Probabilistic Recurrence Relations for Parallel
Divide-and-Conquer Algorithms™

Marek Karpinski'

Dept. of Computer Science
University of Bonn
and
International Computer Science Institute,
Berkeley, California.

Wolf Zimmermann

Dept. of Computer Science
University of Karlsruhe
and
International Computer Science Institute,
Berkeley, California.

Abstract

We study two probabilistic recurrence relations that arise frequently in the analysis of
parallel and sequential divide-and-conquer algorithms (cf. [Ka 91]). Suppose a problem
of size # has to be solved. In order to solve it we divide it into subproblems of size
hi(z), ..., hg(z) and these subproblems are solved recursively. We assume that size(h;(2))
are random variables. This occurs if either the break up step is randomized or the instances
to be solved are drawn from a probability distribution. The running time 7'(z) of a parallel
algorithm is therefore determined by the maximum of the running times T'(h;(z)) of the
subproblems while the sequential algorithm is determined by the sum of the running
times of the subproblems. We give a method for estimating (tight) upper bounds on the
probability distribution of T'(z) for these two kinds of recurrence relations, answering the
open questions of Karp in [Ka 91].

*submitted to STOC 92
TSupported in part by the DFG Grant KA 673/4-1 and the SERC Grant GR-E 68297

1 Introduction

Two classes of probabilistic recurrence relations occur frequently in the analysis of divide-and-
conquer algorithms cf. [Ka 91]. A problem instance z of size x is divided into subproblems
hi(z),...,he(z). On a sequential computer the subproblems has to be solved one after another.
Therefore the running time of a divide- and-conquer algorithm is the solution of a recurrence
of the form

I(z) = a(z) + T(m(2)) + - + T(hi(2)) (1)

where a(z) is the time required by the break up of the instance z into the subproblems and the
use of the solutions of the subproblems to the solution of the original problem. On a parallel
computer all the subproblems can be solved at the same time on different processors. Therefore

the running time is the solution of a recurrence of the form
T() = afz) + max(T(hn(=), ..., T(he(2))) @)

We consider the case where the h;(z) are random variables. In this case the running time 7'(z)
is also a random variable, and we estimate bounds on its probability distribution for both cases,
(1) and (2). This work is an extension of Karp’s results [Ka 91] and solves the open questions

of [Ka 91]. Throughout the paper we use the following notations and assumptions:

e a(z)is a function on the size of z and does not depend on the distribution of z. We will

denote this fact by writing a(x) instead of a(z)*

e The size(h;(z)) are random variables satisfying 0 < size(hy(z))+- - -+size(hg(z)) < size(z).
o Flsize(h;(2))] < mi(size(z)) < size(z) for all 1 <7 < E.

e m;(x)/x is non-decreasing.

These assumptions are quite general. In particular, no specific assumption on the distribution
of (hi(x),...,hg(x)) is necessary. These weak assumptions make our results practical, because

the distribution of (hq(x),...,hi(x)) is usually unknown.

In section 2 we consider probabilistic recurrences of type (2), and in section 3, probabilistic
recurrences of type (1). This paper has similar aims as [Ka 91]. Among others, we provide a
cook book methodology for analyzing divide-and-conquer algorithms in some general situations.
Observe that from the estimate of the probability distributions for T'(x) an upper bound for
the expected value of T'(x) can be obtained directly.

'We always use r to denote size(z).

2 Probabilistic Recurrence Relations with Maxima

We consider first the probabilistic recurrence relations of the form (2), which usually occur in
the time analysis of parallel divide-and-conquer algorithms. These kind of recurrences are also
useful in the analysis of space complexity of sequential algorithms. Let u(x) be the least positive
solution of the (deterministic) recurrence relation T'(x) = a(x)+max(T(m(x)),..., T (mr(z))).
This solution is usually determined by small instances of the problem which can be solved

trivially (for example instances of size 1 or 0).

The main result is:

Theorem 1 Let a(x) be continuous, non-decreasing, and strictly increasing on {x|a(x) > 0}.
Also let the m;(x) be strictly increasing. Then, for every instance z of size x and every positive
integer n, we have

Pr[T(2) > u(z) + n a(z)] < (m1(:1?) 4oy mk(l‘))

X

As an immediate corollary, we get under the same conditions as Theorem 1 the following upper

bound for the expected value of T'(z):
Corollary 2 E(T(2)) <wu(x) —log(my(x) 4+ -+ my(x)) + log(x)

Proof: Use the formula E[Y] = [;° Pr[Y > y]dy for non-negative random variables Y. 0

The proof of Theorem 1 follows a similar line as in [Ka 91]. We shall also use the following

Lemma:

Lemma 3 (R. Karp [Ka 91]) Let X be a random variable with range [0,x] for some x. Let
[be a non-negative real-valued integrable function over [0, z], such that there is b, 0 < b < x
with:

f(xz)/x s non-decreasing on [0, b].

For ally > b: f(y) =1.
o F[X] < min(b,x)

E[X] f(min(b,)) .

min(b, x)

Then E[f(X)] <

We are going to prove the following stronger version of Theorem 1:

3

Theorem 4 For all r > 0 and all instances z define s,.(z) = Pr[T(z) > r]. Define a function
d.(x) as follows:

e = { (’) e foaEaen S) <r

1 otherwise

Then s,(z) < d,(size(2)).

Proof: The outline of this proof is similar to that of Theorem 7 in [Ka 91]. The proof is by
induction using as hypothesis the claim in 5. In order to prove the induction step, we apply

another induction.

It holds by basic laws of probability theory:
s(2) = Prlas T((=)) 2 7 afe)]

< ZPI’[T(M(Z)) >r—a(z)]

— Z_: Els,a(y(hi(2))]

Define a sequence {s/} as follows:

o 1 e < u(size(2))
sp(z) = { 0 otherwise
sitl(z) = ZE[sf,_a(x)(hi(Z))]

Then s,(z) = sup; s7(z). We show now by induction, that for all 7 we have s/(z) < d,(size(2)).
Observe first, that d,(x) is integrable and d,(z)/z is non-decreasing, because u™'(z), a(x), and

m;(x)/x are non-decreasing.

BaskE CASE: j = 0. Straightforward.
INDucTIVE CASE: It holds

sitl(z) = ZE[Si_a(x)(hi(Z))]

{Induction hypothesis }

> Bldy oo (sizel ()]

IA

Three cases must be distinguished depending on the value of u(x):
18T CASE: u(size(z)) > r. Then immediatly d,(size(z)) = 1 and the claim becomes trivial.
2ND CASE: r — a(size(z)) < u(size(z)) < r. Then by Lemma 3 and the induction hypothesis:

Elsize(h;(2))]
ui(r = aa) [(r = u(2))a(2)])

Bld, (o) (size(hi(2)))] <

Observe that [(r — u(z))/a(x))] = 1 in this case. Therefore

ma (@) 4 - 4 ()
u=t(r —a(z))

S]-I-l (Z) <

r

= d,(size(z))

3RD CASE: u(size(z)) < r —a(size(z)). Then by Lemma 3 and the induction hypothesis of the

induction over j:

Bl -o(sizelh(2)))] < ")
Thus:
() < M IO = d(size2)
and our Theorem 4 follows. O

3 Probabilistic Recurrence Relations with Sums

Here, we consider recurrence relations of the form

where the h; satisfy the same property as in the previous section. We assume that k& > 2. For
kE =1 the results of [Ka 91] can be applied.

This kind of recurrence relations occurs for example in the analysis of sequential divide-and-
conquer algorithms. The result has a more complicated form than the previous one although

the proof follows almost the same line.

Let u(x) be the smallest positive solution of the (deterministic) recurrence

Then the following (tight) estimate can be obtained:

Theorem 5 For all r > 0 and all instances z define s.(z) = Pr[T(z) > r]. Define a function
d.(x) as follows:

()t ()) S5 07) . ,
d(0) = | ()T e e ey) <
L otherwise
where
r+4 2 a(x))"
r,r) = lo k-1
fk() ’V gk (u x) n klj a(:z;)

Then s,(z) < d,(size(2)).

Proof: The proof is by induction on r and uses as induction hypothesis the claim of

Theorem 5. By basic laws of probability we get:

s.(2) = Pr[T(z) >7]

IA
)—U
—
&
>
~
N
=
—~
I
S’
S’
\Y%
o
—
N
=
|
Q
N
8
S’
=

IA
)—U
—
~
N
=
—~
IS
S’
S’
\Y%
o
L
N
=
|
Q
N
8
S’
=

The application of the inequality

ST T(hi(2)) < k max T(h(2))

‘ =1
=1 !

in the above estimates leads to a similar formula as in the proof of Theorem 4. Now we proceed

as in the proof of Theorem 4 and define a sequence {s/(z)} as follows:

o {1 if r < wu(x)

0 otherwise

s 2) = Y EBlsior ooy (hi(2))]

=1

Clearly, with these definitions it is s,(z) = sup; s/(z) and it is therefore sufficient to prove that

for all j and r it is s/(2) < d,(size(2)). This is done by induction on j:

BAsE CASE: 7 = 0. Straightforward.
INDUCTIVE CASE: It is

T2 = X Blsi gy (hil2)

{InductionHypothesis}

3 Eldies rmagoy(size(hi(z)))]

IA

Now we apply Lemma 3. Observe that the function d, () satisfies the preconditions of Lemma 3.

Then three cases, depending on the value of u(x) have to be distinguished:

18T CASE: u(x) > r. Then d,(x) = 1 and the claim is trivial.
2ND CASE: k7! (r —a(z)) < u(x) <r. Then

J)rklja(x) wg{ ku(:z;)ir,;ja(w)

.
| |
0 < logy u(x) + ﬁ a(x) OBk u(x) + o= a(x)

Hence fi(r,x) = 1. The application of Lemma 3 yields then:

; . Elsize(h;(2))]
Eld,-, (r_a(x))(szze(hi(z)))] < kL (r — a(2))

)

=
and therefore

ma(x) + -+ mg(x) x)
x u k= (r —a(x))

57 (2) <

The RHS of this inequality is equal to d,.(z) because fi(r,z) = 1.

7

3RD CASE: u(z) < k~' (r —a(z)). Then by Lemma 3:

: mi(x)
Eldimt (oo (size(hi(2)))] € —=di=t (raay)(2)
Hence: et
+1 my (@) ()) R (r=a(@)))41 i
? (Z) : (: k) u=t (k=T =a@),2) (k=1(r —a(2))+ 25 alz))— L5 a(x))
It is

Ak~ —a(e)),2) +1 = {bgk (k

Substituting this result in the above estimate yields

X

ml(x)_l__l_mk(w))fk(r,w) T

sitl(z) < (uTH (ER0D (r 4 o a(@) - 15 ale)

4 Applications

4.1 Running Time of Parallel Quicksort

We consider the following version of a randomized Quicksort. In order to sort a list z of length
& = size(z) the Pivot element is chosen randomly and the two sublists are sorted recursively in
parallel. The divide step requires log, size(z) steps. Thus the probabilistic recurrence relation

T(z) =logy x + max(T(h1(z)), T(h2(2))

If the distribution is uniform, we have E[hi(z)] = FElhs(z)] = (size(z) — 1)/2. Thus the
preconditions of Theorem 1 are satisfied, and we have u(x) = 1/2 logy(x) (logy(x) +1). Then

Pr[T(z) > w4+ 1/2 logy(x) (logy(x) + 1)] < (1 !)w

size(z)

8

and by corollary 2
E[T(2)] < 1/2logy(size(z)) (logy(size(z)) + 1) — log(size(z) — 1)

More generally, if E[size(hq(z))] = n/cfor a ¢ > 1 then it follows from Theorem 1 that E[T(z)] =
Olog? ().

4.2 Stack Size of Sequential Quicksort

Here we are interested in the maximal number of activation records? in the stack during the

execution of quicksort. The algorithm is the following:

PROC quicksort(i,j:integer)

-- sorts elements A[i],...,A[j] of an external array A
IF i<j THEN
choose x in {i,..,j} randomly;
pivot := A[x];

1 :=1;
r = j;
REPEAT
swap(A[1],A[r]);
WHILE A[1] < pivot DO 1 :=1 + 1;
WHILE A[r] < pivot DO r :=r - 1;
UNTIL 1>r;
quicksort(i,1-1);
quicksort(1,j);

END quicksort

Let S(z) be the maximal stack size during the execution of Quicksort on list z. Then S(hq(2))
and S(ha(z)) is the stack size of the two recursive calls. One activation record is needed for the

call of quicksort(z). Then the stack size is given by the probabilistic recurrence relation
S(z) =14 max(Si(z),52(2))

If « is chosen uniformly then E[size(hi(z))] = E[size(h2(2)] = (size(z) — 1)/2. If n = size(z)
then u(n) = logyn is the least positive solution of S(n) = 1 4+ S(n/2). The application of
Theorem 1 yields

Pr[S(z) > w + log, n] < (1 — l)w

n

2For the definition see,e.g., the section on runtime environments in [ASU 86]

9

and by corollary 2
E[S(z)] < (1/log2 —1)logn —1

In general if E[hi(2)] = n/c for a ¢ > 1, it can be concluded from Theorem 1 that E[S(z)] =
O(log n).

4.3 Average Running Time for the Parallel Testing of Equality on
Binary Trees

Testing in parallel whether two binary trees are equal can be done as follows: if the first tree is
empty then the result is true iff the second tree is also empty. Otherwise test for the left subtrees
and right subtrees in parallel whether they are equal. The result is true iff both recursive calls
return true. If z is the first tree, then hy(z) is the left subtree and hs(2) is the right subtree.
If the input is uniformly distributed, then E[size(h;(2))] = (n — 1)/2 where n = size(z). The

probabilistic recurrence relation for the running time is
T() = e+ max(T(hi(2)), T(ha()))

where ¢ is the time needed for composing the two solutions. As in the previous subsection we

obtain with Theorem 1 and corollary 2:

Pr[T(z) > w+ ¢ log, n] < (1 — l)w

n

ET(z)] < (¢/log2—1)logn —1

Similarly if the distribution is non-uniform and just satisfies E[size(h1(2))] = n/vy where v > 1
with corollary 2 it is still possible to conclude E[T(z)] = O(logn). The work of Martinez
[Ma 91] shows that this bound is tight. Here a probability distribution is given where the

average complexity is O(logn).

4.4 Automatic Complexity Analysis

In recent years automatic complexity analysis systems are developed. The most important of

these methods and systems are in [FF'SZ 83, HC 88, Mé 75, FSZ 91, Zi 90]. In [FSZ 88, FSZ 91]
only uniform input distributions are considered. The method of Flajolet [FSZ 88, FSZ 91] is

10

unable to deal with function composition because the output distribution of a function (or
procedure) is usually non-uniform. However an application of Theorems 1 and 5 would allow to
estimate the output distribution because of the very general assumptions in the preconditions

of these Theorems.

In [Zi 90] it is shown how (deterministic and probabilistic) recurrence relations can be ob-
tained automatically from a program, but they are solved only under very specific assumptions.
The above results can be used to improve these methods substantially and make it more gen-
erally applicable (because of the very general assumptions on the probability distributions).
These results also enable the extension of the above methods to analyze automatically the

expected worst case of randomized algorithms.

5 Summary and Further Research

It would be interesting to improve the above results (and the results of [Ka 91]) in the case the
upper bounds of the higher moments are known. Currently, we are able to give estimates for
the probability distribution of the running time of parallel divide-and-conquer algorithms. If
the number of processors is restricted, then the running time leads to a probabilistic recurrence

relation of the form
T'(z) = a(x) + max(T'(hi(x)), T'(ha(x))) + max(T'(hs(x)), T'(ha()))

These kind of recurrences occur for example in the analysis of a convex hull algorithm (cf.,

e.g. [Ak 89]). These recurrences require a combination of Theorems 1 and 5.

Acknowledgements. We thank Peter Biirgisser, Gerhard Goos, Dick Karp, and Raimund

Seidel for a number of interesting discussions.

References

[ASU 86] Aho, A.V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques, and
Tools Addison-Wesley 1986

[Ak 89] Akl, S. The Design and Analysis of Parallel Algorithms Prentice-Hall 1989
[FSZ 88] Flajolet, P., Salvy, B., and Zimmermann, P. Lambda Upsilon Omega: An Assistant

Algorithms Analyzer, in: The Proceedings of 6th International Conference on Ap-

11

[FS7 91]

[HC 88]

[Ka 91]

[Ma 91]

[Mé 75]

[We 75]

27 91]

(7 90]

plied Algebra, Algebraic Algorithms and Error Correcting Codes, LNCS 357, pp
201-212, 1988

Flajolet, P., Salvy, B. and Zimmermann, P. Average Case Analysis of Algorithms,
Theoretical Computer Science (79)1, pp. 37 — 110, 1991

Hickey, T. and Cohen, J. Automating Program Analysis Journal of the ACM (35)1,
pp. 185 — 220, 1988

Karp, R. M., Probabilistic Recurrence Relations, Proc. 2374 ACM STOC (1991),
pp- 191-197.

Martinez, C. Average Case Analysis of Fquality of Binary Trees Under the BST
Probability Model in: Proceedings of the 8th International Conference on Funda-
mentals of Computation Theory, LNCS 529, pp. 350 — 359, Springer 1991

LeMétayer D. ACE: An Automatic Complexity Fvaluator ACM Transactions on
Programming Languages and Systems (10)2, pp. 248-266, 1988

Wegbreit, B., Mechanical Program Analysis, Communications of the ACM (18)9,
pp. 528-539, 1975.

Zimmermann, P. and Zimmermann W. The Automatic Complexity Analysis of
Divide-and-Conquer Algorithms in: The Proceedings of the 6th International Sym-

posium on Computing and Information Sciences, 1991

Zimmermann, W. Automatische Komplexititsanalyse funktionaler Programme, In-
formatik Fachberichte 261, Springer 1990

12

