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We assume that a shifted t-sparse polynomial g is given by a black-box and theproblem we consider is to construct a transformation A(X1; : : : ; Xn)T + B. As thecomplexity of the designed below algorithm (see the Theorem in which we describethe variety of all possible A;B and the corresponding t-sparse representations ofg(A(X1; : : : ; Xn)T + B)) depends on dn4 where d is the degree of g, we could �rstinterpolate g within time dO(n) and suppose that g is given explicitly. It would beinteresting to get rid of d in the complexity bounds as it is usually done in the inter-polation of sparse polynomials ([BT 88], [GKS 90], [Ka 89]). The main technical toolwe rely on is the criterium of t-sparsity based on Wronskian ([GKS 91], [GKS 92]),the latter criterium has a parametrical nature (so we can select t-sparse polynomialsfrom a given parametrical family of polynomials) unlike the approach in [BT 88] usingBCH-codes.We could directly consider (see the Theorem) the multivariate polynomials (sec-tion 3), but to make the exposition clearer before that we �rst study (see the proposi-tion) the one-variable case (section 2). First at all we recall (section 1) the criterium oft-sparsity and based on it interpolation method for t-sparse multivariable polynomials.In the last section 4 we design a zero-test algorithm for shifted t-sparse polynomialswith the complexity independent on d.
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1 A Criterium of t-sparsity and the InterpolationLet p1; : : : ; pn be pairwise distinct primes and denote by D a linear operator mapping D :X1 ! p1X1; : : : ;D : Xn ! pnXn. We recall a criterium of t-sparsity (cf. also [BT 88]).Lemma 1. ([GKS 91], [GKS 92]) A polynomial f 2 F [X1; : : : ;Xn] is t-sparse if and onlyif the WronskianWf (X1; : : : ;Xn) = det0BBBBBBBB@ f Df : : : DtfDf D2f : : : Dt+1f... ... ...Dtf Dt+1f : : : D2tf 1CCCCCCCCA 2 F [X1; : : : ;Xn]vanishes identically.An interpolation method from [BT 88] (see also [KY 88]) actually considers the Wron-skian Wf (1; : : : ; 1) at the point (1; : : : ; 1) and is based on the followingLemma 2. ([BT 88]) If f is exactly t-sparse (i.e., f contains exactly t terms), then thereduced Wronskian does not vanish�Wf (1; : : : ; 1) = det0BBBBB@ f(1; : : : ; 1) (Df)(1; : : : ; 1) : : : (Dt�1f)(1; : : : ; 1)... ... ...(Dt�1f)(1; : : : ; 1) (Dtf)(1; : : : ; 1) : : : (D2t�2f)(1; : : : ; 1) 1CCCCCA 6= 0at the point (1; : : : ; 1).Thus, if f = P�IXI is exactly t-sparse and if a (characteristic) polynomial �(Z) =P0�j�t 
jZj 2 Z[Z] has as its t roots pI for all exponent vectors I occuring in f (where forI = (i1; : : : ; in) we denote pI = pi11 � � � pinn ), then P0�j�t 
jDjf = 0 and hence0BBBBB@ f Df : : : Dtf... ... ...Dtf Dt+1f : : : D2tf 1CCCCCA (
0; : : : ; 
t)T = 0 :Therefore, a linear system0BBBBB@ f(1; : : : ; 1) (Df)(1; : : : ; 1) : : : (Dtf)(1; : : : ; 1)... ... ...(Dtf)(1; : : : ; 1) (Dt+1f)(1; : : : ; 1) : : : (D2tf)(1; : : : ; 1) 1CCCCCA (Y0; : : : ; Yt)T = o3



has (up to a constant multiple) a unique (by lemma 2) solution (Y0; : : : ; Yt) = (
0; : : : ; 
t)which gives the coe�cients of �, thereby its roots pI and �nally I.2 One-variable Shifted Sparse PolynomialsA polynomial g 2 F [X] is called shifted t-sparse if for an appropriate b a polynomial g(X�b)is t-sparse (so the origin is shifted from 0 to b). If t is the least possible, we say that g isminimally shifted t-sparse, this notion relates also to the multivariable case. Let F = Q.Usually we take b from the algebraic closure �Q (we could also consider b from R). Assumethat the bit-size of the (rational) coe�cients of g does not exceed M .Consider a new variable Y and an Q(Y)-linear transformation of the ring Q(Y)[X] map-ping D1 : X ! p1X + (p1 � 1)Y . DenoteWg(X;Y ) = det0BBBBB@ g D1g : : : Dt1g... ... ...Dt1g Dt+11 g : : : D2t1 g 1CCCCCA 2 Q[X;Y]Lemma 3. g is shifted t-sparse if and only if for some Y = b a polynomial Wg(X; b)vanishes identically. Moreover in this case a polynomial g(X � b) is t-sparse.Proof. If g(X � b) is t-sparse, then the expansion g = Pj �j(X + b)j into the powers of(X + b) contains at most t terms. Lemma 1 implies that Wg(X; b) vanishes identically. Theother direction follows also from lemma 1 which completes the proof.Observe that for almost every b the polynomial g(X�b) has exactly (d+1) terms, whered = deg(g), since in the polynomial g(X � Y ) 2 Q[X;Y] the coe�cient in the power XS isa polynomial in Y of degree exactly d� S, 0 � S � d.Lemma 3 provides an algorithm for �nding t such that g is minimal shifted t-sparse whichruns in time dO(1) (trying successively t = 1; 2; : : :), moreover this algorithm �nds all Y = Y0such that g(X�Y0) is t-sparse. Namely, one writes down a polynomial system in Y equatingto zero all the coe�cients in the powers of X, thus the system contains dO(1) equations ofdegrees at most dO(1). So, one can prove the following proposition.4



Proposition. There is an algorithm which for one-variable polynomial g �nds the minimalt and all Y0 for which g(X � Y0) is t-sparse in time (Md)O(1). The number of such Y0 doesnot exceed dO(1).One of the purposes of the sparse analysis is to get rid of d in the complexity bounds.We can write down a system in b with a less (for small t) number of equations, when bis supposed to belong to R. So, assume that the expansion g = Pj �j(X + b)j contains atmost t terms for some b 2 R. Then for any �xed Y = Y0 2 R a polynomial (DK1 g)(X;Y0) =Pj �j(pK1 (X+Y0)�Y0+b)j for K � 0. Therefore the polynomialWg(X;Y0) has at most 2O(t4)real roots because of [Kh 91] since one can consider (2t + 1)t powers of linear polynomials(pK1 (X + Y0)� Y0 + b)j; 0 � K � 2t as the elements of a Pfa�an chain [Kh 91].Thus Y satis�es the conditions of lemma 3 if and only if it satis�es the following systemof polynomial equations (cf. lemma 5 below)Wg(0; Y ) =Wg(1; Y ) = : : : =Wg(2O(t4); Y ) = 0 :Each of the polynomials from the latter system can be represented by a black-box for itsevaluation. As each of these polynomials Wg(s; Y ) contains (2t+ 1)t powers (pK1 (s+ Y ) �Y + b)j; 0 � K � 2t the system has at most 2O(t4) real solutions (by the same argumentrelying on [Kh 91] as above), thus the number of such Y = Y0 that g(X � Y0) is t-sparse isless than 2O(t4).3 Multivariate Shifted Sparse PolynomialsConsider now n2 + n new variables Zi;j; Yi; 1 � i; j � n and a Q(fZij;Yig1�i;j�n)-lineartransformation Dn of the ring Q(fZij;Yig1�i;j�n)[X1; : : : ;Xn] mappingDnX = ZPZ�1(X � Y ) + Y
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where vectors X = (X1; : : : ;Xn)T ; Y = (Y1; : : : ; Yn)T , matrices Z = (Zij); P =0BBBBB@ p1 0. . .0 pn 1CCCCCA. Similarly, as above denoteWg(X;Y;Z) = det0BBBBB@ g Dng : : : Dtng... ... ...Dtng Dt+1n g : : : D2tn g 1CCCCCA 2 Q(Z)[X;Y] :Lemma 4. g is shifted t-sparse if and only if for some Z0; Y0 such that detZ0 6= 0, thepolynomial Wg(X;Y0; Z0) vanishes identically. Moreover, in this case a polynomial g(Z0X +Y0) is t-sparse.The proof is similar to the proof of lemma 3 taking into account that(Dng)(ZX + Y ) = g(ZPZ�1(ZX + Y � Y ) + Y ) = g(ZPX + Y ) :As in section 2 lemma 4 provides a test for minimal shifted t-sparsity trying successivelyt = 1; 2; : : : running in time dO(n4) (see [CG 83] for solving system of polynomial equa-tions and inequalities). Moreover, the algorithm �nds algebraic conditions (equations andinequality detZ 6= 0) on all Z; Y for which g(ZX + Y ) is t-sparse.So, these Z; Y form a constructive set U � �Qn2+n given by a system h1 = : : : = hk = 0,detZ 6= 0 where h1; : : : ; hk 2 Q[fZij;Yig1�i;j�n], then deg(h1); : : : ;deg(hk) � dO(1); k �dO(1). Applying the algorithm from [CG 83] one can �nd the irreducible over Q components�U = Sl U (l) of the closure (in the Zariski topology) �U . For each component U (l) the algorithmfrom [CG 83] produces �rstly, some polynomials h(l)1 ; : : : ; h(l)N(l) 2 Q[fZij;Yig] such thatU (l) = fh(l)1 = : : : = h(l)N(l) = 0g and secondly, a general point of U (l), namely the following�elds isomorphism Q(U(l)) ' Q(T1; : : : ;Tm)[�]where Q(U(l)) is the �eld of rational functions on U (l), m = dim(U (l)), linear formsT1; : : : ; Tm in variables fZij ; Yig1�i;j�n constitute a transcendental basis of Q(U(l)) and �is algebraic over Q(T1; : : : ;Tm). The algorithm produces a minimal polynomial �(Z) 2Q(T1; : : : ;Tm)[Z] of �, the linear forms TS(fZij ; Yig); 1 � S � m, a linear form �(fZij ; Yig),6



and the expressions for the coordinate functions Zi;j(T1; : : : ; Tm; �); Yi(T1; : : : ; Tm; �) as ra-tional functions in T1; : : : ; Tm; �. The degrees of the polynomials h(l)1 ; : : : ; h(l)N(l) do not exceeddO(n2), the bit-size of any of the (rational) coe�cients occuring in these polynomials can bebounded by MO(1)dO(n2) and the algorithm runs in time MO(1)dO(n4).Denote ~U (l) = U (l) n fdetZ = 0g (some of ~U (l) can be empty), remark that U = Sl ~U (l).For any point (Z0; Y0) 2 ~U (l) the polynomial g(Z0X + Y0) is exactly t-sparse, thereforeby lemma 2 the following linear system0BBBBB@ g(X0; Y0; Z0) Dng(Xo; Y0; Z0) : : : Dtng(X0; Y0; Z0)... ... ...Dtng(X0; Y0; Z0) Dt+1n g(X0; Y0; Z0) : : : D2tn g(X0; Y0; Z0) 1CCCCCA (
0; : : : ; 
t�1; 1) = 0has a unique solution, where the vector X0 = Z�10 ((1; : : : ; 1)T �Y0). As 
0; : : : ; 
t�1 2 Z(seesection 1) and 
0; : : : ; 
t�1 can be represented as the rational functions in (Z; Y ) 2 ~U (l), weconclude taking into account the irreducibility of U (l) that 
0; : : : ; 
t�1 are constants on ~U (l).Thus, the exponent vectors I (see section 1) are the same for all the points (Z; Y ) 2 ~U (l).So, for (Z; Y ) 2 ~U (l) one can write t-sparse representation of the polynomialg =XI CI(Z; Y )(Z�1(X � Y ))I (1)where the coe�cients CI(Z; Y ) depend on Z; Y . The equality (1) is equivalent to a systemof equalities g(ZX(0) + Y ) =XI CI(Z; Y )(Z�1(X(0) � Y ))Iwhere X(0) runs over all the vectors from f0; : : : ; dgn. Adding to the latter system thesystem detZ 6= 0; h(l)1 = : : : = h(l)N(l) = 0 determining ~U (l) we come to a parametrical (withthe parameters fZij ; Yig) linear in CI system which one can solve invoking the algorithmfrom [H 83] (see also [CG 84]) in time MO(1)dO(n4). This algorithm yields some disjointdecomposition of ~U (l) = SS U (l)S where each U (l)S is a constructive set and also yields therational functions �C(l)I;S(fZij; Yig) 2 Q(fZij;Yig) such that CI = �C(l)I;S(fZij; Yig) for everypoint fZij ; Yig 2 U (l)S (thus each CI is a piecewise-rational function on ~U (l)).The algorithm yields also polynomials h(l)S;0; : : : ; h(l)S;N (l)S 2 Q[fZij;Yig] such that U (l)S =fh(l)S;0 6= 0; h(l)S;1 = : : : = h(l)S;N (l)S = 0g. From [H 83] (see also [CG 84]) we get the bounds on7



the degrees deg(h(l)S;q);deg( �C(l)I;S) � dO(n2) and the bound MO(1)dO(n2) for the bit-size of every(rational) coe�cients of all the yielded rational functions.Thus, we have proved the following theorem (cf. proposition above).Theorem. There is an algorithm which �nds a minimal t and produces a con-structive set U � �Qn2+n of all fZij ; Yig1�i;j�n such that g(ZX + Y ) is t-sparse, in theform U = Sl U (l) and for each constructive set U (l) the algorithm produces polynomialsH(l)0 ; : : : ;H(l)N (l) 2 Q[fZij;Yig] such that U (l) = fH(l)0 6= 0; H(l)1 = : : : = H(l)N (l) = 0g. Alsothe algorithm produces t exponent vectors and for each exponent vector I a rational functionC(l)I (fZij ; Yig) 2 Q(fZij;Yig) which provide t-sparse representations ofg =XI C(l)I (fZij ; Yig)(Z�1(X � Y ))Iwhich is valid for every point (fZij; Yig) 2 U (l). The degrees of all produced rational functionsH(l)S ; C(l)I do not exceed dO(n2), the bit-size of the coe�cients of these rational functions canbe bounded by (Mdn2)O(1) and the running time of the algorithm is at most (Mdn4 )O(1).Again when Zij ; Yi belong to R we could write down a polynomial system on Z; Y witha less number of equations. For this purpose we need the followingLemma 5. If g is a shifted t-sparse polynomial, then for any Z0; Y0 such that detZ0 6= 0for at least one of X(0)1 = 1; : : : ; nO(n)2O(t4), a polynomial Wg(X(0)1 ;X2; : : : ;Xn; Y0; Z0) 2R[X2; : : : ;Xn] does not vanish identically, provided that Wg(X;Y0; Z0) 2 R[X] does not van-ish identically.Proof. Let for some Z(0); Y (0) a polynomial g(Z(0)X + Y (0)) be t-sparse, i.e.g =XJ �J Y1�i�n((Z(0))�1(X � Y (0)))jiiwhere J = (j1; : : : ; jn) and the sum has at most t items (by ((Z(0))�1(X � Y (0)))i we denotei-th coordinate of the vector (Z(0))�1(X � Y (0))). Then(DKn g)(X;Y0; Z0) =XJ �J Y1�i�n((Z(0))�1((Z0PKZ�10 (X�Y0)+Y0)�Y (0)))jii for 0 � K � 2t:Thus Wg(X;Y0; Z0) is a polynomial in (2t + 1)t products of the form like in the latterexpression and these products can be considered as the elements of a Pfa�an chain. [Kh 91]8



entails (cf. also [GKS 93]) that the sum of Betti numbers of the variety fWg(X;Y0; Z0) =0g � Rn is less than nO(n)2O(t4). As in particular (n� 1)-th Betti number bn�1 < nO(n)2O(t4)we conclude the statement of the lemma (cf. [GKS 93]).Thus, Y;Z satisfy the conditions of lemma 4 if and only if detZ 6= 0 and they satisfy thefollowing nO(n2)2O(nt4) equations.Wg(X(0)1 ; : : : ;X(0)n ; Y; Z) = 0; X(o)1 ; : : : ;X(0)n 2 f1; : : : ; nO(n)2O(t4)g4 Zero-test for shifted sparse polynomialsLet g be shifted t-sparse polynomial. Then (see lemma 5) for at least one of X(0)1 =1; : : : ; nO(n)2(t2) a polynomial g(X(0)1 ;X2; : : : ;Xn) 2 Q[X2; : : : ;Xn] does not vanish iden-tically. Thus for zero-test one can compute g(X(0)1 ; : : : ;X(0)n ) for nO(n2)2O(nt2) points(X(0)1 ; : : : ;X(0)n ) 2 f1; : : : ; nO(n)2O(t2)gn. Then g vanishes identically if and only if all theresults of computation vanish. Thus, the complexity of zero-test does not depend on d.Acknowledgement. The authors would like to thank C. Schnorr for initiating the ques-tion about the shifted sparse polynomials.References[BT 88] Ben-Or, M. & Tiwari, P., A deterministic algorithm for sparse multivariatepolynomial interpolation, Proc. 20 STOC ACM, 1988, pp. 301-309.[CG 83] Chistov, A. & Grigoriev, D., Subexponential-time solving systems of algebraicequations, Preprints LOMI E-9-83, E-10-83, Leningrad, 1983.[CG 84] Chistov, A. & Grigoriev, D., Complexity of quanti�er elimination in thetheory of algebraically closed �elds, Lect. Notes Comp. Sci. 176, 1984, pp. 17-31. 9
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