section 2 the algorithm finds rational exponents oz(lH_l), e 52(“1) € Q,F <1 <=, it remains
to find the coefficients e(+D) £+ ¢ Q,0 < i < .

Denote by M a bound on the bit-sizes of the rational exponents oz(lH_l), cees 52(“1) eQF <
3 < =. Then by induction on 7 one can easily show that each u;, UY-H), cen IT)Z(»H—l), 0<: <

t is an algebraic function of the degree (i.e. the degree of a minimal polynomial to which sat-
isfies the function) at most N = (exp(./\/l))to(t). Hence the coefficients e+ x4+ 0 < < ¢
fit if and only if for every 1 < zy,...,x, < N? for which all the intermediate computations

of the circuit are definable, the equality w1 (1, ..., 2,) = f(21,...,2,) holds. So, for every

fixed 1 < zy,...,2, < N? we introduce the variables
- (it .
ut+1(:1;1,...,:1;n),v§2 )(xl,...,xn),...,wz(»z )(xl,...,xn), 0<:<t

and write down a system of polynomial equations and inequalities expressing all the
operations of the circuit (provided that they are all definable) and finally the relation
Uppr(T1, .oy 2n) = f(ar,...,2,). Then the algorithm invoking [CG 83] solves this system in
N?* 4+ 2t + 1 variables and finds in particular (1) x(+D ¢ Q,0 < ¢ < t. More precisely,



for each subset J C {1,..., N?}" we consider a system as above including in it just the
points (1,...,2,) € J (so, J plays the role of the set of points in which the computation
is defined). The algorithm solves this system and takes .J with the maximal cardinality
for which the system is solvable. In a more sophisticated way we can partition the cube
{1,..., N?}" into N™ subcubes with sides equal to N and as J take each of these subcubes,

but this improvement does not change the complexity bounds below.

In the ordinary case (n = 1) we can bound the complexity of the described algo-
rithm. First, observe that in this case M < M°C (degf)22 “ (see the end of the sec-
tion 1). Therefore, the system of polynomial equations and inequalities constructed above
contains exp( MO (degf) ) polynomials of degrees at most exp(M°O(! (degf)22 o )m
exp(MOU (degf)22 ) variables. Hence one can solve it using the algorithm from [CG 83]
in time exp(exp(M°( (degf)22 o )) and find e0+D g+ € Q,0 < i < t representing them
as algebraic numbers as at the end of section 1 with the size bounded also by the latter

value.
Summarizing, we formulate

Theorem.

a) There is an algorithm calculating the generalized additive complexity of a rational func-

tion f € Q(«u, ..., ) and constructing a generalized additive-minimal circuit com-
puting f;
b) In the case of one-variable rational functions f the running time of the algorithm from
2
a) can be bounded by exp(exp( MO (degf)22 )), where M bounds the bit-size of each

(rational) coefficient of f. The absolute values of the numerators and denominators of

the found rational exponents in a generalized additive-minimal circuit computing [ do
2
not exceed exp( MO0 (degf)22 ) .

At the end we demonstrate that there could be a big gap between the the additive

complexity and generalized additive complexity. Consider a polynomial
Fo=(1+X5)" 4+ (1= X3)" € Z[X]

with the generalized additive complexity at most 3. As all its |5 | roots are negative reals,
the additive complexity of f, is at least Q((log n) ) because of the result [G 83] (see also
[Ri 85]) based on the method from [Kh 91].

10



5 Further Research

It remains an interesting open problem on improving the complexity bounds of our algorithm.

It will be also very interesting to shed some more light on the status of the problem of

computing standard additive complexity of rational functions. At this point we do not know

much about this problem.

Acknowledgments

We are thankful to Richard Cleve for starting us up to think about the additive com-

plexity of polynomials, and to Allan Borodin, Joachim von zur Gathen, Thomas Lickteig,

Michael Singer, and Volker Strassen for many interesting discussions.

References

[CG 83]

G 82]

G 83]

G 89]

[GK 91]

[GKS 90]

Chistov, A., and Grigoriev, D., Subexponential-time solving systems of alge-

braic equations, LOMI Preprints E-9-83, E-10-83, Leningrad, 1983.

Grigoriev, D., Additive complezity in directed computations, Theor. Comp.
ci., 19 1982, pp. 39-67.

Grigoriev, D., Lower bounds in algebraic complexity, Transl. in J. Soviet

Math. 29, 1985, pp. 1388-1425.

Grigoriev, D., Complezity of quantifier elimination in the theory of differential
equations, Lect. Notes Comput. Sci. 378, 1989, pp. 11-25.

Grigoriev, D., and Karpinski, M., Algorithms for Sparse Rational Interpola-
tion, Proc. ACM ISSAC, 1991, pp. 7-13.

Grigoriev, D., Karpinski, M., and Singer, M., Interpolation of Sparse Rational
Functions without Knowing Bounds on Exponents, Proc. 31° IEEE FOCS,
1990, pp. 840-846.

11



[GKS 92a]

[GKS 92b]

[Kh 91]

Ri 85]

[Ro 76]

[RC 79]

[Se 56]

[SW 80]

Grigoriev, D., Karpinski, M., and Singer, M., Computational complexity of
sparse rational interpolation, to appear in STAM J. Computing 1992.

Grigoriev, D., Karpinski, M., and Singer, M., Computational complexity of
sparse real algebraic function interpolation, to appear in Proc. MEGA 92,
Nice, 1992 (Progr. in Math. Birkh&user).

Khovanski, A., Fewnomials, AMS Transl. Math. Monogr. 88, 1991.

Risler, J. J., Additive complexity and zeros of real polynomials, STAM J.
Comput. 14, 1985, pp. 178-183.

Rosenlicht, M., On Liouville’s theory of elementary functions, Pacif. J. Math.
65, N 2, 1976, pp. 485-492.

Rothstein, M., and Caviness, B., A structure theorem for exponential and

primitive functions, STAM J. Comput. 8, N 3, 1979, pp. 357-366.

Seidenberg, A., An elimination theory for differential algebra, Univ. of Calif.
Press 3, N 2, 1956, pp. 31-66.

Schnorr, C., and Wiele van de, J., On the additive complezity of polynomials,
Theor. Comp. Sci. 10, 1980, pp. 1-18.

12



