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Abstract

We prove lower bounds on the number of zeros of some classes of multivari-
ate polynomials over GF'[¢g] in the function of the number of their terms only.
The paper was motivated by some algebraic problems arising from the new
randomized approximation techniques of [Karpinski, Luby 91] and [Karpin-
ski, Lhotzky 91] for the number of zeros of polynomials over finite fields.
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1 Notation and Terminology

Let f = S a;X! € GF[q][Xy,...,X,] be t-sparse (the number of monomials bounded by
1

t) polynomial with a nonempty set G C G'F[¢]" of zeros, denote by |G| the number of zeros.
t4+qg—2

) )—sparse (number
q j—

Denote ¢ = f971. Then ¢ ist at most 7~ '-sparse, more precisely (

of ¢ — 1 combinations of ¢ distinct elements).

2 Lower bound for a number of terms in the case of a unique

solution

Assume now that ¢ (and also f) has a unique solution. We consider two cases.
2.1 The unique solution is (0,...,0)

For monomial M = X! ... Xi» we denote by supp(M) = {X; | i; # 0}. We claim that for

every nonempty set J € {Xy,..., X,,} the monomial M; = T[] X]q_1 occurs in g. Assume the
jed

contrary and let M;, do not occur in g. Then

1= Z g(le"'vXN)|XK=o,KeJO :
X]GGF[q]7]€JO

But on the other hand the latter sum vanishes since the only monomial which could give a

nonzero contribution in it is My, taking into account that for 0 </ <¢g—1

b 0 (¢—1) # 1
Xe%;?[q] {—1 (¢-1) =1

This leads to a contradiction, therefore ¢ contains at least 2” — 1 monomials.
2.2 All the coordinates of the unique solution are different from zero

Let us prove first that ¢ does not contain any monomial M  with

supp(M)g{Xl,...,Xn} such that a power Xf_l occurs in M for a certain 1.



Assume the contrary and let M contain the maximal set of powers {Xf_l7 i € I} for a

given supp(M). Consider all the monomials with supp(M) containing the powers Xf_l for all

¢ € I. Denote the sum of all such monomials by (HIXZQ_I)/@ where h is a polynomial in the
i€

variables from the set {X; , j € J} = supp(M)\{X;, ¢ € I'}. There exist {z; € GF[q], j € J}

such that h{z;, j € J} # 0. Consider a sum

0= Z g(Xl"'"Xn)|Xs=0,Xs€5upp(M);X]=EJ,J€J
X,€GF[q], 1€l

On the other hand the latter sum equals to ( > (TT X ")h(z;,j € J) # 0. The
X.€GF[q], €l 1€l

obtained contradiction proves the statement.
Now we claim that ¢ contains all the monomials M with the supp(M) = {Xy,..., X,,} such
that M contains Xf_l for at least one ¢. Consider for example, all the monomials containing
. .(0) .(0) ]
X471 Denote by & a generator of the cyclic group GF[q]*. Let (&1 ,...,&7") be the unique

root of g. For 1 < ¢y,...,4,1 < ¢ — 1 denote by «;, the coefficient in the monomial

tn—1

X, "' X9V in g. Then for any 1 < ji,...,jn_1 < ¢ — 1 holds

_ . . 1171+t in—1Jn—
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Xn€GF[q] 1<41 yeunyin—1 <g—1
by the proved above. Thus, the latter sums can be written (for different ji,...,7,-1) as a

product of the vector (o, i, )i<i,..in_1<q—1 DY (¢ — 1"t x (g — 1)~ matrix A being a
tensor product of (n — 1) copies of (¢ — 1) x (¢ — 1) matrix (¢¥) which is a Fourier transform
matrix. This product equals to a vector having all zero coordinates except one coordinate equal
to —1 (this coordinate corresponds to j; = j{o), ey Jne1 = jflo_)l). Thus, the vector (av,,..:,)

equals to a suitable row of the matrix A1, being a tensor product of (n — 1) copies of the

matrix —(£7%), hence &G, 7 0foreach 1 <op,...,4, <¢g-1.

Thus, the number of monomials in ¢ is at least (¢ — 1) — (¢ — 2)" < (¢ — 1)L,



3 The general case of the unique root

Assume that ¢ > 2. Suppose without loss of generality that for the unique root (z1,...,z,) of

gholds 2y =...=2x =0, 241 #0,...,2, # 0. Then considering polynomials g|X1=m=XF=0

and g|XI,+1=$F+1 ..... x,—s, and applying cases 2.2) und 2.1), respectively, we conclude that the

number of monomials in g exceeds max{(q— 1)"~K=1 2K _ 1} > 27/2 _ 1,

Proof of the lower bound

If |G| > 1 there exists a coordinate 1 < iy < n whose value is not a constant on GG. Fix a certain

1

5|G/| solutions in G with this value. Continuing

value z;, of X;, for which there are at most
this process, fix z;,,...,#;, and after at most s < log, |G| steps we come to a unique solution.

Applying 3. to a polynomial g, _,. » we get a lower bound 25 (n=1og 1G] fo1 the

i =T

number of monomials in ¢g. Hence the initial polynomial f contains at least 95 ((n—log; |G)/(a-1)

monomials.

4 Upper bound for a number of roots of a t-sparse polynomial

Let ¢ = p®, where p is a prime. We construct a sequence of elements ag,...,any_1 € GF[q]

such that 3°a; #0777 04T C{l,...,N}.Fors=1we takeag=...=a,_3=1.Fors>1
€]

we take N = s(P — 1) and as ag,...,ay_1 we take (p — 1) copies of each of s basic elements

of GF[q] over GF[p].

Assume that we have already constructed a polynomial fx over GF[q]in N¥ variables with
the property that it has the unique zero root. For 0 <7 < N denote by fx ; the polynomial in
N variables Xinryy, Xiyryg, ..., X(41)nx obtained from fr by replacing each variable X;

q—1
by X;iinx. As fk41 we take E aifi; -
0<i<N-1

We claim that for the case s = 1 the number of monomials in fx is close to the obtained
lower bound. Namely, we prove by induction on K that the number of monomials in fx is at

K—1_

most 22(>—1) 7102:(P=1) The base of induction for K = 1, then f; = Xf_l 4+ ...+ Xg:ll is

4



clear.

Inductive step:  frx41 has at most (p — 1)22(?7_1)](_%(?7_1)10g2(p—1) < 92(p=1)F=3)logy (p=1)

) K

monomials. Since fx has (p — 1)" variables, the obtained lower bound gives 2p=1)F",

For more than one roots take fx and [ more variables on which fx does not depend. Then

|G| = p!, the lower bound is 2((P=D"+=logz [G)/(p=1) = 2((p=1)" ~lllogz p=1))/(v=1) | Thus, for

K
I < % . %(%_Ll this bound is also close to the bound in the constructed example. O
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