Lower Bounds for the Number of Zeros of Multivariate Polynomials over $G F[q]$

Dima Grigoriev
Steklov Mathematical Institute
Fontanka 27, St. Petersburg, Russia
and
Max-Planck Institute of Mathematics
5300 Bonn 1
Marek Karpinski *
Dept. of Computer Science
University of Bonn
5300 Bonn 1
and
International Computer Science Institute
Berkeley, California

Abstract

We prove lower bounds on the number of zeros of some classes of multivariate polynomials over $G F[q]$ in the function of the number of their terms only. The paper was motivated by some algebraic problems arising from the new randomized approximation techniques of [Karpinski, Luby 91] and [Karpinski, Lhotzky 91] for the number of zeros of polynomials over finite fields.

[^0]
1 Notation and Terminology

Let $f=\sum_{I} a_{I} X^{I} \in G F[q]\left[X_{1}, \ldots, X_{n}\right]$ be t-sparse (the number of monomials bounded by $t)$ polynomial with a nonempty set $G \subset G F[q]^{n}$ of zeros, denote by $|G|$ the number of zeros. Denote $g=f^{q-1}$. Then g ist at most t^{q-1}-sparse, more precisely $\binom{t+q-2}{q-1}$-sparse (number of $q-1$ combinations of t distinct elements).

2 Lower bound for a number of terms in the case of a unique solution

Assume now that g (and also f) has a unique solution. We consider two cases.

2.1 The unique solution is $(0, \ldots, 0)$

For monomial $M=X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}$ we denote by $\operatorname{supp}(M)=\left\{X_{j} \mid i_{j} \neq 0\right\}$. We claim that for every nonempty set $J \in\left\{X_{1}, \ldots, X_{n}\right\}$ the monomial $M_{J}=\prod_{j \in J} X_{j}^{q-1}$ occurs in g. Assume the contrary and let $M_{J_{0}}$ do not occur in g. Then

$$
1=\left.\sum_{X_{j} \in G F[q], j \in J_{0}} g\left(X_{1}, \ldots, X_{n}\right)\right|_{X_{K}=0, K \notin J_{0}} .
$$

But on the other hand the latter sum vanishes since the only monomial which could give a nonzero contribution in it is $M_{J_{0}}$ taking into account that for $0 \leq l \leq q-1$

$$
\sum_{X \in G F[q]} X^{b}=\left\{\begin{array}{rl}
0 & (q-1) \\
-1 & (q-1)
\end{array}=l\right.
$$

This leads to a contradiction, therefore g contains at least $2^{n}-1$ monomials.

2.2 All the coordinates of the unique solution are different from zero

Let us prove first that g does not contain any monomial M with $\operatorname{supp}(M) \varsubsetneqq\left\{X_{1}, \ldots, X_{n}\right\}$ such that a power X_{i}^{q-1} occurs in M for a certain i.

Assume the contrary and let M contain the maximal set of powers $\left\{X_{i}^{q-1}, i \in I\right\}$ for a given $\operatorname{supp}(M)$. Consider all the monomials with $\operatorname{supp}(M)$ containing the powers X_{i}^{q-1} for all $i \in I$. Denote the sum of all such monomials by $\left(\prod_{i \in I} X_{i}^{q-1}\right) h$ where h is a polynomial in the variables from the set $\left\{X_{j}, j \in J\right\}=\operatorname{supp}(M) \backslash\left\{X_{i}, i \in I\right\}$. There exist $\left\{x_{j} \in G F[q], j \in J\right\}$ such that $h\left\{x_{j}, j \in J\right\} \neq 0$. Consider a sum

$$
0=\left.\sum_{X_{i} \in G F[q], i \in I} g\left(X_{1}, \ldots, X_{n}\right)\right|_{X_{s}=0, X_{s} \notin \operatorname{supp}(M) ; X_{j}=x_{j}, j \in J}
$$

On the other hand the latter sum equals to $\left(\sum_{X_{i} \in G F[q], i \in I}\left(\prod_{i \in I} X_{i}^{q-1}\right)\right) h\left(x_{j}, j \in J\right) \neq 0$. The obtained contradiction proves the statement.

Now we claim that g contains all the monomials M with the $\operatorname{supp}(M)=\left\{X_{1}, \ldots, X_{n}\right\}$ such that M contains X_{i}^{q-1} for at least one i. Consider for example, all the monomials containing X_{n}^{q-1}. Denote by ξ a generator of the cyclic group $G F[q]^{*}$. Let $\left(\xi^{j_{1}^{(0)}}, \ldots, \xi^{j_{n}^{(0)}}\right)$ be the unique root of g. For $1 \leq i_{1}, \ldots, i_{n-1} \leq q-1$ denote by $\alpha_{i_{1}, \ldots, i_{n-1}}$ the coefficient in the monomial $X_{1}^{i_{1}} \ldots X_{n-1}^{i^{n-1}} X_{n}^{q-1}$ in g. Then for any $1 \leq j_{1}, \ldots, j_{n-1} \leq q-1$ holds

$$
\left.\sum_{X_{n} \in G F[q]} g\left(X_{1}, \ldots, X_{n}\right)\right|_{X_{1}=\xi^{j_{1}}, \ldots, x_{n-1}=\xi^{j_{n-1}}}=-\sum_{1 \leq i_{1}, \ldots, i_{n-1} \leq q-1} \alpha_{i_{1}, \ldots, i_{n-1}} \xi^{i_{1} j_{1}+\ldots+i_{n-1} j_{n-1}}
$$

by the proved above. Thus, the latter sums can be written (for different j_{1}, \ldots, j_{n-1}) as a product of the vector $\left(\alpha_{i_{1}, \ldots, i_{n}}\right)_{1 \leq i_{1}, \ldots, i_{n-1} \leq q-1}$ by $(q-1)^{n-1} \times(q-1)^{n-1}$ matrix A being a tensor product of $(n-1)$ copies of $(q-1) \times(q-1)$ matrix $\left(\xi^{i j}\right)$ which is a Fourier transform matrix. This product equals to a vector having all zero coordinates except one coordinate equal to -1 (this coordinate corresponds to $\left.j_{1}=j_{1}^{(0)}, \ldots, j_{n-1}=j_{n-1}^{(0)}\right)$. Thus, the vector $\left(\alpha_{i_{1}, \ldots, i_{n}}\right)$ equals to a suitable row of the matrix A^{-1}, being a tensor product of $(n-1)$ copies of the matrix $-\left(\xi^{-i j}\right)$, hence $\alpha_{i_{1}, \ldots, i_{n}} \neq 0$ for each $1 \leq i_{1}, \ldots, i_{n} \leq q-1$.

Thus, the number of monomials in g is at least $(q-1)^{n}-(q-2)^{n} \leq(q-1)^{n-1}$.

3 The general case of the unique root

Assume that $q>2$. Suppose without loss of generality that for the unique root $\left(x_{1}, \ldots, x_{n}\right)$ of g holds $x_{1}=\ldots=x_{K}=0, x_{K+1} \neq 0, \ldots, x_{n} \neq 0$. Then considering polynomials $\left.g\right|_{X_{1}=\ldots=X_{K}=0}$ and $\left.g\right|_{X_{K+1}=x_{K+1}, \ldots, X_{n}=x_{n}}$ and applying cases 2.2) und 2.1), respectively, we conclude that the number of monomials in g exceeds $\max \left\{(q-1)^{n-K-1}, 2^{K}-1\right\} \geq 2^{n / 2}-1$.

Proof of the lower bound

If $|G|>1$ there exists a coordinate $1 \leq i_{1} \leq n$ whose value is not a constant on G. Fix a certain value $x_{i_{1}}$ of $X_{i_{1}}$ for which there are at most $\frac{1}{2}|G|$ solutions in G with this value. Continuing this process, fix $x_{i_{1}}, \ldots, x_{i_{s}}$ and after at most $s \leq \log _{2}|G|$ steps we come to a unique solution. Applying 3. to a polynomial $\left.g\right|_{X_{i_{1}=x_{1}}, \ldots, X_{i_{s}}=x_{i_{s}}}$, we get a lower bound $2^{\frac{1}{2}\left(n-\log _{2}|G|\right)}$ for the number of monomials in g. Hence the initial polynomial f contains at least $2^{\frac{1}{2}\left(\left(n-\log _{2}|G|\right) /(q-1)\right.}$ monomials.

4 Upper bound for a number of roots of a t-sparse polynomial

Let $q=p^{s}$, where p is a prime. We construct a sequence of elements $a_{0}, \ldots, a_{N-1} \in G F[q]$ such that $\sum_{i \in I} a_{i} \neq 0 ? ? ? \emptyset \neq I \subset\{1, \ldots, N\}$. For $s=1$ we take $a_{0}=\ldots=a_{p-2}=1$. For $s>1$ we take $N=s(P-1)$ and as a_{0}, \ldots, a_{N-1} we take $(p-1)$ copies of each of s basic elements of $G F[q]$ over $G F[p]$.

Assume that we have already constructed a polynomial f_{K} over $G F[q]$ in N^{K} variables with the property that it has the unique zero root. For $0 \leq i<N$ denote by $f_{K, i}$ the polynomial in N_{K} variables $X_{i N^{K}+1}, X_{i N^{K}+2}, \ldots, X_{(i+1) N^{K}}$ obtained from f_{K} by replacing each variable X_{j} by $X_{j+i N^{K}}$. As f_{K+1} we take $\sum_{0 \leq i \leq N-1} a_{i} f_{K, i}^{q-1}$.

We claim that for the case $s=1$ the number of monomials in f_{K} is close to the obtained lower bound. Namely, we prove by induction on K that the number of monomials in f_{K} is at $\operatorname{most} 2^{2(p-1)^{K-1}-\frac{1}{2} \log _{2}(p-1)}$. The base of induction for $K=1$, then $f_{1}=X_{1}^{p-1}+\ldots+X_{p-1}^{p-1}$ is
clear.
Inductive step: $\quad f_{K+1}$ has at $\operatorname{most}(p-1) 2^{2(p-1)^{K}-\frac{1}{2}(p-1) \log _{2}(p-1)} \leq 2^{2\left((p-1)^{K}-\frac{1}{2}\right) \log _{2}(p-1)}$ monomials. Since f_{K} has $(p-1)^{K}$ variables, the obtained lower bound gives $2^{(p-1)^{K-1}}$.

For more than one roots take f_{K} and l more variables on which f_{K} does not depend. Then $|G|=p^{l}$, the lower bound is $2^{\left((p-1)^{K}+l-\log _{2}|G|\right) /(p-1)}=2^{\left((p-1)^{K}-l\left(\log _{2} p-1\right)\right) /(p-1)}$. Thus, for $l<\frac{1}{2} \cdot \frac{(p-1)^{K}}{\log _{2} p-1}$ this bound is also close to the bound in the constructed example.

Acknowledgment. We are thankful to Mike Singer for a number of interesting discutions.

References

[KLM 89] Karp, R., Luby, M., Madras, N., "Monte-Carlo Approximation Algorithms for Enumeration Problems", J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429448.
[KL 91a] Karpinski, M., Luby, M., Approximating the Number of Solutions of a GF[2] Polynomial, Technical Report TR-90-025, International Computer Science Institute, Berkeley, 1990, in Proc. $2^{\text {nd }}$ ACM-SIAM SODA (1991), pp. 300-303.
[KL 91b] Karpinski, M., and Lhotzky, B., An (ϵ, δ)-Approximation Algorithm for the Number of Zeros for a Multilinear Polynomial over $G F[q]$, Technical Report TR-91022, International Computer Science Institute, Berkeley, 1991.

[^0]: *Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1 and by the SERC Grant GR-E 68297

