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1 Notation and TerminologyLet f = PI aIXI 2 GF [q][X1; : : : ; Xn] be t-sparse (the number of monomials bounded byt) polynomial with a nonempty set G � GF [q]n of zeros, denote by jGj the number of zeros.Denote g = f q�1. Then g ist at most tq�1-sparse, more precisely  t+ q � 2q � 1 !-sparse (numberof q � 1 combinations of t distinct elements).2 Lower bound for a number of terms in the case of a uniquesolutionAssume now that g (and also f) has a unique solution. We consider two cases.2.1 The unique solution is (0; : : : ; 0)For monomial M = X i11 : : :X inn we denote by supp(M) = fXj j ij 6= 0g. We claim that forevery nonempty set J 2 fX1; : : : ; Xng the monomial MJ = Qj2J Xq�1j occurs in g. Assume thecontrary and let MJ0 do not occur in g. Then1 = XXj2GF [q] ; j2J0 g(X1; : : : ; Xn)jXK=0 ; K 62J0 :But on the other hand the latter sum vanishes since the only monomial which could give anonzero contribution in it is MJ0 taking into account that for 0 � l � q � 1XX2GF [q]Xb = ( 0 (q � 1) 6= l�1 (q � 1) = lThis leads to a contradiction, therefore g contains at least 2n � 1 monomials.2.2 All the coordinates of the unique solution are di�erent from zeroLet us prove �rst that g does not contain any monomial M withsupp(M)�6= fX1; : : : ; Xng such that a power Xq�1i occurs in M for a certain i.2



Assume the contrary and let M contain the maximal set of powers fXq�1i ; i 2 Ig for agiven supp(M). Consider all the monomials with supp(M) containing the powers Xq�1i for alli 2 I . Denote the sum of all such monomials by (Qi2IXq�1i )h where h is a polynomial in thevariables from the set fXj ; j 2 Jg = supp(M)nfXi ; i 2 Ig. There exist fxj 2 GF [q] ; j 2 Jgsuch that hfxj ; j 2 Jg 6= 0. Consider a sum0 = XXi2GF [q] ; i2I g(X1; : : : ; Xn)jXs=0 ; Xs 62 supp(M) ; Xj=xj ; j2JOn the other hand the latter sum equals to ( PXi2GF [q] ; i2I(Qi2IXq�1i ))h(xj ; j 2 J) 6= 0. Theobtained contradiction proves the statement.Now we claim that g contains all the monomials M with the supp(M) = fX1; : : : ; Xng suchthat M contains Xq�1i for at least one i. Consider for example, all the monomials containingXq�1n . Denote by � a generator of the cyclic group GF [q]�. Let (�j(0)1 ; : : : ; �j(0)n ) be the uniqueroot of g. For 1 � i1; : : : ; in�1 � q � 1 denote by �i1;:::;in�1 the coe�cient in the monomialX i11 : : :X in�1n�1 Xq�1n in g. Then for any 1 � j1; : : : ; jn�1 � q � 1 holdsXXn2GF [q] g(X1; : : : ; Xn)jX1=�j1 ;:::;Xn�1=�jn�1 = � X1�i1;:::;in�1�q�1�i1;:::;in�1�i1j1+:::+in�1jn�1by the proved above. Thus, the latter sums can be written (for di�erent j1; : : : ; jn�1) as aproduct of the vector (�i1;:::;in)1�i1;:::;in�1�q�1 by (q � 1)n�1 � (q � 1)n�1 matrix A being atensor product of (n� 1) copies of (q � 1)� (q � 1) matrix (�ij) which is a Fourier transformmatrix. This product equals to a vector having all zero coordinates except one coordinate equalto �1 (this coordinate corresponds to j1 = j(0)1 ; : : : ; jn�1 = j(0)n�1). Thus, the vector (�i1;:::;in)equals to a suitable row of the matrix A�1, being a tensor product of (n � 1) copies of thematrix �(��ij), hence �i1;:::;in 6= 0 for each 1 � i1; : : : ; in � q � 1.Thus, the number of monomials in g is at least (q � 1)n � (q � 2)n � (q � 1)n�1.3



3 The general case of the unique rootAssume that q > 2. Suppose without loss of generality that for the unique root (x1; : : : ; xn) ofg holds x1 = : : : = xK = 0, xK+1 6= 0; : : : ; xn 6= 0. Then considering polynomials gjX1=:::=XK=0and gjXK+1=xK+1 ;:::;Xn=xn and applying cases 2.2) und 2.1), respectively, we conclude that thenumber of monomials in g exceeds maxf(q � 1)n�K�1; 2K � 1g � 2n=2 � 1.Proof of the lower boundIf jGj > 1 there exists a coordinate 1 � i1 � n whose value is not a constant on G. Fix a certainvalue xi1 of Xi1 for which there are at most 12 jGj solutions in G with this value. Continuingthis process, �x xi1 ; : : : ; xis and after at most s � log2 jGj steps we come to a unique solution.Applying 3. to a polynomial gjXi1=xi1 ;:::;Xis=xis , we get a lower bound 2 12 (n�log2 jGj) for thenumber of monomials in g. Hence the initial polynomial f contains at least 2 12 ((n�log2 jGj)=(q�1)monomials.4 Upper bound for a number of roots of a t-sparse polynomialLet q = ps, where p is a prime. We construct a sequence of elements a0; : : : ; aN�1 2 GF [q]such that Pi2I ai 6= 0 ??? ; 6= I � f1; : : : ; Ng. For s = 1 we take a0 = : : := ap�2 = 1. For s > 1we take N = s(P � 1) and as a0; : : : ; aN�1 we take (p� 1) copies of each of s basic elementsof GF [q] over GF [p].Assume that we have already constructed a polynomial fK over GF [q] in NK variables withthe property that it has the unique zero root. For 0 � i < N denote by fK;i the polynomial inNK variables XiNK+1; XiNK+2; : : : ; X(i+1)NK obtained from fK by replacing each variable Xjby Xj+iNK . As fK+1 we take P0�i�N�1 aif q�1K;i .We claim that for the case s = 1 the number of monomials in fK is close to the obtainedlower bound. Namely, we prove by induction on K that the number of monomials in fK is atmost 22(p�1)K�1� 12 log2(p�1). The base of induction for K = 1, then f1 = Xp�11 + : : :+Xp�1p�1 is4



clear.Inductive step: fK+1 has at most (p � 1)22(p�1)K� 12 (p�1) log2(p�1) � 22((p�1)K� 12 ) log2(p�1)monomials. Since fK has (p� 1)K variables, the obtained lower bound gives 2(p�1)K�1.For more than one roots take fK and l more variables on which fK does not depend. ThenjGj = pl, the lower bound is 2((p�1)K+l�log2 jGj)=(p�1) = 2((p�1)K�l(log2 p�1))=(p�1) : Thus, forl < 12 � (p�1)Klog2 p�1 this bound is also close to the bound in the constructed example. 2Acknowledgment. We are thankful to Mike Singer for a number of interesting discutions.References[KLM 89] Karp, R., Luby, M., Madras, N., \Monte-Carlo Approximation Algorithms forEnumeration Problems", J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429-448.[KL 91a] Karpinski, M., Luby, M.,Approximating the Number of Solutions of a GF [2] Poly-nomial, Technical Report TR-90-025, International Computer Science Institute,Berkeley, 1990, in Proc. 2nd ACM-SIAM SODA (1991), pp. 300-303.[KL 91b] Karpinski, M., and Lhotzky, B., An (�; �)-Approximation Algorithm for the Num-ber of Zeros for a Multilinear Polynomial over GF [q], Technical Report TR-91-022, International Computer Science Institute, Berkeley, 1991.
5


