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Abstract

Recall that a polynomial f € F[Xy,...,X,] is t -sparse, if f = 3. a; X! contains
at most ¢ terms. In [BT 88], [GKS 90] (see also [GK 87] and [Ka 89]) the problem of
interpolation of t-sparse polynomial given by a black-box for its evaluation has been
solved. In this paper we shall assume that F'is a field of characteristic zero. One can
consider a t-sparse polynomial as a polynomial represented by a straight-line program
or an arithmetic circuit of the depth 2 where on the first level there are multiplications
with unbounded fan-in and on the second level there is an addition with fan-in ¢.

In the present paper we consider a generalization of the notion of sparsity, namely we
say that a polynomial ¢(X1,..., X,) € F[Xy,..., X,] is shifted t-sparse if for a suitable
nonsingular n x n matrix A and a vector B the polynomial g(A(Xy,..., X,)T + B)
is t-sparse. One could consider ¢ as being represented by a straight-line program
of the depth 3 where on the first level (with the fan-in n + 1) a linear transformation
A(X1,..., X,)T4+ B is computed. One could also consider a shifted ¢t-sparse polynomial
as t-sparse with respect to other coordinates (Y,...,¥,) = A(Xy,..., X,)T + B.
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We assume that a shifted t-sparse polynomial ¢ is given by a black-box and the
problem we consider is to construct a transformation A(Xy,.. .,Xn)T + B. As the
complexity of the designed below algorithm (see the Theorem in which we describe
the variety of all possible A, B and the corresponding ¢-sparse representations of
g(A(X1,..., X,)T 4+ B)) depends on A" where d is the degree of ¢, we could first
interpolate ¢ within time d° and suppose that ¢ is given explicitly. It would be
interesting to get rid of d in the complexity bounds as it is usually done in the inter-
polation of sparse polynomials ([BT 88], [GKS 90], [Ka 89]). The main technical tool
we rely on is the criterium of ¢-sparsity based on Wronskian ([GKS 91], [GKS 92]),
the latter criterium has a parametrical nature (so we can select ¢-sparse polynomials
from a given parametrical family of polynomials) unlike the approach in [BT 88] using
BCH-codes.

We could directly consider (see the Theorem) the multivariate polynomials (sec-
tion 3), but to make the exposition clearer before that we first study (see the proposi-
tion) the one-variable case (section 2). First at all we recall (section 1) the criterium of
t-sparsity and based on it interpolation method for t-sparse multivariable polynomials.

In the last section 4 we design a zero-test algorithm for shifted ¢-sparse polynomials

with the complexity independent on d.



1 A Criterium of t-sparsity and the Interpolation

Let p1,...,p, be pairwise distinct primes and denote by D a linear operator mapping D :

Xy = pXi,.... D X, = puX,,. We recall a criterium of t-sparsity (cf. also [BT 88]).

Lemma 1. ([GKS 91], [GKS 92]) A polynomial f € F[Xy,...,X,] is t-sparse if and only
if the Wronskian

f Df ... Df
Wi(Xy,...,X,) = det Pf Pf PHf € F[Xy,...,X,]
Dif DiLf .. DUf

vanishes identically.

An interpolation method from [BT 88] (see also [KY 88]) actually considers the Wron-
skian W,(1,...,1) at the point (1,...,1) and is based on the following

Lemma 2. ([BT 88]) [If f is exactly t-sparse (i.e., f contains exactly t terms), then the
reduced Wronskian does not vanish
f(1,...,1) (DFY(L,....1) .. (DA,
We(l,...,1) =det | : ; ; £0
(DA, (DU, 1) o (DH72F)(1,...,1)
at the point (1,...,1).

Thus, if f = > a; X! is exactly t-sparse and if a (characteristic) polynomial y(Z) =
> ;7% € Z|Z] has as its t roots p’ for all exponent vectors I occuring in f (where for
0<j<t

I = (iy,...,1,) we denote p! = pit ---pi), then Y +,D7f =0 and hence
0<j<t

f Df ... D'f
: : : (’yo,...,’yt)T:O.
Dif DtLf .. D*f

Therefore, a linear system

fl,...,1) (DFY(L,...,1) ... (D'f)(L,....1)



has (up to a constant multiple) a unique (by lemma 2) solution (Yo,...,Y:) = (70,.-.,7)
which gives the coefficients of y, thereby its roots p’ and finally 1.

2 One-variable Shifted Sparse Polynomials

A polynomial g € F[X] is called shifted t-sparse if for an appropriate b a polynomial g(X —b)
is t-sparse (so the origin is shifted from 0 to b). If ¢ is the least possible, we say that ¢ is
minimally shifted t-sparse, this notion relates also to the multivariable case. Let F' = Q.
Usually we take b from the algebraic closure Q (we could also consider b from R). Assume

that the bit-size of the (rational) coefficients of g does not exceed M.

Consider a new variable Y and an Q(Y )-linear transformation of the ring Q(Y)[X] map-
ping D1 : X = p X 4 (p1 — 1)Y. Denote

g Dig ... Dig
W, (X,Y) =det | : : : € Q[X,Y]
Dig Di'g ... Di'g

Lemma 3. ¢ is shifted t-sparse if and only if for some Y = b a polynomial W,(X,b)

vanishes identically. Moreover in this case a polynomial g(X — b) is t-sparse.

Proof. If g(X — b) is t-sparse, then the expansion g = 3. 3;(X + b)’ into the powers of
(X 4+ b) contains at most ¢ terms. Lemma 1 implies that W, (X, b) vanishes identically. The

other direction follows also from lemma 1 which completes the proof.

Observe that for almost every b the polynomial g(X —b) has exactly (d+ 1) terms, where
d = deg(g), since in the polynomial g(X —Y) € Q[X, Y] the coefficient in the power X* is

a polynomial in Y of degree exactly d — 5, 0 < 5 <d.

Lemma 3 provides an algorithm for finding ¢ such that g is minimal shifted ¢-sparse which
runs in time d°M) (trying successively ¢ = 1,2, ...), moreover this algorithm finds all Y = Y;
such that g(X —Yp) is t-sparse. Namely, one writes down a polynomial system in ¥ equating
to zero all the coefficients in the powers of X, thus the system contains d°(!) equations of

degrees at most d°M). So, one can prove the following proposition.
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Proposition.  There is an algorithm which for one-variable polynomial g finds the minimal
t and all Yy for which g(X —Yy) is t-sparse in time (Md)°M). The number of such Yo does

not exceed d°W,

One of the purposes of the sparse analysis is to get rid of d in the complexity bounds.
We can write down a system in b with a less (for small ¢) number of equations, when b
is supposed to belong to R. So, assume that the expansion g = 3= 3;(X + b}’ contains at
most ¢ terms for some b € R. Then for any fixed Y = Y5 € R a pol;nomial (DEg)(X,Yy) =
> Bi(pf (X 4+Y5) = Yo+b)’ for K > 0. Therefore the polynomial W, (X, Yy) has at most 20(t")
r]eal roots because of [KKh 91] since one can consider (2t + 1)t powers of linear polynomials

(PR (X +Yy) — Yo+ b)), 0< K <2t as the elements of a Pfaffian chain [Kh 91].

Thus Y satisfies the conditions of lemma 3 if and only if it satisfies the following system

of polynomial equations (cf. lemma 5 below)
W,0,Y)=W,(1,Y)=...= W,(2°) v)=0.

Each of the polynomials from the latter system can be represented by a black-box for its
evaluation. As each of these polynomials W,(s,Y’) contains (2¢ + 1)t powers (pif(s+Y) —
Y +5)/, 0 < K < 2t the system has at most 20(t") real solutions (by the same argument
relying on [Kh 91] as above), thus the number of such Y = Y; that g(X — Yp) is t-sparse is

less than 200,

3 Multivariate Shifted Sparse Polynomials

Consider now n* + n new variables Z; ;,Y;, 1 <4,j <n and a Q({Za3, Yolr<g i<k )-linear

transformation D, of the ring Q({Zz3, Ya}w<33<w)[Xu, . . ., Xi] mapping

DX =ZPZ (X -Y)+Y



where vectors X = (X,...,X,)0,Y = (Vi,....Y,)!, matrices 7 = (Z;), P =

Pi 0
. Similarly, as above denote
0 Pn
g D.,g ... Dig
Wy(X,Y,Z) =det | : : : € QZ)[X,Y].
Dig Ditlg ... D?g

Lemma 4. g is shifted t-sparse if and only if for some Zy, Yy such that detZy # 0, the
polynomial W, (X, Yo, Zo) vanishes identically. Moreover, in this case a polynomial g(Zo X +
Yo) is t-sparse.

The proof is similar to the proof of lemma 3 taking into account that

(Dog)(ZX +Y) = g(ZPZ N ZX +Y —Y)+Y) = g(ZPX +Y).

As in section 2 lemma 4 provides a test for minimal shifted ¢-sparsity trying successively
t = 1,2,... running in time d°") (see [CG 83] for solving system of polynomial equa-
tions and inequalities). Moreover, the algorithm finds algebraic conditions (equations and

inequality det Z # 0) on all Z,Y for which ¢g(ZX +Y) is t-sparse.

So, these Z,Y form a constructive set U C Q**" given by a system hy = ... = hy = 0,
det Z # 0 where hq, ..., hy € Q{Za3, Yahe<ai<x], then deg(hq),. .., deg(hy) < d°W | <
d°M). Applying the algorithm from [CG 83] one can find the irreducible over Q components
U = UUW of the closure (in the Zariski topology) U. For each component U(®) the algorithm
from I[CG 83] produces firstly, some polynomials h(ll), . .,h%)(l) € Q[{Zz3, Y3}] such that
Ut = {h(ll) =...= h%)(l) = 0} and secondly, a general point of U, namely the following
fields isomorphism

QU ~ Q(Tw, ..., T)[0]
where Q(U(9) is the field of rational functions on U, m = dim(UW"), linear forms
Ti,...,T,, in variables {Z;;,Y;}1<ij<n constitute a transcendental basis of Q(U(<)) and 0
is algebraic over Q(Ty,...,Ts). The algorithm produces a minimal polynomial ¢(7) €
Q(Ty, ..., Ty)[Z]of 0, the linear forms Ts({Z;;, Yi}), 1 <5 < m, alinear form 0({Z;;,Y;}),
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and the expressions for the coordinate functions Z; ;(T1,..., T, 0),Yi(T1,..., Ty, 0) as ra-
tional functions in Ty,...,T,,, 0. The degrees of the polynomials h(ll), e ,hg\l,)(l) do not exceed

d°*) | the bit-size of any of the (rational) coefficients occuring in these polynomials can be

bounded by MPMd°"*) and the algorithm runs in time M°M 0",
Denote U = UMW\ {det Z = 0} (some of U can be empty), remark that U = (JU®.
]

For any point (Zy,Ys) € U® the polynomial g(Zo X + Yp) is exactly t-sparse, therefore

by lemma 2 the following linear system

g(X07%7Z0) Dng(Xm}/OvZO) D;g(Xovi/OvZO)
: : : (’)/0,...,’)/75_1,1):0
D5, 9(Xo, Yo, Zo) D g(Xo, Yo, Zo) ... Di'g(Xo, Yo, Zo)

has a unique solution, where the vector Xo = Z5'((1,...,1)T —Y5). Asyo,...,%-1 € Z (see
section 1) and 7o, ...,¥—1 can be represented as the rational functions in (Z,Y) € U0 we
conclude taking into account the irreducibility of U() that g, ..., 7.~ are constants on U®.

Thus, the exponent vectors I (see section 1) are the same for all the points (Z,Y) € uo,

So, for (Z,Y) € UW® one can write {-sparse representation of the polynomial
9= CrlZY)Z (X -Y)) (1)
T

where the coefficients C;(Z,Y) depend on Z,Y. The equality (1) is equivalent to a system

of equalities

g(ZXO +Y) =3 CrZY) (27X =)

where X©) runs over all the vectors from {0,...,d}". Adding to the latter system the
system det Z #£ 0, h(ll) =...= hg\l,)(l) = 0 determining U we come to a parametrical (with
the parameters {Z,;,Y;}) linear in C system which one can solve invoking the algorithm
from [H 83] (see also [CG 84]) in time MOMdPt) This algorithm yields some disjoint

decomposition of ") = UUS) where each Uél) is a constructive set and also yields the
S

rational functions C’}%({Z”,YZ}) € Q({Z=3,Ya}) such that ¢ = C’}%({Z”,YZ}) for every

point {Z,;,Y;} € Uél) (thus each ('} is a piecewise-rational function on U/).

The algorithm yields also polynomials hg)o, e ’hg)N(l) € Q[{Zz3, Y5}] such that Uél) =
N g

{hg,)o # 0, hg,)1 =...= hg)N(l) = 0}. From [H 83] (see also [CG 84]) we get the bounds on
Vg



the degrees deg(h( ) .)> deg(C( ) L) < d°) and the bound MM dO™) for the bit-size of every

(rational) coefficients of all the yielded rational functions.
Thus, we have proved the following theorem (cf. proposition above).

Theorem. There is an algorithm which finds a minimal t and produces a con-
structive set U C Q¥ of all {Zi;,Yi}i<ij<n such that g(ZX +Y) is t-sparse, in the
form U = UU(I) and for each constructive set UY the algorithm produces polynomials
Hg”,...,y;(l) € Q{Z=, Y=Y such that UV = {HP £ 0, 1V = H\y = 0}. Also
the algorithm produces t exponent vectors and for each exponent vector I a rational function

C}l)({Zij,K}) € Q({Z=3,Ya}) which provide t-sparse representations of
9= ZC {Zy, YD)z (X -Y))!

which is valid for every point ({Z;;,Y:}) € UD . The degrees of all produced rational functions
Hg), C}l) do not exceed d°) | the bit-size of the coefficients of these rational functions can
be bounded by (Md”2)0(1) and the running time of the algorithm is at most (Md”4 o,

Again when Z;;,Y; belong to R we could write down a polynomial system on Z,Y with

a less number of equations. For this purpose we need the following

Lemma 5. [f g is a shifted t-sparse polynomial, then for any Zo, Yo such that det Zy # 0
for at least one of Xl(o) = 1,...,n2M200"Y ¢ polynomial W (X 1 ,XQ,...,Xn,YO,ZO) €
R[Xg, ..., X\] does not vanish identically, provided that Wy(X, Yo, Zy) € R[X] does not van-

ish identically.

Proof. Let for some Z(©) Y© a polynomial g(Z)X + Y©)) be t-sparse, i.e.
9_25J [T (27 (x =y
1<i<n

where J = (j1,...,7,) and the sum has at most ¢ items (by ((Z()~(X — Y(©)); we denote
i-th coordinate of the vector (Z©)~'(X — Y ©))). Then

(D)X, Yo, Z0) = 3205 T (( O (Z20PR Z5 (X =Yo)+Yo) =Y ) for 0 < K < 21,

1<i<n

Thus W, (X, Yo, Zo) is a polynomial in (2¢ 4+ 1)t products of the form like in the latter

expression and these products can be considered as the elements of a Pfaffian chain. [Kh 91]
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entails (cf. also [GKS 93]) that the sum of Betti numbers of the variety {W,(X, Yo, Zy) =
0} € R¥ is less than n®M200") " Ag in particular (n — 1)-th Betti number b~ < @20
we conclude the statement of the lemma (cf. [GKS 93]).

Thus, Y, Z satisfy the conditions of lemma 4 if and only if det Z # 0 and they satisfy the

following n®"*)20(") equations.

W,(X, X0y, zy=0, X9, X© e {1,... n0M00

4 Zero-test for shifted sparse polynomials

Let g be shifted t-sparse polynomial. Then (see lemma 5) for at least one of Xl(o) =
1,...,n°M20%) 4 polynomial g(X1(0)7X27 oy X)) € Q[Xg, ..., X ] does not vanish iden-
tically. Thus for zero-test one can compute g(Xl(O),...,XflO)) for n@*)2001) points

(Xl(o), Xy e {1, ,nOM200 " Then ¢ vanishes identically if and only if all the

results of computation vanish. Thus, the complexity of zero-test does not depend on d.

Acknowledgement. The authors would like to thank C. Schnorr for initiating the ques-

tion about the shifted sparse polynomials.
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