
Probabilistic Recurrence Relations for ParallelDivide-and-Conquer Algorithms�Marek KarpinskiyDept. of Computer ScienceUniversity of BonnandInternational Computer Science Institute,Berkeley, California.Wolf ZimmermannDept. of Computer ScienceUniversity of KarlsruheandInternational Computer Science Institute,Berkeley, California.AbstractWe study two probabilistic recurrence relations that arise frequently in the analysis ofparallel and sequential divide-and-conquer algorithms (cf. [Ka 91]). Suppose a problemof size x has to be solved. In order to solve it we divide it into subproblems of sizeh1(x); : : : ; hk(x) and these subproblems are solved recursively. We assume that size(hi(z))are random variables. This occurs if either the break up step is randomized or the instancesto be solved are drawn from a probability distribution. The running time T (z) of a parallelalgorithm is therefore determined by the maximum of the running times T (hi(z)) of thesubproblems while the sequential algorithm is determined by the sum of the runningtimes of the subproblems. We give a method for estimating (tight) upper bounds on theprobability distribution of T (x) for these two kinds of recurrence relations, answering theopen questions of Karp in [Ka 91].�submitted to STOC 92ySupported in part by the DFG Grant KA 673/4-1 and the SERC Grant GR-E 682971

1 IntroductionTwo classes of probabilistic recurrence relations occur frequently in the analysis of divide-and-conquer algorithms cf. [Ka 91]. A problem instance z of size x is divided into subproblemsh1(z); : : : ; hk(z). On a sequential computer the subproblems has to be solved one after another.Therefore the running time of a divide- and-conquer algorithm is the solution of a recurrenceof the formT (z) = a(z) + T (h1(z)) + � � �+ T (hk(z)) (1)where a(z) is the time required by the break up of the instance z into the subproblems and theuse of the solutions of the subproblems to the solution of the original problem. On a parallelcomputer all the subproblems can be solved at the same time on di�erent processors. Thereforethe running time is the solution of a recurrence of the formT (z) = a(z) + max(T (h1(z)); : : : ; T (hk(z))) (2)We consider the case where the hi(z) are random variables. In this case the running time T (z)is also a random variable, and we estimate bounds on its probability distribution for both cases,(1) and (2). This work is an extension of Karp's results [Ka 91] and solves the open questionsof [Ka 91]. Throughout the paper we use the following notations and assumptions:� a(z) is a function on the size of z and does not depend on the distribution of z. We willdenote this fact by writing a(x) instead of a(z)1� The size(hi(z)) are random variables satisfying 0 � size(h1(z))+� � �+size(hk(z)) � size(z).� E[size(hi(z))] � mi(size(z)) � size(z) for all 1 � i � k.� mi(x)=x is non-decreasing.These assumptions are quite general. In particular, no speci�c assumption on the distributionof (h1(x); : : : ; hk(x)) is necessary. These weak assumptions make our results practical, becausethe distribution of (h1(x); : : : ; hk(x)) is usually unknown.In section 2 we consider probabilistic recurrences of type (2), and in section 3, probabilisticrecurrences of type (1). This paper has similar aims as [Ka 91]. Among others, we provide acook book methodology for analyzing divide-and-conquer algorithms in some general situations.Observe that from the estimate of the probability distributions for T (x) an upper bound forthe expected value of T (x) can be obtained directly.1We always use x to denote size(z). 2

2 Probabilistic Recurrence Relations with MaximaWe consider �rst the probabilistic recurrence relations of the form (2), which usually occur inthe time analysis of parallel divide-and-conquer algorithms. These kind of recurrences are alsouseful in the analysis of space complexity of sequential algorithms. Let u(x) be the least positivesolution of the (deterministic) recurrence relation T (x) = a(x)+max(T (m1(x)); : : : ; T (mk(x))).This solution is usually determined by small instances of the problem which can be solvedtrivially (for example instances of size 1 or 0).The main result is:Theorem 1 Let a(x) be continuous, non-decreasing, and strictly increasing on fxja(x) > 0g.Also let the mi(x) be strictly increasing. Then, for every instance z of size x and every positiveinteger n, we havePr[T (z) � u(x) + n a(x)] � m1(x) + � � �+mk(x)x !nAs an immediate corollary, we get under the same conditions as Theorem 1 the following upperbound for the expected value of T (z):Corollary 2 E(T (z)) � u(x)� log(m1(x) + � � �+mk(x)) + log(x)Proof: Use the formula E[Y] = R10 Pr[Y � y]dy for non-negative random variables Y . 2The proof of Theorem 1 follows a similar line as in [Ka 91]. We shall also use the followingLemma:Lemma 3 (R. Karp [Ka 91]) Let X be a random variable with range [0; x] for some x. Letf be a non-negative real-valued integrable function over [0; x], such that there is b, 0 � b � xwith:� f(x)=x is non-decreasing on [0; b].� For all y � b: f(y) = 1.� E[X] � min(b; x)Then E[f(X)] � E[X] f(min(b; x))min(b; x) .We are going to prove the following stronger version of Theorem 1:3

Theorem 4 For all r > 0 and all instances z de�ne sr(z) = Pr[T (z) � r]. De�ne a functiondr(x) as follows:dr(x) = 8<: �m1(x)+���+mk(x)x �d r�u(x)a(x) e xu�1(r�a(x) d(r�u(x))=a(x)e) if u(x) < r1 otherwiseThen sr(z) � dr(size(z)).Proof: The outline of this proof is similar to that of Theorem 7 in [Ka 91]. The proof is byinduction using as hypothesis the claim in 5. In order to prove the induction step, we applyanother induction.It holds by basic laws of probability theory:sr(z) = Pr[max1�i�k T (hi(z)) � r � a(x)]� kXi=1Pr[T (hi(z)) � r � a(x)]= kXi=1E[sr�a(x)(hi(z))]De�ne a sequence fsjrg as follows:s0r(z) = 8<: 1 if r � u(size(z))0 otherwisesj+1r (z) = kXi=1E[sjr�a(x)(hi(z))]Then sr(z) = supj sjr(z). We show now by induction, that for all j we have sjr(z) � dr(size(z)).Observe �rst, that dr(x) is integrable and dr(x)=x is non-decreasing, because u�1(x), a(x), andmi(x)=x are non-decreasing.Base Case: j = 0. Straightforward.Inductive Case: It holdssj+1r (z) = kXi=1E[sjr�a(x)(hi(z))]� fInduction hypothesis gkXi=1E[dr�a(x)(size(hi(z)))] 4

Three cases must be distinguished depending on the value of u(x):1st Case: u(size(z)) > r. Then immediatly dr(size(z)) = 1 and the claim becomes trivial.2nd Case: r � a(size(z)) � u(size(z)) < r. Then by Lemma 3 and the induction hypothesis:E[dr�a(x)(size(hi(z)))] � E[size(hi(z))]u�1(r � a(x) d(r � u(x))=a(x)e)Observe that d(r � u(x))=a(x))e = 1 in this case. Thereforesj+1r (z) � m1(x) + � � �+mk(x)u�1(r � a(x)) = dr(size(z))3rd Case: u(size(z)) < r� a(size(z)). Then by Lemma 3 and the induction hypothesis of theinduction over j:E[dr�a(x)(size(hi(z)))] � mi(x)x dr�a(x)(x)Thus:sj+1r (z) � m1(x) + � � �+mk(x)x dr�a(x)(x) = dr(size(z))and our Theorem 4 follows. 23 Probabilistic Recurrence Relations with SumsHere, we consider recurrence relations of the formT (z) = a(size(z)) + kXi=1 T (hi(z))where the hi satisfy the same property as in the previous section. We assume that k � 2. Fork = 1 the results of [Ka 91] can be applied.This kind of recurrence relations occurs for example in the analysis of sequential divide-and-conquer algorithms. The result has a more complicated form than the previous one althoughthe proof follows almost the same line. 5

Let u(x) be the smallest positive solution of the (deterministic) recurrenceT (x) = a(x) + kXi=1 T (mi(x))Then the following (tight) estimate can be obtained:Theorem 5 For all r > 0 and all instances z de�ne sr(z) = Pr[T (z) � r]. De�ne a functiondr(x) as follows:dr(x) = 8<: �m1(x)+���+mk(x)x �fk(r;x) xu�1(k�fk(r;x) (r+ 1k�1 a(x))� 1k�1 a(x)) if u(x) < r1 otherwisewherefk(r; x) = &logk r + 1k�1 a(x)u(x) + 1k�1 a(x)!'Then sr(z) � dr(size(z)).Proof: The proof is by induction on r and uses as induction hypothesis the claim ofTheorem 5. By basic laws of probability we get:sr(z) = Pr[T (z) � r]= Pr " kXi=1 T (hi(z)) � r � a(x)#� Pr[kmaxi=1 T (hi(z)) � k�1 (r � a(x))]� kXi=1Pr[T (hi(z)) � k�1 (r � a(x))]= kXi=1E[sk�1 (r�a(x))(hi(z))]The application of the inequalitykXi=1 T (hi(z)) � k kmaxi=1 T (hi(z)) 6

in the above estimates leads to a similar formula as in the proof of Theorem 4. Now we proceedas in the proof of Theorem 4 and de�ne a sequence fsjr(z)g as follows:s0r = 8<: 1 if r � u(x)0 otherwisesj+1r (z) = kXi=1 E[sjk�1 (r�a(x))(hi(z))]Clearly, with these de�nitions it is sr(z) = supj sjr(z) and it is therefore su�cient to prove thatfor all j and r it is sjr(z) � dr(size(z)). This is done by induction on j:Base Case: j = 0. Straightforward.Inductive Case: It issj+1r (z) = kXi=1 E[sjk�1 (r�a(x))(hi(z))]� fInductionHypothesisgkXi=1 E[dk�1 (r�a(x))(size(hi(z)))]Now we apply Lemma 3. Observe that the function dr(x) satis�es the preconditions of Lemma 3.Then three cases, depending on the value of u(x) have to be distinguished:1st Case: u(x) � r. Then dr(x) = 1 and the claim is trivial.2nd Case: k�1 (r � a(x)) � u(x) < r. Then0 < &logk r + 1k�1 a(x)u(x) + 1k�1 a(x)' � &logk k u(x) + kk�1 a(x)u(x) + 1k�1 a(x) ' = 1Hence fk(r; x) = 1. The application of Lemma 3 yields then:E[djk�1 (r�a(x))(size(hi(z)))] � E[size(hi(z))]u�1(k�1 (r � a(x)))and thereforesj+1r (z) � m1(x) + � � �+mk(x)x xu�1(k�1 (r � a(x)))The RHS of this inequality is equal to dr(z) because fk(r; x) = 1.7

3rd Case: u(x) < k�1 (r � a(x)). Then by Lemma 3:E[dk�1 (r�a(x))(size(hi(z)))] � mi(x)x dk�1 (r�a(x))(x)Hence:sj+1r (z) � �m1(x)+���+mk(x)x �fk(k�1(r�a(x));x)+1 xu�1(k�fk(k�1(r�a(x));x)(k�1(r�a(x))+ 1k�1 a(x))� 1k�1 a(x))It is fk(k�1(r � a(x)); x) + 1 = &logk k k�1(r � a(x)) + 1k�1 a(x)u(x) + 1k�1 a(x) !'= &logk r + 1k�1 a(x)u(x) + 1k�1 a(x)!'= fk(r; x)Substituting this result in the above estimate yieldssj+1r (z) � m1(x) + � � �+mk(x)x !fk(r;x) xu�1(k�fk(r;x) (r + 1k�1 a(x))� 1k�1 a(x)) = dr(x)24 Applications4.1 Running Time of Parallel QuicksortWe consider the following version of a randomized Quicksort. In order to sort a list z of lengthx = size(z) the Pivot element is chosen randomly and the two sublists are sorted recursively inparallel. The divide step requires log2 size(z) steps. Thus the probabilistic recurrence relationis T (z) = log2 x+max(T (h1(z)); T (h2(z))If the distribution is uniform, we have E[h1(z)] = E[h2(z)] = (size(z) � 1)=2. Thus thepreconditions of Theorem 1 are satis�ed, and we have u(x) = 1=2 log2(x) (log2(x) + 1). ThenPr[T (z) � w + 1=2 log2(x) (log2(x) + 1)] � 1 � 1size(z)!w8

and by corollary 2E[T (z)] � 1=2 log2(size(z)) (log2(size(z)) + 1) � log(size(z)� 1)More generally, if E[size(h1(z))] = n=c for a c > 1 then it follows fromTheorem 1 that E[T (z)] =O(log2(x)).4.2 Stack Size of Sequential QuicksortHere we are interested in the maximal number of activation records2 in the stack during theexecution of quicksort. The algorithm is the following:PROC quicksort(i,j:integer)-- sorts elements A[i],...,A[j] of an external array AIF i<j THENchoose x in {i,..,j} randomly;pivot := A[x];l := i;r := j;REPEATswap(A[l],A[r]);WHILE A[l] < pivot DO l := l + 1;WHILE A[r] < pivot DO r := r - 1;UNTIL l>r;quicksort(i,l-1);quicksort(l,j);END quicksortLet S(z) be the maximal stack size during the execution of Quicksort on list z. Then S(h1(z))and S(h2(z)) is the stack size of the two recursive calls. One activation record is needed for thecall of quicksort(z). Then the stack size is given by the probabilistic recurrence relationS(z) = 1 +max(S1(z); S2(z))If x is chosen uniformly then E[size(h1(z))] = E[size(h2(z)] = (size(z) � 1)=2. If n = size(z)then u(n) = log2 n is the least positive solution of S(n) = 1 + S(n=2). The application ofTheorem 1 yieldsPr[S(z) � w + log2 n] � �1 � 1n�w2For the de�nition see,e.g., the section on runtime environments in [ASU 86]9

and by corollary 2E[S(z)] � (1= log 2 � 1) log n � 1In general if E[h1(z)] = n=c for a c > 1, it can be concluded from Theorem 1 that E[S(z)] =O(log n).4.3 Average Running Time for the Parallel Testing of Equality onBinary TreesTesting in parallel whether two binary trees are equal can be done as follows: if the �rst tree isempty then the result is true i� the second tree is also empty. Otherwise test for the left subtreesand right subtrees in parallel whether they are equal. The result is true i� both recursive callsreturn true. If z is the �rst tree, then h1(z) is the left subtree and h2(z) is the right subtree.If the input is uniformly distributed, then E[size(hi(z))] = (n � 1)=2 where n = size(z). Theprobabilistic recurrence relation for the running time isT (z) = c+max(T (h1(z)); T (h2(z)))where c is the time needed for composing the two solutions. As in the previous subsection weobtain with Theorem 1 and corollary 2:Pr[T (z) � w + c log2 n] � �1 � 1n�wE[T (z)] � (c= log 2 � 1) log n � 1Similarly if the distribution is non-uniform and just satis�es E[size(h1(z))] = n=
 where
 > 1with corollary 2 it is still possible to conclude E[T (z)] = O(log n). The work of Martinez[Ma 91] shows that this bound is tight. Here a probability distribution is given where theaverage complexity is �(log n).4.4 Automatic Complexity AnalysisIn recent years automatic complexity analysis systems are developed. The most important ofthese methods and systems are in [FSZ 88, HC 88, M�e 75, FSZ 91, Zi 90]. In [FSZ 88, FSZ 91]only uniform input distributions are considered. The method of Flajolet [FSZ 88, FSZ 91] is10

unable to deal with function composition because the output distribution of a function (orprocedure) is usually non-uniform. However an application of Theorems 1 and 5 would allow toestimate the output distribution because of the very general assumptions in the preconditionsof these Theorems.In [Zi 90] it is shown how (deterministic and probabilistic) recurrence relations can be ob-tained automatically from a program, but they are solved only under very speci�c assumptions.The above results can be used to improve these methods substantially and make it more gen-erally applicable (because of the very general assumptions on the probability distributions).These results also enable the extension of the above methods to analyze automatically theexpected worst case of randomized algorithms.5 Summary and Further ResearchIt would be interesting to improve the above results (and the results of [Ka 91]) in the case theupper bounds of the higher moments are known. Currently, we are able to give estimates forthe probability distribution of the running time of parallel divide-and-conquer algorithms. Ifthe number of processors is restricted, then the running time leads to a probabilistic recurrencerelation of the formT (z) = a(x) + max(T (h1(x)); T (h2(x))) + max(T (h3(x)); T (h4(x)))These kind of recurrences occur for example in the analysis of a convex hull algorithm (cf.,e.g. [Ak 89]). These recurrences require a combination of Theorems 1 and 5.Acknowledgements. We thank Peter B�urgisser, Gerhard Goos, Dick Karp, and RaimundSeidel for a number of interesting discussions.References[ASU 86] Aho, A.V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques, andTools Addison-Wesley 1986[Ak 89] Akl, S. The Design and Analysis of Parallel Algorithms Prentice-Hall 1989[FSZ 88] Flajolet, P., Salvy, B., and Zimmermann, P. Lambda Upsilon Omega: An AssistantAlgorithms Analyzer, in: The Proceedings of 6th International Conference on Ap-11

plied Algebra, Algebraic Algorithms and Error Correcting Codes, LNCS 357, pp201{212, 1988[FSZ 91] Flajolet, P., Salvy, B. and Zimmermann, P. Average Case Analysis of Algorithms,Theoretical Computer Science (79)1, pp. 37 { 110, 1991[HC 88] Hickey, T. and Cohen, J. Automating Program Analysis Journal of the ACM (35)1,pp. 185 { 220, 1988[Ka 91] Karp, R. M., Probabilistic Recurrence Relations, Proc. 23rd ACM STOC (1991),pp. 191-197.[Ma 91] Martinez, C. Average Case Analysis of Equality of Binary Trees Under the BSTProbability Model in: Proceedings of the 8th International Conference on Funda-mentals of Computation Theory, LNCS 529, pp. 350 { 359, Springer 1991[M�e 75] LeM�etayer D. ACE: An Automatic Complexity Evaluator ACM Transactions onProgramming Languages and Systems (10)2, pp. 248{266, 1988[We 75] Wegbreit, B., Mechanical Program Analysis, Communications of the ACM (18)9,pp. 528-539, 1975.[ZZ 91] Zimmermann, P. and Zimmermann W. The Automatic Complexity Analysis ofDivide-and-Conquer Algorithms in: The Proceedings of the 6th International Sym-posium on Computing and Information Sciences, 1991[Zi 90] Zimmermann, W. Automatische Komplexit�atsanalyse funktionaler Programme, In-formatik Fachberichte 261, Springer 1990
12

