
On Randomized Versus Deterministic ComputationMarek Karpinski�Dept. of Computer ScienceUniversity of Bonn5300 Bonn 1andInternational Computer Science InstituteBerkeley, CaliforniaRutger Verbeek yDept. of Computer ScienceFernUniversit�at Hagen5800 Hagen 1AbstractIn contrast to deterministic or nondeterministic computation, it is a fundamentalopen problem in randomized computation how to separate di�erent randomized timeclasses (at this point we do not even know how to separate linear randomized timefrom O(nlogn) randomized time) or how to compare them relative to correspondingdeterministic time classes. In another words we are far from understanding the powerof random coin tosses in the computation, and the possible ways of simulating themdeterministically.In this paper we study the relative power of linear and polynomial randomized timecompared with exponential deterministic time. Surprisingly, we are able to constructan oracle A such that exponential time (with or without the oracle A) is simulated bylinear time Las Vegas algorithms using the oracle A. For Las Vegas polynomial time(ZPP) this will mean the following equalities of the time classes:ZPPA = EXPTIMEA = EXPTIME(= DTIME(2poly)) :Furthermore, for all the setsM � �� : M �UR �A() M 2 EXPTIME�Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA673/4-1 and by the SERC Grant GR-E 68297. Email: marek@cs.uni-bonn.de.yPart of the research was done while visiting the International Computer Science Institute, Berkeley,California. Email: verbeek@fernuni-hagen.de. 1

(�UR being unfaithful polynomial random reduction, c.f. [Jo 90]).Thus �A is �UR complete for EXPTIME, but interestingly not NP-hard under (de-terministic) polynomial reduction unless EXPTIME=NEXPTIME. We are also ableto prove, for the �rst time, that randomized reductions are exponentially more pow-erful than deterministic or nondeterministic ones (cf. [AM 77]). Moreover, a set B isconstructed such that Monte Carlo polynomial time (BPP) under the oracle B is ex-ponentially more powerful than deterministic time with nondeterministic oracles, moreprecisely:BPPB = �2EXPTIMEB = �2EXPTIME(= DTIME(2poly)NTIME(n)) :This strengthens considerably a result of Stockmeyer [St 85] about the polynomialtime hierarchy that for some decidable oracle B, BPPB 6� �2PB . Under our oracleBPPB is exponentially more powerful than �2PB, and B does not add any power to�2EXPTIME.1 Randomized ComputationA probabilistic Turing machine (PTM) is a standard Turing machine with the ability to tossa random coin, and can be viewed as a nondeterministic machine with a di�erent acceptingcondition: an input x 2 �� is accepted (in time T (n)) if more than a half of the computations(of length T (jxj)) are accepting.The probability of accepting (rejecting) can be de�ned as the fraction of accepting (rejecting)paths in the normalized computation tree (i.e. all the paths have the same number of binarybranching points). We will restrict ourselves to machines with a clock: all computationshave the length at most T (jxj).We shall study the following classes of probabilistic (bounded error) Turing machines:� Monte Carlo machines (Bounded error PTMs, MTMs)any input is accepted either with probability > 34 or with probability < 14 .� Randomized machines (one sided error PTMs, RTMs):any input is accepted with probability > 34 or 0.� Las Vegas machines (zero error PTMs, ZPTMs):either x is accepted with probability> 34 and rejected with probability 0 or x is rejectedwith probability > 34 and accepted with probability 0.We denote the corresponding complexity classes byPrTIME(T) = fL(M) j M is an O(T)-bounded PTMg2

BPTIME(T) (same for MTMs)RTIME(T) (same for RTMs)ZPTIME(T) (same for ZPTMs)Other than in the deterministic case it is not clear that the \linear speed up" is valid forMonte Carlo, Randomized, and Las Vegas machines.The polynomial time classes are denoted as usual byPP (= [k PrTIME(nk)); BPP; RP; and ZPP:All these machines can be relativized in a canonical way. The relativized machines, sets,complexity classes (with oracle A) are (as usual) denoted by MA, L(MA), e.g. BPPA; ifC is a set of oracle sets, the union of relativized classes with oracle A 2 C is denoted bysuperscript C (e.g. BPPNP = SA2NP BPPA).Other than deterministic or nondeterministic machines, PTMs with bounded error (MTMs,RTMs, or ZPTMs) cannot be described by the syntactical properties only. The MTMs(RTMs, ZPTMs) form nonenumerable subsets of the PTMs. Thus ZPP, RP and BPPhave probably no complete sets. Therefore, we do not have any method for proving thatBPTIME(n) 6= BPTIME(nlogn) [KV 88] and we cannot exclude the situation that (at leastunder some oracle) ZPTIME(n) = BPP. In [FS 89] the existence of such an oracle is claimedbut unfortunately the construction used in the proof seems to have an irreparable
ow [F 92].The paper [FS 89] was also a starting point of our investigation.A related notion of a probabilistic Turing machine with an oracle was introduced recentlyby A. Yao in a context of program checkers [Y 90].Under the random oracle BPP (and RP, ZPP) equals P and reasonable hierarchy theoremsare valid ([BG 81]). Most researchers believe that the power of ZPP does not (or not bymuch) exceed P . BPP is included in �P2 and thus in the polynomial hierarchy. On the otherhand, under some oracle, BPP 6� �P2 [St 85]. We will show that under appropriate oraclesZPP=EXPTIME and BPP = �2EXPTIME. This means: under some oracle the zero-errorPTMs are exponentially more powerful that their deterministic counterparts, and boundederror PTMs are exponentially more powerful than nondeterministic machines.The results have also consequences for the unrelativized world: we can show that theLas Vegas reductions are exponentially more powerful than deterministic reductions, andthe Monte Carlo reductions are exponentially more powerful than
-reductions.While the de�nition of the polynomial hierarchy in q we will need a generalization of the3

well known polynomial hierarchy (in a relativized version):�0TIME(T)A = �0TIME(T)A = �0TIME(T)A = DTIME(T)A�n+1TIME(T)A = DTIME(T)�nTIME(n)A�n+1TIME(T)A = NTIME(T)�nTIME(n)A�n+1TIME(T)A = co-NTIME(T)�nTIME(n)A = f�� nA j A 2 �nTIME(T)Ag :To avoid confusion with oracle classes we prefer �kP etc. for the classes of the polynomialhierarchy �Pk = Si �kTIME(ni); e.g. NP = �1P . It is easy to see that for all at least linearlyincreasing T �n+1TIME(T)A � NTIME(n)�nTIME(T)Aand this inclusion is strict for some oracle A.Let EXTIME denote Sk DTIME(2kn), and let NEXTIME, BPEXTIME, �kEXTIME, etc.denote the other exponential time classes. In the same way let EXPTIME(NEXPTIMEetc.)denote Sk DTIME(2nk) (Sk NTIME(2nk) etc.).2 Oracle A with ZPPA = EXPTIMEA = EXPTIMEWe will construct an oracle A such that for all deterministic oracle machinesMi running intime 2n and all x 2 �� with jxj = n > ix 62 L(MAi) =) 8� 2 �4n ; < i; x; � >62 Ax 2 L(MAi) =) #f� 2 �4n j< i; x; � >2 Ag > 34 � 24nThis set A has the property DTIME(2n)A � DTIME(26n) :By standard padding arguments we can concludeTheorem 1. There exists an oracle A, such thatZPTIME(n)A = EXTIMEA = EXTIME ;ZPPA = EXPTIMEA = EXPTIME :The (surprisingly simple) construction uses the fact, that deterministic exponential timemachines cannot query all oracle strings of linear length.First of all some notations: 4

{ < i; x; � > will denote the string ix�. The oracles will be subsets of f0; 1; $g� =(� [f$g)�.{ The following ordering of pairs (i; x) 2 N ��� is used:(i; x) < (j; y) if one of the following holds(1) jxj < jyj(2) jxj = jyj and x < y (lexicographically)(3) x = y and i < j.{ (Restricted to pairs (i; x) with i < jxj this is a linear ordering of (ordinal) type !.)Without loss of generality we restrict ourselves to the input alphabet � = f0; 1g.Construction of the Oracle AA is constructed in stages following the above de�ned ordering. The (initially empty) set Ais augmented during the construction at stage (i; x) by strings < i; x; � >, when x 2 L(MAi).Queries \< i; x; � >2 A?" on previous stages are recorded in a set D; these are not changedwhen \x 2 L(MAi)" is encoded.Stage (0; �): A := ;; D := ;.Stage (i; x), i < jxj:Simulate at most 2jxj steps of MAi (x).IfMAi asks \< j; y; � >2 A?", (j; y) > (i; x), and j�j = 4 � jyj,then D := D [f< j; y; � >g (i.e. < j; y; � >62 A is �xed).IfMAi accepts x, then A := A [(f< i; x; � >j j�j = 4 � jxjg nD). 2Lemma 1. For all i; x (i < jxj) the following holds:(1) If MAi accepts x 2 �n within 2n steps, then < i; x; � >62 A for at most 2n � 22n strings< i; x; � > with j�j = 4n.(2) If MAi does not accept x 2 �n within 2n steps, then < i; x; � >62 A for all �.Proof. Though the oracle is changed during the construction, all oracle queries areanswered consistently. A new string is added to A only if it was not queried during previoussteps. 5

(1) If MAi accepts x 2 �n within the time bound, all strings < i; x; � > not in D withj�j = 4n are added to A. D contains all strings < i; x; � > queried in earlier stages.Since there are less than n � 2n+1 earlier stages and on each stage at most 2n stringsare queried, #D < 2n � 22n.(2) is obvious, since < i; x; � > is added to A only if MAi accepts x within 2n steps. 2Our next lemma shows that A is not only decidable in exponential time, but A does not addmuch power to deterministic time bounded machines. A universal set for all sets decidablein time 2n with oracle A is itself decidable in exponential time. (From \A 2 DTIME(2n)"we could only conclude \DTIME(2n)A � DTIME(2n)DTIME(2n) = DTIME(22n)".)Lemma 2. LA = f$ix j MAi accepts x in time 2jxj ; jxj > ig 2 DTIME(26n).Proof. We construct a machineM which accepts LA (without oracle) in time 26n.On input $ix (i < jxj) M simulates all MAj (y)((j; y) � (i; x); j < jyj) for 2jyj steps in theorder of the oracle construction, recording the setD (as list of oracle strings) and the outcomeof these machines. Oracle queries \a 2 A?" are replaced by the following procedure:(1) If a has not the form < k; z; � > with jzj > k and j�j = 4jzj, then a 62 A.(2) Otherwise, if a =< k; z; � > and (k; z) � (j; y), then a 62 A. If a 62 D, D := D [fag.(3) Otherwise, if a 2 D, then a 62 A.(4) Otherwise (a =< k; z; � >; (k; z) < (j; y); a 62 D), then a 2 A () MAk accepts z(which was recorded on stage (k; z)).If MAj (y) enters an accepting con�guration, this fact is recorded and the next machine issimulated. After 2jyj steps of simulation we know that MAj (y) does not accept within thetime bound and record this fact. After stage (i; x) we know whether or not MAi accepts xwithin the time bound and thus have decided \is $ix 2 LA?".Thus M accepts LA.On stage (i; x)D contains at most 2jxj�22jxj strings of length at most 2jxj. Thus the simulationof a single oracle query costs O(jxj � 23jxj) steps. The other simulation steps are cheaper.Thus the simulation ofMAj (y) ((j; y) � (i; x)) can be done in O(jxj �24jxj) steps, which yieldsthe total costs for all stages up to (i; x) of O(jxj2 � 25jxj) � O(26jxj). 26

Proof of Theorem 1.� \EXTIMEA = EXTIME"Suppose L 2 EXTIMEA. Then there is an oracle machine MAi and some k suchthat MAi decides L within 2k�n steps. Let L0 = fx10m j x 2 L; m � k � jxjg be theappropriately padded set. Then y = x10m 2 L0 can be decided by some MAj in timejyj+ 2m � 2jyj.Hence by Lemma 2,L = fx j $jx10k�jxj+j 2 LAg = fx j x10k�jxj+j 2 L0g2 DTIME(26(2j+(k+1)�jxj)) = DTIME(26(k+1)�jxj)� EXTIME :� \ZPTIME(n)A � EXTIMEA"Since EXTIMEA is closed under complement and ZPTIME(n)A = RTIME(n)A �EXTIMEA \ co-RTIME(n)A, it is su�cient to show \RTIME(n)A � EXTIMEA".Suppose L 2 DTIME(2k�n)A.Let L0 = L(MAj) as above, MAi runs in time 2n. An R-machineM accepts L = fx jx10k�jxj+j 2 L0g as follows:On input x,M computes y = x10k�jxj+j. ThenM chooses a random string � of length4 � jyj. M accepts i� < j; y; � >2 A.Obviously,M runs in time O(n). From Lemma 1 we conclude for all x:x 62 L =) y 62 L0 =) 8� < j; y; � >62 A =) Prob[< j; y; � >2 A] = 0 ;x 2 L =) Prob[< j; y; � >2 A] > 34 :� \ZPTIME(n)A � EXTIMEA" is obvious:ZPTIME(n)A � PrTIME(n)A � DTIME(2O(n))Afor any oracle A.The corresponding statements for ZPPA, EXPTIMEA, and EXPTIME are proved in similarway using polynomial instead of linear padding. 27

3 Oracle B with BPPB = �2EXPTIMEB =�2EXPTIMEThe construction of the oracle B follows a similar idea as for the oracle A. The maindi�erence is that we must introduce strings < i; x; � > into the oracle before MBi (x) isencoded. This yields a small two-sided error for the probabilistic machine.B will have the property that for all �2-oracle machines Mi running in time 2n and all xwith jxj = n > i the following holds:x 2 L(MBi) =) #f� 2 �4n j< i; x; � >2 Bg > 34 � 24nx 62 L(MBi) =) #f� 2 �4n j< i; x; � >2 Bg < 14 � 24n :Furthermore �2TIME(2n)B � �2TIME(221n) :Again we can concludeTheorem 2. There exists an oracle B, such thatBPTIME(n)B = �2EXTIMEB = �2EXTIME ;BPPB = �2EXPTIMEB = �2EXPTIME :Construction of the Oracle BDuring the construction we record all oracle queries in (initially empty) sets B (strings withpositive answer) and C (strings with negative answer), B \ C = ;. E = f0; 1; $g� n (B [C)contains all strings with yet undetermined outcome.Recall that a �2-machine with an oracle X is a deterministic machine which can queryarbitrary nondeterministic linear time machines with the oracle X.Let us denote the j-th nondeterministic linear time machine with oracle X by NXj .Stage (0; �):B := ;;E := f< i; x; � >j j�j = 4 � jxj; i < jxjg;C := f0; 1; $g� n E; 8

Stage (i; x) (i < jxj):Simulate up to 2jxj steps of Mi(x).If Mi(x) queries \y 2 L(NBj)?", do the following:If there is a set D � E such that y 2 L(NB[Dj), then NB[Dj has at least oneaccepting path of length jyj. Suppose F is the set of all oracle queries on thispath. Set B := B [(F \D); C := C [(F \ (E nD)); E := E nF . Otherwise forall D � E y 62 L(NB[Dj).If Mi accepts x, encode this:B := B [f< i; x; � >2 Eg; E := E nB.If Mi rejects x or does not accept x within 2jxj stepsC := C [f< i; x; � >2 Eg; E := E n C. 2Lemma 3. Suppose B is constructed as described above. Then for all i; x (i < jxj) thefollowing holds:(1) If MBi accepts x 2 �n within 2n steps, then < i; x; � >62 B for at most 2n � 23n strings< i; x; � > with j�j = 4n.(2) If MBi does not accept x 2 �n within 2n steps, then < i; x; � >2 B for at most 2n � 23nstrings < i; x; � > with j�j = 4n.Proof. At the end of stage (i; x) all < i; x; � >2 E are added to B (case (1)) or to C(case (2)). Since there are less than 2n � 2n stages (j; y) � (i; x), it is su�cient to show thatat most 22n strings < i; x; � > are removed from E during stage (j; y) < (i; x) and duringbut before the end of stage (i; x).Mj(y) (j; jyj � n) performs at most 2n queries of the form \z 2 L(NBk)?" with jzj � 2n. Foreach of these queries the size of F (in the oracle construction) is bounded by jzj � 2n. Thusfor each query \z 2 L(NBk)?" at most #F � 2n strings (possibly of the form < i; x; � >)are removed from E. At the end of stage (j; y) only strings < j; y; � > are added to B or Cand thus removed from E. 2Our next lemma asserts that B does not add much power to �2-machines. The proof of thisfact is much more di�cult than the proof of the corresponding Lemma 2.Recall that the construction of B does not completely determine the oracle B: when \y 2L(NBk)" is �xed, we can choose di�erent sets D � E such that y 2 L(NB[Dj) and for everysuch D select several accepting computation paths of NB[Dj (y). Thus by appropriate choicearbitrary complex (even undecidable) oracle sets B may turn out. The proof of Lemma 49

yields the construction of one oracle set B consistent with the above described constructionand thus with the properties of Lemma 3. In the rest of the paper B denotes this set.Lemma 4. There is an oracle B (which is one of the possible sets that turn out from the\construction of oracle B") such thatLB = f$ix j MBi is a �2-machine accepting x in time 2jxj, i < jxjg 2 �2TIME(221n) :Proof. Similar as in the proof of Lemma 2 the �2-machineM with input $ix will simulateall stages of the oracle construction up to stage (i; x).Again we record the outcome of MBj (y) on stage (j; y) in a list Z. Some at the positive ornegative answers to the oracle queries are recorderd in the additional lists X and Y . X andY are (initially empty) lists of oracle strings of the form < k; z; � > (j�j = 4 � jzj; k < jzj)which are known to be in B (or not in B, respectively). Let E be the same set as in the\construction of oracle B", i.e. on stage (j; y)E = f< k; z; � >j (k; z) � (j; y); k < jzj; j�j = 4 � jzjg n (X [Y) :In order to simulate queries \z 2 L(NBk)?" we will use the following universal set L, whichdetermines on stage (j; y) whether or not there is an augmentation of the currentB consistentwith the previous oracle queries (recorded inX;Y;Z) such that the nondeterministicmachineNB[Dk starting in same con�guration C can reach an accepting con�guration within t steps:kcX$Y Zjyt 2 L() Nk starting in con�guration accepts within t steps,where the oracle queries \a 2 B?" are replaced as fol-lows:(1) \a 62 B" if a has not the form < l; u; � > with l < juj; j�j = 4 � juj.For the other cases assume a =< l; u; � >.(2) \a 2 B" if a is contained in the list X or if (l; u) < (j; y), a 62 Y and(l; u) 2 Z.(3) \a 62 B" if a 2 Y or if (l; u) < (j; y), a 62 X and (l; u) 62 Z.(4) Otherwise (a 2 E) replace the query by a nondeterministic choice.It is easy to see that L 2 NTIME(k � t � (jXj+ jY j+ jZj)) � NTIME(n3).Suppose we are simulating stage (j; y) � (i; x).Using L a query ofMj(y) of the form \z 2 L(NBk)?" can be replaced by a sequence of queries\p 2 L?", which yields a stepwise simulation of an accepting path of NBk , and appropriateaugmentation of X or Y : 10

c := initial con�guration of Nk(z);t := jzj;if kcX$Y Zxjy$t 2 L thenwhile t > 0 and c is not accepting dobeginif the next step of Nk is an oracle query \a 2 B?" and a is not yet recorded thenbeginadd a to X;c0 := next con�guration if a 2 B;if $kc0$X$Y $Z$$jY $t�1 62 L thenbeginremove a from X;add a to Y ;c0 := next con�guration if a 62 Bendendelse f the next step is a nondeterministic choice gdetermine a next con�guration c0 with $kc0$X$Y $Z$$jy$t�1 2 Lf at least one c0 has this property g;t := t� 1;c := c0end;if c is an accepting con�guration of Nkthen \z 2 L(NBk)" else \z 62 L(NBk)".At the end of the stage (j; y) (i.e. when Mj reaches an accepting con�guration or else after2jyj simulation steps) record the outcome of Mj(y): if Mj accepts y within 2jyj steps, add(j; y) to Z.The oracle B constructed by this procedure is determined bya 2 B () a =< i; x; � >, i < jxj, j�j = 4 � jxj and after stage (i; x) of the simulationeither a 2 X or a 62 Y and (i; x) 2 Z.On stage (j; y) � (i; x) M simulates at most 2n (n = jxj) steps. The simulation of a query\z 2 L(NBk)" costs jzj � 2n steps and 2n queries to the oracle B times the cost for lookingat and updating the lists X, Y and Z. These can contain up to 2n � 23n elements of length22n. Thus the total costs for all 2n � 2n stages up to (i; x) are bounded by 4n2 � 26n andLB 2 DTIME(27n)NTIME(n3) � DTIME(221n)NTIME(n) = �2TIME(221n) : 211

Proof of Theorem 2. Follows from Lemma 3 and Lemma 4 in the same way as Theorem 1from Lemma 1 and Lemma 2. 24 ConsequencesThe sets A and B have many interesting properties. Perhaps the most interesting is thatrandomized reduction can be exponentially more powerful than deterministic or nondeter-ministic reduction (cf. [AM 77]).De�nition (Reducibilities)X �
 Y :, there is a polynomial time bounded NTM M with:(1) For every input x there is at least one computation which producesan output.(2) 8(x; y)M(x) = y) [x 2 X , y 2 Y]X �UR Y :, there is a polynomial time bounded PTM M with:(1) every computation produces an output(2a) x 2 X)M(x) 2 Y(2b) x 62 X) Prob[M(x) 62 Y] > 34 (unfaithful R-reduction)X �BPP Y :, as �UR with (1'), (2b), and (2a')(2a') x 2 X) Prob[x 2 X)M(x) 2 Y] > 34.Obviously X �
 Y) X 2 NP Y ; X �DTIME(T) Y) X 2 DTIME(T)Y .Theorem 3. UR-Reductions are exponentially more powerful than DTIME-reductions.(1) 8X 2 EXPTIME; X �UR �A and �X �UR �A(2) 8k 8T 2 O(2nk) 9X 2 EXPTIME; X 6�DTIME(T) �A.Proof.(1) follows (by polynomial padding) from Lemma 1.(2) Suppose T 2 O(2nk).X �DTIME(T) �A) X 2 DTIME(T) �A) X 2 DTIME(26�nk) (by Lemma 2), which isnot true for all X 2 EXPTIME. 212

Theorem 4. BPP-reductions are exponentially more powerful than nondeterministic (andthan
-) reductions (cf. [AM 77]):(1) 8X 2 �2EXPTIME; X �BPP B(2) 8k; 8T 2 O(2nk); �2TIME(T)B 6� �2EXPTIME.Proof.(1) follows from Lemma 3.(2) as Proof of Theorem 3 using Lemma 4. 2Since the oracle queries used for the �UR and �BPP are extremely simple, they can becomputed by NC1-circuits. Thus �UR and �BPP in Theorems 3 and 4 can be replaced evenby Las Vegas NC1-reducibility and Monte Carlo NC1-reducibility (de�ned in an obviousway).Since Monte Carlo machines have small nonuniform circuits it is an easy consequence fromLemma 3 that relative to oracleB, �2EXTIME has linear size circuits (for the weaker versionof it see [W 83], cf. also [K 82]).We list some other consequences for our oracles with hints how to prove them (to shortenthe formulas we denote EXPTIME by E):(1) PA �6= ZPPA = N = PHA = E = EA �6= ZPEA = EE = DTIME(22n).(2) PB �6= NPB \ coNPB �6= NPB �6= �2PB �6= BPPB = �2PB = PHB = �2E =�2EB �6= BPEB = �2EB = EHB = E�2E = �2TIME(22n).(The inclusions 1 to 4 are strict because otherwise the polynomial hierarchy collapsesand �2PB = �2PB = �2EB, which is impossible.)(3) If E 6= ZPE, then PA 6� ZPP.(PA � ZPP) E = EA = EPA � EZPP = ZPE)(4) If �2E 6= �3E, then PB 6� NP (i.e. B is not NP -hard, but complete for �2E under�BPP). (PB � NP) �2E = �2EPB � �2ENP = �3E.)(5) If �2E 6= �3E, then NPB 6� coNP .(NPB � coNP) NPNP � NPB) �3E � �2EB = �2E)(6) If �2E 6= �2E, then �2PB 6� �2P .(�2PB � �2P) �2E = �2EB = E�2PB � E�2P = �2E)13

5 ConclusionOur results show that the randomized computation can be extremely powerful when com-pared with deterministic computation in a relativized context, even though randomizationhas almost no additional power in the presence of random oracles.We have constructed oracles A and B with maximal collapse between polynomial and expo-nential classes without known strict inclusion:ZPPA = �1PA \�1PA = �1EA = �1E (= EXPTIME) ;BPPB = �2PB \�2PB = �2EB = �2E :(BPPB � �2PB \ �2PB; see [S 83])It is an open question, if such oracles with maximal collapse exist also on other levels ofthe polynomial and exponential hierarchies, i.e. whether there exists C such that for somek > 2, �kPC \ �kPC = �kEC = �kE :It seems that the methods presented in this paper cannot be applied directly to higher levels,since no probabilistic class is known below �kP and not below �kP (k > 2).Acknowledgments. We thank Eric Allender, Klaus Ambos-Spies, Richard Beigel, YuriGurevich, and Johan H�astad for the number of interesting discussions connected to the topicof this paper.References[A 78] Adleman, L., Two Theorems on Random Polynomial Time, Proc. 19th IEEEFOCS, 1978, pp. 75-83.[AM 77] Adleman, L., Manders, K., Reducibility, Randomness, and Intractibility, Proc.9th ACM STOC, 1977, pp. 151-163.[ABHH 92] Allender, E., Beigel, R., Hertrampf, U., Homer, S., Almost-Everywhere Com-plexity Hierarchies for Nondeterministic Time, Manuscript, 1992; A prelim-inary version has appeared in Proc. STACS '90, LNCS 415, Springer-Verlag,1990, pp. 1-11.[BG 81] Bennett, Ch. H., Gill, J., Relative to a Random Oracle A, PA 6= NPA 6=co�NPA with Probability 1, SIAM J. on Computing 10, 1981, pp. 96-113.14

[F 92] Fortnow, L., Personal Communication, 1992.[FS 89] Fortnow, L., Sipser, M., Probabilistic Computation and Linear Time, Proc.21st ACM STOC, 1989, pp. 148-166.[F 79] Freivalds, R., Fast Probabilistic Algorithms, Proc. MFCS'79, LNCS 75, 1979,Springer-Verlag, pp. 57-69.[Jo 90] Johnson, P.S., A Catalog of Complexity Classes, in Handbook of TheoreticalComputer Science, Vol. A., Algorithms and Complexity, Elsevier-MIT Press,1990, pp. 69-161.[K 82] Kannan, R., Circuit-Size Lower Bounds and Non-reducibility to Sparse Sets,Information and Control 55, 1982, pp. 40-46.[KV 87] Karpinski, M., Verbeek, R., On the Monte Carlo Space Constructible Functionsand Separation Results for Probabilistic Complexity Classes, Information andComputation 75, 1987, pp. 178-189.[KV 88] Karpinski, M., Verbeek, R., Randomness, Provability, and the Separation ofMonte Carlo Time and Space, LNCS 270, Springer-Verlag, 1988, pp. 189-207.[R 82] Racko�, C., Relational Questions Involving Probabilistic Algorithms, J. ACM29, 1982, pp. 261-268.[S 83] Sipser, M., A Complexity Theoretic Approach to Randomness, Proc. 15th ACMSTOC, 1983, pp. 330-335.[St 85] Stockmeyer, L., On Approximation Algorithms for #P , SIAM J. Comput. 14,1985, pp. 849-861.[W 83] Wilson, C., Relativized Circuit Complexity, 24th IEEE FOCS, 1983, pp. 329-334.[Y 90] Yao, A. C., Coherent Functions and Program Checkers, Proc. 22nd ACM STOC,1990, pp. 84-94.
15

