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1 IntroductionWe are concerned with the computational task of testing membership in a semi-algebraicsubset X � Rm. The starting point of our investigation is the observation that for mem-bership problems of certain X � Rm there are randomized algorithms that run much fasterthan any deterministic one. We illustrate this by two examples.Example 1. Let X := f(A;B;C) : AB = Cg � (Rm�m)3be the graph of matrix multiplication. It is conceivable { although not proven so far { thatdeciding membership in X is as hard as matrix multiplication. Freivalds [Fr 89] proposedthe following randomized algorithm: choose a vector � 2 f0; 1gm at random with probability2�m, compute A(B�) and C�, test whether A(B�) = C�, and if this is the case answer \yes",otherwise reply \no". The answer given by the algorithm can only be wrong if AB 6= C, butthen the error probability is at most 1=2 since for every a�ne hyperplane H � Rm one hasjf0; 1gm \Hj � 2m�1.This algorithm uses only O(m2) arithmetical operations and comparisons. Furthermore,by repeating this procedure t times we can achieve an error probability of at most 2�t withan amount of O(tm2) steps, whereas the complexity of matrix multiplication is not believedto be of order m2.Example 2. Let X := f(�; �) : � = �(�)g � R2mdenote the graph of the mapping given by all elementary symmetric functions �1; : : : ; �m. ByStrassen [St 83] (over C ) and the extension by Monta~na-Pardo-Recio [MRR 90] of Ben-Or[Be 83] the number of multiplications, divisions and comparisons necessary to test member-ship in X (deterministically) is at least of order of magnitude m logm.However, when allowing for a certain error probability, one can proceed in the followingway. Given an input (�; �) 2 R2m, choose a number � 2 R at random according to someprobability distribution � on R, compute (using Horner's rule)�m + mXi=1(�1)i�i�m�i and mYi=1(� � �i);and test whether they are equal. If this is the case answer \yes", otherwise answer \no".If (�; �) 2 X, the correct answer is given, and for (�; �) 62 X the error probability equals2



�(Z(f�;�)) where Z(f�;�) denotes the zeroset off�;� := mXi=1(�1)i(�i � �i(�))Tm�i 2 R[T ] n f0g:Hence the error probability is at most� := supf�(M) :M � R jM j = m� 1g:(Taking for instance the uniform distribution on 2m� 2 points in R one obtains � = 1=2; ifthe probability measure has a density (e.g. the Gauss distribution) then even � = 0.)This algorithm runs with only O(m) arithmetical operations and comparisons and istherefore at least by a factor of order logm faster than an optimal deterministic one.In this paper we show in particular that for hypersurfaces X � Rm randomization doesnot help much, irrespective of the chosen measure � on someRn provided that � satis�es somemild \algebraicity" condition. We also give a lower bound on the R-preconditioned (�; �)-average decision complexity of the membership problem of a k-generic complete intersectionX � Rm of r polynomials of the same degree, k � R a sub�eld. This bound is by afactor of r smaller than the (deterministic) R-preconditioned decision complexity which hasbeen determined in B�urgisser [B�u 92]. In particular, the lower bounds in B�urgisser-Lickteig-Shub [BLS 90] on R-preconditioned decision complexity of a Q-generic hypersurface remainessentially true for R-preconditioned (�; �)-average decision complexity.Section 2 contains the de�nitions of randomized decision trees (T; �), (�; �)-average com-plexity, and R-preconditioning. In section 3 we give the main result on average decisioncomplexity, and in section 4 the above mentioned applications.Our result does also apply to nongeneric cases. For instance the (�; �)-average complexityof the membership problem of SL(m;R) � Rm�m is about the same as the complexityof matrix multiplication, and the (�; �)-average complexity of the membership problem ofdeterminant varietiesfA 2 Rp�q : rankA � rg � fA 2 Rp�q : rankA � sg(r < s � p � q) has a lower bound of order r2. We will also show that the randomizedalgorithm described in Example 2 for testing all elementary symmetric functions for certainvalues is optimal up to a constant factor. In contrast to this, for the graphgraph�bm=2c � Rm+1of the single middle elementary symmetric �bm=2c the (�; �)-average decision complexity willbe shown to be at least of order m logm. These lower bounds remain even true for the3



membership problems of the respective sets of rational points, and extend results in Lickteig[Li 90]. (For decision complexity and rational points see also [Be 83, Hi 91, Ya 89].)As in [B�u 92, BL 91] we follow the approach inititated in [Li 90] to prove lower boundson decision complexity. We will use some real algebraic geometry, and the reader is assumedto be familiar with its basic concepts. For this theory we refer to the book by Bochnak,Coste and Roy [BCR 86]; see also Knebusch and Scheiderer [KS 89, chapt. III]. As far ascomplexity theory is concerned the reader is assumed to be familiar with [BL 91, sections1-4]. For some overview on lower bounds on decision complexity see e.g. the introductionof [BL 91]. For general background on randomized algorithms see e.g. Karp [Ka 90], andKarpinski and Verbeek [KV 87] and the references given there.2 Randomized decision treesWe recall some de�nitions following the terminology in [BL 91, Li 90]. Throughout thispaper k � R denotes a �xed sub�eld. We consider (
k; P )-decision trees T over m 2 N;these trees take as inputs elements from Rm, use operations in 
k := k t f0; 1;+;�; �; =g(� 2 k stands for the scalar multiplication with �) and branch according to relations inP := f=;�g. To each leaf of such a tree T is assigned one of the symbols yes or no. For� 2 Rm we denote by T� the path in T de�ned by the input � (leading to a leaf or endingprior to an unexecutable division instruction, cf. [BL 91]).Let X � Y � Rm be subsets (semi-algebraic or not). We say that T decides the partitionfX;Y nXg of Y (or T decides membership in X relative to Y ) if for all � 2 X the path T�ends up with a yes-leaf and for all � 2 Y nX the path T� ends up with a no-leaf.Let c : 
k t P ! N be a cost function. The c-length L(c; �) of a path � in T is de�nedas the sum of the costs along �; the c-cost of the tree T is the maximum of the L(c; �) takenover all paths � in T (cf. [BL 91]). The decision complexity C(c; fX;Y nXg) of a partitionfX;Y nXg of Y with respect to (k and) c is de�ned asC(c; fX;Y nXg) := minT max�2Y L(c; T�)where T varies over all (
k; P )-decision trees over m deciding the partition fX;Y n Xg.One has C(c; fX;Y n Xg) <1 for semi-algebraic X and Y if and only if X is the trace inY of a k-de�nable semi-algebraic subset of Rm. In order to deal with arbitrary partitionsfX;Y nXg one must allow preconditioning of certain real constants �1; : : : ; �s 2 R. So one4



minimizes the decision complexities of all partitionsff�g �X; f�g � (Y nX)gof f�g� Y � Rs+m; the R-preconditioned decision complexity of fX;Y nXg with respect toc is de�ned as (cf. [B�u 92])CR(c; fX;Y nXg) := minfC(c; ff�g �X; f�g � (Y nX)g) : s 2 N; � 2 Rsg:Let us now formalize the notion of a randomized decision tree. We call a �nite measure� : B(Rn)! [0;1)on the Borel algebra of Rn algebraic if it can be written as a �nite sum� = NXi=1 �iof Borel measures �i which are pure; i.e., they should satisfy the following conditions:(P1) the Zariski closure Zarsupp�i � Rn of the support of �i is irreducible,(P2) �i(Z) = 0 for all proper algebraic subsets Z � Zarsupp�i.(Example: a convex combination of a Gauss-distribution on R and some �-\functions".)Let T be an (
k; P )-decision tree over m+ n and � be an algebraic probability measureon Rn. We call the pair (T; �) a randomized (
k; P )-decision tree over m.The average c-length of (T; �) on input � 2 Rm is de�ned asL(c; (T; �); �) := ZRn L(c; T(�;�))d�(�):(It measures the expected c-cost of the tree on input �. Any sort of costs to perform therandom choice of � are not taken into account.)We say that (T; �) decides a partition fX;Y n Xg of Y � Rm (or (T; �) decides mem-bership in X relative to Y ) with error probability � 2 [0; 1) if(R1) the path T(�;�) ends up with a leaf for all (�; �) 2 Y �Rn,(R2) wrong answers are rare:8� 2 X : �f� 2 Rn : T(�;�) ends up with a no-leafg � �;8� 2 Y nX : �f� 2 Rn : T(�;�) ends up with a yes-leafg � �:5



Let an algebraic measure � : B(Rn) ! [0; 1] and � 2 [0; 1) be given. We de�ne the(�; �)-average decision complexity C(�;�)(c; fX;Y nXg) of fX;Y nXg with respect to a costfunction c : 
k t P ! N asC(�;�)(c; fX;Y nXg) := minT max�2RmL(c; (T; �); �)where T varies over all (
k; P )-decision trees overm+n such that (T; �) decides membershipin X relative to Y with error probability �. The R-preconditioned (�; �)-average decisioncomplexity C(�;�)R (c; fX;Y nXg) of fX;Y nXg with respect to c is de�ned asC(�;�)R (c; fX;Y nXg) := mins2Nmin�2RsC(�;�)(c; ff�g �X; f�g � (Y nX)g):We remark that if � 2 [0; 1) is given there is always an algebraic probability distribution� on R such thatC(�;�)(c; fX;Y nXg) � (1� �)C(c; fX;Y nXg) + minfc(=); c(�)g:(Take for instance � = ��0+ (1� �)�1 and proceed in the following way: check �rst whether� > 0; if yes continue deterministically, otherwise answer \no", say.) This shows thatrandomization may lead to at least a certain decreasing of the decision complexity. Ouranalysis will show that in several cases not much more decreasing is possible.In the sequel we will apply some real algebraic geometry (cf. [BCR 86]). Let� = (p;��) 2 SpecrR[x1; : : : ; xm]be given. Following [BL 91, Li 90] we consider � as an input of (
k; P )-decision trees T overm by identifying � with (�(p)�� ; (x1(p); : : : ; xm(p)));by T� we denote the path distinguished by the input � (leading to a leaf or ending prior toan unexecutable division instruction). ExT � SpecrR[x1; : : : ; xm] denotes the constructiblesubset of all � such that T is executable on �, i.e., T� ends up with a leaf. T�;� denotes thecommon piece of T� and T� for �; � 2 SpecrR[x1; : : : ; xm].For any path � in T we denote by �(�) the 
k-straight line program over m assigned to� by \forgetting" the comparison instructions. An input for an 
k-straight line program �overm is a pair (A;x) where A is a k-algebra and x 2 Am. A localization A of a residue classring of R[x1; : : : ; xm] de�nes (via k ! R) canonically a standard input for 
k-straight lineprograms over m, denoted by (A;x), which is induced by the vector of coordinate functionsx = (x1; : : : ; xm), i.e., x has to be interpreted in Am.6



Finally let us recall that for an irreducible algebraic subset V � Rm the central points� 2 CentV := RegV are characterized bydim�V = dimVwhere dim�V is the (local) dimension of V in the point � (cf. [BCR 86, 7.6.1]).3 A general lower boundBefore stating our main result we need to recall a de�nition from [Li 90]. LetX � Y � Rm beirreducible algebraic subsets. The exclusion complexity EC(c;X; Y ) of X in Y with respectto a cost function c : 
k ! N is de�ned asEC(c;X; Y ) := minfLk!OX;Y (c; x; f) : f 2 MX;Y n f0gg;here OX;Y denotes the localization of the coordinate ring P(Y ) of Y in the vanishing idealof X, MX;Y its maximal ideal, and Lk!OX;Y (c; x; f) denotes the minimum c-length of an
k-straight line program over m that computes f on the standard input (OX;Y ; x). TheR-preconditioned exclusion complexity of X in Y with respect to c is de�ned asECR(c;X; Y ) := minfEC(c; f�g �X; f�g � Y ) : s 2 N; � 2 Rsg:(By de�nition EC(c;X; Y ) � ECR(c;X; Y ), and equality holds if k = R and c is nonscalar.)Let X 0 � Y 0# #X � Ybe an inclusion of pairs of semi-algebraic subsets of Rm, X and Y being irreducible algebraicsubsets. Under certain conditions on the pair (X 0; Y 0) the decision complexity of fX 0; Y 0nX 0gand exclusion complexity of X in Y are related asC(c; fX 0; Y 0 nX 0g) � EC(cj
k ;X; Y )� c(�);and this lower bound remains even true if one replaces the pair (X 0; Y 0) by a pair (X 00; Y 00)of (arbitrary) subsets with X 00 dense in X 0 and Y 00 dense in Y 0 (cf. [Li 90, section E], resp.Lemmas 3.5, 3.6, 3.7 below).Our main result is that R-preconditioned exclusion complexity provides also a lowerbound on average decision complexity. 7



Theorem 3.1 Let k � R be a sub�eld, c : 
k t P ! N a cost function, andX 0 � Y 0# #X � Ybe an inclusion of pairs of semi-algebraic subsets of Rm where X � Y � Rm are irreduciblealgebraic subsets, dimX 0 = dimX and8� 2 Y 0 : dim�Y 0 = dimY:If X 00 � X 0, Y 00 � Y 0 are dense subsets, X 00 � Y 00, and (T; �) is a randomized (
k; P )-decision tree over m deciding fX 00; Y 00nX 00g with error probability �, then there is an algebraicsubset W � X with dimW < dimX such that8� 2 X 0 nW : L(c; (T; �); �) � (1� 2�)(ECR(cj
k ;X; Y )� c(�)):Remark 3.2 Let F � R be a sub�eld. If the F -rational points X(F ) resp. Y (F ) of F -de�nable X resp. Y lie dense in X resp. Y and CentX � CentY then for instanceX 00 := X(F ) \ CentX � CentX =: X 0;Y 00 := Y (F ) \ CentY � CentY =: Y 0satisfy the assumptions of the theorem (e.g. determinant varieties; see section 4).If X � Y � Rm are irreducible algebraic subsets then we call I(X) 2 SpecP(Y ) centralif one of the following equivalent conditions are satis�ed (cf. [BCR 86, 7.6.2, 10.2.4]):(C1) I(X) is the center in P(Y ) of a real place of K(Y ) which is �nite over P(Y ),(C2) 9� 2 SpecrK(X) 9� 2 SpecrK(Y ) : � generalization of � in SpecrOX;Y ,(C3) dim(X \ CentY ) = dimX,(C4) dim(CentX \ CentY ) = dimX,(C5) dim(RegX \ CentY ) = dimX.(Note that this condition is always satis�ed if Y = RegY . If Y � R3 is the Cartan umbrella(see [BCR 86, 3.1.2 d), p. 53]) then it is not satis�ed for X = SingY ; it is satis�ed in thecase of [BCR 86, 3.1.2 e), p. 53].) 8



Corollary 3.3 If X � Y � Rm are irreducible algebraic subsets, I(X) 2 SpecP(Y )central, then for algebraic probability measures � : B(Rn) ! [0; 1], � 2 [0; 1), and arbitrarycost functions c : 
k t P ! NC(�;�)R (c; fX;Y nXg) � (1� 2�)(ECR(cj
k ;X; Y )� c(�)):The proof of this corollary follows from Theorem 3.1 taking into account that for � 2 RsECR(c;X; Y ) = ECR(c; f�g �X; f�g � Y ):The proof of Theorem 3.1 is based on the subsequent four lemmas.Lemma 3.4 Let S � U � V � Rm be semi-algebraic subsets. Then the following twoconditions are equivalent:(a) 8� 2 ~S 8� 2 ~V : � � �; dim� = dimS ) � 2 ~U ,(b) 9 semi-algebraic W � S : dimW < dimS; S nW � intVU .Proof. (a) ) (b): Put W := S \ V n U . Obviously, we have S nW � intVU . By theway of contradiction we assume that dimW = dimS. Then by [BCR 86, 7.5.8] there is an� 2 ~W with dim� = dimS. As � 2 ~V n ~U we conclude by [BCR 86, 7.1.20] that there is ageneralization � of � in ~V n ~U , contradicting (a).(b) ) (a): Assume S nW � intVU for some W � S with dimW < dimS. If � 2 ~S,dim� = dimS then by [BCR 86, 7.5.8] � 2 ~S n ~W � int~V ~U . As open constructible sets arestable under generalization (cf. [BCR 86, 7.1.21]) every generalization � 2 ~V of � lies alsoin ~U . 2Lemma 3.5 Let X � Y � Rm be irreducible algebraic subsets, c : 
k ! N a cost function.Then the following hold:(a) If Z � Rm is a irreducible algebraic subset, Y � Z thenEC(c;X; Y ) � EC(c;X;Z):(b) If V � Rn is an irreducible algebraic subset thenECR(c;X; Y ) = ECR(c;X � V; Y � V ):9



Proof. (a): This follows from the trivial fact that the canonical epimorphism of k-algebrasOX;Z ! OX;Y is local. Indeed, every 
k-straight line program over m executable on thestandard input (OX;Y ; x) is also executable on the standard input (OX;Z; x).(b): For the inequality EC(c;X; Y ) � EC(c;X � V; Y � V )consider the canonical local monomorphism of k-algebras OX;Y ! OX�V;Y�V . Hence alsoECR(c;X; Y ) � ECR(c;X � V; Y � V ). The argument for the reverse inequalityECR(c;X; Y ) � ECR(c;X � V; Y � V )is of transfer type: factor the above morphism asOX;Y ! (OX;Y 
RP(V ))d ! OX�V;Y�Vwhere d 2 OX;Y 
RP(V ) is a suitably chosen denominator, and use the Artin-Lang Theorem[BCR 86, 4.1.2] to construct a retraction of the �rst morphism mapping the coordinate ringP(V ) of V into R. 2Lemma 3.6 Let T be an (
k; P )-decision tree over m, X � Rm be an irreducible algebraicsubset and let X 0 � X be a semi-algebraic subset such that dimX 0 = dimX. Then thefollowing hold:(a) There is a proper algebraic subset Z � X with X 0 n Z � ExT if and only if ~X 0 \SpecrK(X) � ExT .(b) If X 00 � X 0 is an arbitrary but dense subset of X 0 thenX 00 � ExT ) ~X 0 \ SpecrK(X) � ExT:Proof. (a): X 0 \ ExT is a semi-algebraic subset of X 0; so the statement follows from[BCR 86, 7.5.8] applied to its complement in X 0.(b): Let � 2 ~X 0 \ SpecrK(X) and consider the locally closedCell(T; �) := f� : T� = T�g � SpecrR[x1; : : : ; xm]:Its trace in X 0 contains an open nonempty subset of X 0, therefore it contains also pointsfrom X 00. Hence Cell(T; �) � ExT under the condition that X 00 � ExT . 210



Lemma 3.7 Let T be an (
k; P )-decision tree over m, c : 
k t P ! N a cost function,and X � Y � Rmbe irreducible algebraic subsets. If � 2 SpecrK(X) is a specialization inSpecrOX;Y of � 2 SpecrK(Y ) and T� 6= T� thenL(c; T�) � L(c; T�;�) � EC(cj
k ;X; Y )� c(�):Proof. Consider the common path T�;� of � and � in T . Let �(T�;�) denote the 
k-straightline program over m assigned to T�;�, and let (k[x]d; x) be its universal input (cf. [BL 91]).Consider the canonical morphisms of k-algebrask[x]d#K(X)��  OX;Y ! K(Y )�� :If T�;� ends up with a comparison vertex then there are results f1; f2 2 k[x]d of �(T�;�)on input (k[x]d; x) satisfying one of the following four alternatives:f1(�) � f2(�) and f1(�) > f2(�);f1(�) > f2(�) and f1(�) � f2(�);f1(�) = f2(�) and f1(�) 6= f2(�);f1(�) 6= f2(�) and f1(�) = f2(�):By assumption � is a generalization of �, so by [BCR 86, 7.1.18] the second and fourth oneare impossible, and in the remaining cases(f1 � f2)(�) = 0; (f1 � f2)(�) 6= 0and we are done.If T�;� does not end up with a comparison vertex then necessarily T� = T�;� is an initialsegment of T� since by � � � the path T� cannot be an initial segment of T�. In this casethe assertion follows from the fact that �(T�) is not executable on standard input (K(X); x).(Note that T is neither required to be executable on � nor on �.) 2Proof. (of Theorem 3.1) Throughout the following we will use the notation Z� := f� :(�; �) 2 Zg for the �ber over � 2 Rm of the restriction of the canonical projection Rm�Rn!Rm to some semialgebraic subset Z � Rm�Rn.We de�ne a semialgebraic subsetS := f(�; �) : L(c; T(�;�)) < ECR(cj
k ;X; Y )� c(�)g � Y 0 �Rn11



of \T -short" points. For all � 2 Y 0 we haveL(c; (T; �); �) = ZRn L(c; T(�;�))d�(�) � (1 � �S�)(ECR(cj
k ;X; Y )� c(�)):Hence it is su�cient to prove that �S� � 2� for all � 2 X 0 outside a lower dimensionalsemi-algebraic subset of X 0.Let � = �Ni=1�i, �i pure and write Vi := Zarsupp�i. Y 0 � Rn is partitioned into thefollowing three semi-algebraic subsets:Y := f(�; �) : T(�;�) ends up with a yes-leafg;N := f(�; �) : T(�;�) ends up with a no-leafg;U := (Y 0 �Rn) n ExT:We put furthermore Yi := Y \ (Y 0 � Vi);Ni := N \ (Y 0 � Vi);SYi := S \ (X 0 � Vi) \ Y;SNi := S \ (X 0 � Vi) \N ;SUi := S \ (X 0 � Vi) \ U ;having SYi � Yi � Y 0 � Vi; SNi � Ni � Y 0 � Vi (i = 1; : : : ; N): (1)If � 2 Ŷ � Vi is a generalization of some � 2 SpecrK(X � Vi) with T� 6= T� we mayconclude from Lemma 3.7 and Lemma 3.5 thatL(c; T�) � ECR(cj
k ;X � Vi;Z(supp�))� c(�)� ECR(cj
k ;X; Y )� c(�):This intermediate reasoning thus shows8� 2 ~S \ SpecrK(X � Vi) 8� 2 Ŷ � Vi : � � � ) T� = T�:This allows to apply Lemma 3.4 to the triples in (1). Therefore we can �nd lowerdimensional algebraic subsets WYi ;WNi � X � Visuch that SYi nWYi � intY 0�ViYi; SNi nWNi � intY 0�ViNi: (2)By Lemma 3.6 we also know that SUi � X 0�Vi is lower dimensional. Hence it is possible tochoose a lower dimensional algebraic subset W of X such that for all i = 1; : : : ; N8� 2 X 0 nW : dim(WYi )�;dim(WNi )�;dim(SUi )� < dimVi:12



This implies by the purity of the �i �i(SYi nWYi )� = �i(SYi )�;8� 2 X 0 nW : �i(SNi nWNi )� = �i(SNi )�;�i(SUi )� = 0: (3)Now let us �x some �0 2 X 0 nW . We must show that for every �0 > 0�S�0 � 2�0 � 2�:It is easy to verify that�S�0 = PNi=1 �iS�0= PNi=1 �i(S�0 \ Vi)= PNi=1 �i(S \ (X 0 � Vi))�0= PNi=1 �i(SYi )�0 +PNi=1 �i(SNi )�0 +PNi=1 �i(SUi )�0= PNi=1 �i(SYi nWYi )�0 +PNi=1 �i(SNi nWNi )�0; (4)the latter equality coming from (3). Since every Borel measure on Rn is regular (cf. [Ha 74,chap. X, x 52]) we can �nd for �0 > 0 compact subsets CYi � (SYi nWYi )�0, CNi � (SNi nWNi )�0such that PNi=1 �iCYi � PNi=1 �i(SYi nWYi )�0 � �0;PNi=1 �iCNi � PNi=1 �i(SNi nWNi )�0 � �0: (5)It remains to bound both left-hand sides by �. Let for i = 1; : : : ; N�Yi := dist(f�0g � CYi ; (Y 0 � Vi) n intY 0�ViYi);�Ni := dist(f�0g � CNi ; (Y 0 � Vi) n intY 0�ViNi)(where by de�nition dist(;;M) := dist(M; ;) :=1 for M � Rn), and set� := min N[i=1f�Yi ; �Ni g:As the distance between a compact set and a closed set is positive if they are disjoint, weconclude from (2) that � > 0. Hence for all i = 1; : : : ; N8� 2 B�=2(�0) \ Y 0 : CYi � (Yi)�; CNi � (Ni)�: (6)Next observe that Y 00 nX 00 is dense in Y 0. Otherwise there were a nonempty open subsetU of Y 0 such that Y 00 \ U � X 00 \ U , hence U � X since Y 00 is dense in Y 0. Sodim�Y 0 � dimU � dimX13



for some � 2 U , in contradiction to our assumption dim�Y 0 = dimY > dimX. Therefore wecan choose some � 2 B�=2(�0) \ (Y 00 nX 00). For such a pointNXi=1 �iCYi � NXi=1 �i(Yi)� = NXi=1 �iY� = �Y� � �by (6) and the assumption on the tree T .Likewise, since X 00 is dense in X 0 there is also a point � 2 B�=2(�0) \X 00, henceNXi=1 �iCNi � NXi=1 �i(Ni)� = NXi=1 �iN� = �N� � �by (6) and the assumption on the tree T . Therefore by (4) and (5)�S�0 � 2(�+ �0);as asserted. 24 ApplicationsFirst we compare deterministic and average decision complexity in the situation of k-genericcomplete intersections (k � R).Let X � Rm be an irreducible algebraic subset, r := codimRmX < m. We call X ak-generic complete intersection of r polynomials of degrees d1; : : : ; dr if X = Z(f1; : : : ; fr)for some f1; : : : ; fr 2 R[x1; : : : ; xm] of degrees d1; : : : ; dr whose total system of all coe�cientsis algebraically independent over k (cf. [B�u 92]). In [B�u 92] the (deterministic) additive andmultiplicative R-preconditioned branching decision complexity of X have been determined;for instance if d1 = : : : = dr = d thenCR(c+;�; fX;Rm nXg) = r0@ d+mm 1A� r2;CR(c�;�; fX;Rm nXg) � 12r0@ d +mm 1A r;m �xed, d!1where the cost functions c+;�; c�;� : 
k t P ! N are de�ned as 1f+;�;=;�g, 1f�;=;=;�g, respec-tively. We compare this now with the average complexity with respect to c+ = 1f+;�g andc� = 1f�;=g. 14



Corollary 4.1 Let X � Rm be a k-generic complete intersection of r polynomials of thesame degree d, r < m, k � R a sub�eld. If � : B(Rn) ! [0; 1] is an algebraic probabilitymeasure and � 2 [0; 1) thenC(�;�)R (c+; fX;Rm nXg) & (1� 2�)0@ d +mm 1A ;C(�;�)R (c�; fX;Rm nXg) & 12(1 � 2�)0@ d+mm 1Aas d!1.Proof. We show the �rst inequality. Let OX;Rm denote the local ring of X, and letf 2 MX;Rm be nonzero. It follows from [Ma 86, p. 112, Thm. 14.14] thatq(f; g2; : : : ; gr) =MX;Rmif g2; : : : ; gr are su�ciently general k-linear combinations of f1; : : : ; fr. Assume a sequence� 2 Rs to contain all the coe�cients of the polynomials g2; : : : ; gr. ThenLk!OX;Rm (c+; �x; ff; g2; : : : ; grg) � Lk!OX;Rm (c+; �x; f) + (r � 1)0@ d+mm 1A :The quantity on the left-hand side is bounded from below by the so called veri�cationcomplexity VCk!OX;Rm (c+; �x;MX;Rm) (cf. [BL 91, Li 90]) which is in [B�u 92] shown to beat least r(0@ d+mm 1A� r). As f 2 MX;Rm n f0g may be arbitrary this impliesECR(c+;X;Rm) � 0@ d +mm 1A � r2:So the assertion follows together with Corollary 3.3.The second inequality follows analogously, using [B�u 92, Thm. 2.5, Prop. 4.3, Lemma 4.7].2 We are going to design a randomized (
k; P )-decision tree (T; �) over some s + m forsome f�g �X � f�g �Rm(� Rs�Rm). Let � 2 (0; 1) be given, put M := d(r � 1)��1e andchoose su�ciently general k-linear combinations F1; : : : ; FM of the polynomials f1; : : : ; frwith the property that every choice of r polynomials among F1; : : : ; FM has X as its zeroset.As probability measure � we take the uniform distribution on f1; : : : ;Mg � R which isalgebraic. Choose s 2 N and � 2 Rs such that for all i = 1; : : : ;MLk!R[x](c+; �x; Fi) � 0@ d+mm 1A� 1:15



We describe the action of T over s +m+ 1 in an informal way: Given an input (�; �; �) 2f�g � Rm � R, it is �rst decided whether � 2 f1; : : : ;Mg, and if so, i 2 f1; : : : ;Mg with� = i is found. (This can be done using a bisection subtree with M + 1 leaves, one leaf forthe case � 62 f1; : : : ;Mg, and M leaves for the cases � 2 f1; : : : ;Mg.) If � 62 f1; : : : ;Mg isfound the algorithm stops and answers \yes"(say). If � 2 f1; : : : ;Mg is found the algorithmcomputes F�(�), checks whether F�(�) = 0, replies \yes" if so and \no" if not.By construction each � 62 X is a zero of at most r�1 of the F1; : : : ; FM . Therefore (T; �)decides membership in f�g�X relative to f�g�Rm with error probability (r� 1)M�1 � �.So C(�;�)R (c+;�; fX;Rm nXg) � log2 r � 1� + 2 + 0@ d+mm 1A :In a similar way one obtains for d!1C(�;�)R (c�;�; fX;Rm nXg) � log2 r � 1� + (1 + o(1))12 0@ d +mm 1A :Thus randomization may reduce decision complexity by about a factor of r in this case,and the lower bound in Corollary 4.1 cannot essentially be improved if no further conditionon (�; �) is imposed, even if one replaces the cost functions c+ resp. c� by c+;� resp. c�;�.For the rest of this section we assume k = R. The next result is inspired by [BS 83] andis similar to [Li 90, (V.3)]:Proposition 4.2 Let X � Rm be an irreducible algebraic subset with the property thatevery restriction to X of any coordinate projection Rm ! H onto a coordinate plane H ofdimension d dominates H. Then EC(c+;�;X;Rm) � dwhere c+;� = 1f+;�;�;=g.Proof. It su�ces to show thatLk!OX;Rm (c+;�; x; f) � jfi 2 f1; : : : ;mg : @if 6= 0gj � 1for every f 2 MX;Rm n f0g.In doing so, let A := R[x1; : : : ; xm] and S � A n f0g be an arbitrary multiplicativesystem. Let � = (�1; : : : ;�t) be an 
k-straight line program over m which is executable onthe standard input (AS; x) having result sequence(x1; : : : ; xm; r1; : : : ; rt) 2 Am+tS :16



We show by induction on t the following: If � computes some f 2 AS on input (AS; x) thenc+;�-length of � � jfi 2 f1; : : : ;mg : @if 6= 0gj � 1: (7)This is true for t = 0. For t � 1 let �0 = (�02; : : : ;�0t) denote the 
k-straight line programover m+1 obtained from � by deleting the �rst instruction �1 and replacing in all successorinstructions calls to the result of the �rst instruction by calls to a additional new inputcomponent. Let A0 := R[x0; : : : ; xm], and let S0 � A0 n f0g denote the preimage of A�S underthe substitution � : A0! AS; x0 7! r1extending A ! AS. By construction �0 is executable on the standard input (A0S0; x0) oflength m + 1 and computes some f 0 2 A0S0 with �S0(f 0) = f ; here �S0 : A0S0 ! AS denotesthe k-algebra morphism induced by �. By the inductive hypothesisc+;�-length of �0 � jfi 2 f0; : : : ;mg : @if 0 6= 0gj � 1: (8)Observe that by the chain rule@if = �S0(@if 0) + �S0(@0f 0) � (@ir1) (i � 1) (9)and that c+;�-length of � 2 (c+;�-length of �0) + f0; 1g:Now (7) follows from (8) by discussing for every !1 2 
k the case that r1 results in instruction�1 from an application of !1. If @0f 0 = 0 then all @1f; : : : ; @mf are the images of @1f 0; : : : ; @mf 0under �S0 (by (9)), and (8) implies (7). If @0f 0 6= 0 then at least m � ar(!1) many among@1f; : : : ; @mf are nevertheless images of the respective ones among @1f 0; : : : ; @mf 0 due to thefact that m� ar(!1) many among the @1r1; : : : ; @mr1 are zero. In this case (7) follows from(8) using @0f 0 6= 0 andc+;�-length of � = c+;�-length of �0 + 1, ar(!1) = 2: 2This result allows us to determine the exclusion complexity EC(c+;�;X;R2m) of the graphX of all elementary symmetric functions exactly: Ifxi1; : : : ; xis; �is+1; : : : ; �im 2 R[x1; : : : ; xm]is any choice of m elements in fx1; : : : ; xm; �1; : : : ; �mg17



then they are algebraically independent over R. To see this, note that bothfx1; : : : ; xmg and f�1; : : : ; �mgconstitute transcendence bases of R(x) over R. So if �is+1; : : : ; �im are chosen then there arexj1; : : : ; xjs extending these to a trancendence basis. Now, by the action of the symmetricgroup Sm � Aut(R(x)=R) we may assume thatj1 = i1; : : : ; js = is:Therefore by Proposition 4.2 EC(c+;�;X;R2m) � m. By looking at the graph of �1 we seethat this is even an equality.Corollary 4.3 For every algebraic probability measure � on some Rn and � 2 [0; 1) wehave for the graph X � R2m of all elementary symmetric functionsC(�;�)R (c+;�; fX;R2m nXg) � (1 � 2�)(m� 1):So the procedure in Example 2 cannot essentially be improved. By contrast, the mem-bership problem of the graph of one single middle elementary symmetric function is moredi�cult, already for the cost function c� = 1f�;=g. In the case of hypersurfaces exclusioncomplexity and veri�cation complexity coincide (cf. [Li 90, (E.1.5.1), p. 107]). The proofof the subsequent two corollaries is an immediate consequence of Corollary 3.3 and thelower bounds on veri�cation complexity proved in [Li 90, p. 136, (D.5) and p. 174, (L.4),respectively].Corollary 4.4 Let X := f(�; �) : � = �bm=2c(�)g � Rm+1be the graph of the middle elementary symmetric function. Then for every algebraic proba-bility measure � on some Rn and � 2 [0; 1) we haveC(�;�)R (c�; fX;Rm+1 nXg) � const: (1� 2�)m logm:Corollary 4.5 For every algebraic probability measure � on some Rn and � 2 [0; 1) wehave C(�;�)R (c�; fSL(m;R);Rm�m n SL(m;R)g)� const: (1� 2�)m!;C(�;�)R (c+; fSL(m;R);Rm�m n SL(m;R)g)� const: (1� 2�)m!where ! denotes the asymptotic exponent of matrix multiplication.18



We remark that by Theorem 3.1 the lower bounds in the above three corollaries remaintrue if the partitions fX;RN nXg (N suitable) are replaced by the partitions fX(Q);QN nX(Q)g of respective Q-rational points. This also holds for determinant varieties: Let r <s � p � q, and let Xr � Xs � Rp�q denote the subsets of matrices of rank � r resp. � s.Note that Xr(Q) = Xr = CentXr � CentXs = Xs = Xr(Q):Corollary 4.6 Let r < s � p � q, and let Xr(Q) � Xs(Q) � Qp�q denote the subsets ofmatrices of rank � r resp. � s. Then for every algebraic probability measure � on some Rnand � 2 [0; 1) we haveC(�;�)R (c�; fXr(Q);Xs(Q) nXr(Q)g) � const: (1 � 2�)r2:The proof follows from Theorem 3.1 together with [Li 90, (E.1.7.1), p. 112 and (V.3),p. 167].AcknowledgementsThe �rst and the third author wish to express their sincere thanks to the SchweizerischerNationalfonds and the Deutsche Forschungsgemeinschaft (Heisenberg-Grant Li 405/2-1) fortheir �nancial supports.References[BS 83] W. Baur and V. Strassen, The complexity of partial derivatives, Theoret.Comput. Sci.22 (1983), pp. 317{330.[Be 83] M. Ben{Or, Lower bounds for algebraic computation trees, Proc. 15th ACMSTOC, Boston (1983), pp. 80{86.[BCR 86] J. Bochnak, M. Coste, and M.-F. Roy,G�eom�etrie alg�ebrique r�eelle, Ergeb-nisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 12, Springer Verlag,1987.[B�u 92] P. B�urgisser, Decision complexity of generic complete intersections, ResearchReport No. 8578-CS, Univ. Bonn, 1992; submitted to Computational Complex-ity. 19
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