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IntroductionIn this paper we present an algorithm which, given a black box to evaluate a t-sparse (aquotient of two t-sparse polynomials) n-variable rational function f with integer coe�cients,can �nd the coe�cients and exponents appearing in a t-sparse representation of f using�t(nt) log d�O(1) black box evaluations and arithmetic operations and with arithmetic depth(nt log d)O(1), where d denotes the degree of t-sparse representation of f (see the Theoremat the end of section 4 for an exact statement of this result). Although these bounds involvethe size of the exponents, this dependency only arises at the end of our algorithm. Thealgorithm genuinely produces (that is produces in a way whose arithmetic complexity doesnot depend on the size of the coe�cients of f or on the degree of f , [?]) a polynomial whoseroots are p-powers (for some small p) of the exponents appearing in a t-sparse representationof f . All known algorithms to �nd the roots of this polynomial (even knowing that theyare p-powers) have complexity that depend on the size of the roots. This dependency alsooccurs in algorithms for interpolating t-sparse polynomials (c.f.,[?]) for the same reason.To �nd the exponents appearing in some t-sparse representation of a t-sparse univariaterational function f(X) we proceed as follows: We consider representations of f(X) of theform (�ti=1aiX�i)=(�ti=1biX�i), where ai; bi; �i; �i are real numbers. Such a function iscalled a real quasirational function. Furthermore, we call such a representation minimalif it has a minimal number of nonzero terms in the numerator and denominator and iscalled normalized if some term is 1. We show that there are only a �nite number ofminimal normalized representations and that the exponents must be integers. We are ableto produce a system T of polynomial equalities and inequalities (whose coe�cients dependon the values of f(X) at tO(t) points) that determine all the possible values of any such �iand �i. Using the methods of [?], we can then �nd all �i and �i. To �nd the exponentswhen f(X1; : : : ;Xn) is a multivariate polynomial, we show how to produce su�cientlymanyn-tuples of integers (�1; : : : ; �n) such that the exponents of f can be recovered from theexponents of all the f(X�1 ; : : : ;X�n).Complexity issues for t-sparse polynomial and rational function interpolation havebeen dealt with in several papers. Polynomial (black box) interpolation was studied in[?],[?],[?],[?],[?], [?],[?], [?]. For bounded degree rational interpolation (when the bound on2



the degree is part of the input) see [?],[?],[?]. Approximative unbound interpolation arisesalso naturally in issues of computational learnability of sparse rational functions (cf. [?]).The present authors have previously studied the problem of interpolation of rational func-tions in [?], but the algorithm presented there for �nding the exponents had considerablyworse complexity. The present paper signi�cantly improves the results of that paper byintroducing the notion of a minimal representation (allowing us to directly compute a �niteset of possible exponents instead of just bounding them) and a new technique for reducingmultivariate interpolation to univariate interpolation. As we shall see these ideas give us amore e�cient algorithm.The rest of the paper is organized as follows: In Section 1 we give formal de�nitionsof a quasirational function and related concepts and prove some basic facts about thesefunctions. In Section 2 we introduce some useful linear operators on �elds of these functions.We use these operators to derive criteria for a function to be t-sparse. In Section 3 weuse these criteria to give an algorithm for t-sparse univariate interpolation. In Section 4,we again use these operators to show how multivariate interpolation can be reduced tounivariate interpolation. Complexity analyses of the algorithms are also given in Sections3 and 4.1 Quasirational FunctionsA �nite sum XI cIXI (1)where I = (�1; : : : ; �n), �i 2 C , XI = X�1 � : : : �X�n , cI 2 C is called a quasipolynomialof n variables. The set of quasipolynomials forms a ring under the obvious operations andwe denote this ring by C hX1; : : : ;Xni. The subring of quasipolynomials (1) with �i 2 IRand cI 2 IR will be referred to as the ring of real quasipolynomials and will be denotedby IRhX1; : : : ;Xni. A ratio of two quasipolynomials (real quasipolynomials) is called aquasirational function (real quasirational function). The set of such functions forms a�eld that we denote by C hhX1; : : : ;Xnii (IRhhX1; : : : ;Xnii). Note that Q (X1; : : : ;Xn) �IRhhX1; : : : ;Xnii. We use the expressions \polynomial" or \rational function" in the usual3



sense, that is for a quasipolynomial or quasirational function with non-negative integerexponents in their terms.We say that the quasipolynomial (1) is t-sparse if at most t of the cI are nonzero. Ifa quasirational function f can be written as a quotient of a numerator that is t1-sparseand a denominator that is t2-sparse then we say that f is (t1; t2)-sparse. For example,(Xm � 1)=(X � 1) = Xm�1 + � � �+ 1 is (2; 2)-sparse and also (m; 1)-sparse. If f is (t1; t2)-sparse but not (t1 � 1; t2)- or (t1; t2 � 1)-sparse, we say that f is minimally (t1; t2)-sparse.Note that the above example is both minimally (2; 2)-sparse and minimally (m; 1)-sparse.We say that a representation f = p=q is a minimal (t1; t2)-sparse representation if f isminimally (t1; t2)-sparse and p is t1-sparse and q is t2-sparse.We will need a zero test for (t1; t2)-sparse rational functions. This is similar to thewell known zero test for t-sparse polynomials (c.f., [?],[?],[?]). We assume that we aregiven a black box for an n-variable rational function f with integer coe�cients in whichwe can put points with rational coe�cients. The output of the black box is either thevalue of the function at this point or some special sign, e.g., \1", if the denominatorof the irreducible representation of the function vanishes at this point (a representationf = g=h; g; h 2 C [X1; : : : ;Xn], is irreducible if g and h are relatively prime).Lemma 1. Let f be a (t1; t2)-sparse rational function of n variables, let p1; : : : ; pn be ndistinct primes and let P j = (pj1; : : : ; pjn) 1 � j � t1+ t2� 1. Then f is not identically zeroif and only if the black box outputs a number di�erent from 0 and 1 at one of the pointsP j.Proof. Recall that ifM1; : : : ;Mt are distinct positive numbers then any t� t subdetermi-nant of the r� t matrix (M js )1�s�t; 1�j�r is non-singular (c.f., [?]). Since the black box givesoutput based on an irreducible representation of f , we see that any zero of the denominatorof such a representation is zero of the denominator of a (t1; t2)-sparse representation of f .Using the remark about the matrix (M js ) above we see that the denominator can vanish at,at most, t2 � 1 of these points. A similar argument applies to the numerator. Therefore,the (t1; t2)-sparse function f is not identically zero if and only if the black box outputs a4



number di�erent from 0 and 1 at one of these points P j.We note that Lemma 1 is not true for quasirational functions. For example, let p =2 and f(X) = 1 � X 2�p�1log 2 . We then have that f(2i) = 0 for all i. If one restrictsoneself to real quasirational functions, then Lemma 1 is also not true for n � 2. To seethis, let f(X1;X2) = X log2 51 � X log3 52 and p1 = 2; p2 = 3. However, we do have a zerotest for univariate real quasirational functions. We will only need such a test for realquasipolynomials which we state in the following lemma.Lemma 2. Let p be a positive real number and let f 2 IRhXi be t-sparse. If f(pi) = 0for i = 0; : : : ; t� 1, then f � 0.Proof. Let f = �ti=1aiX�i where �i 6= �j for i 6= j. Since f(pi) = 0 for i = 0; : : : ; t � 1then 26666666664 1 � � � 1p�1 � � � p�t... ... ...(p�1)t�1 (p�t)t�1 37777777775 26666666664 a1a2...at 37777777775 = 26666666664 00...0 37777777775Since the �i are real, p�i 6= p�j if i 6= j. Therefore the above t � t matrix is non-singularand so a1 = : : : = at = 0.If f is a quasirational function, we call a representation f = g=h; g; h 2 C hX1; : : : ;Xninormalized if g or h contains the constant term 1. For an arbitrary representation f = ~g=~h,there are a �nite number of monomials M such that (~g=M)=(~h=M) is normalized.Lemma 3. a) Assume p=q = �p=�q are normalized representations of a multivariatequasirational function and assume that p=q is a minimal (t1; t2)-sparse representation.Then the ZZ-module generated by the exponent vectors of p and q is a submodule of theZZ-module generated by the exponent vectors of �p and �q.b) There exist at most (t1 + t2)O(t1+t2) minimal (t1; t2)-sparse representations. Fur-thermore, for given exponent vectors, the coe�cients in the corresponding minimal repre-5



sentation are unique.c) Assume the same conventions as in a). Thenmaxfjdeg(p)j; jdeg(q)jg � 2(t1 + t2)maxfjdeg(�p)j; jdeg(�q)jg:Proof. Let I1; : : : ; It1 be the exponent vectors of p, J1; : : : ; Jt2 be the exponent vectors ofq and let f�Iig (respectively f �Jjg) be the exponent vectors of �p (respectively �q). We de�ne aweighted directed graph G in the following way. The vertices of G correspond to the t1+ t2exponents of p=q. We join Ii and Jj if Ii+ �Jj1 = Jj+ �Ii1 for some i1; j1 and assign the weight�Ii1 � �Jj1 to the edge (Ii; Jj). We join Ii and Ii1 if Ii + �Jj = Ii1 + �Jj1 for some j 6= j1 andassign weight �Jj1 � �Jj to the edge (Ii; Ii1). Finally, we join Jj and Jj1 if Jj + �Ii = Jj1 + �Ii1for some i 6= i1 and assign weight �Ii1 � �Ii to the edge (Jj ; Jj1).We claim that G is connected. If not, let Go be the connected component which containsthe exponent vector (0; : : : ; 0). One sees that the representation po=qo obtained from p=qby deleting all terms with exponent vectors not belonging to this connected componentequals �p=�q. This contradicts the minimality of p=q and proves the claim.To prove a) and c), consider a spanning tree T of G and let (0; : : : ; 0) be the root of T .Any exponent vector Ii (respectively Ji) equals the sum of the weights along the uniquepath connecting Ii (respectively Ji) with the root and so lies in the module generated bythe �Ii and �Ji.To prove b), note that the spanning tree above uniquely determines the set of expo-nent vectors that can occur in p=q. Therefore the number of exponent vectors in thenumerator and denominator is at most the product of the number of such weighted treesand  t1 + t2t1 ! (the latter value being the number of choices of exponents for the nu-merator and denominator). The number of rooted trees with (t1 + t2) vertices is at most(t1 + t2)0(t1+t2). For a �xed tree, the number of ways to assign weights of the above formfrom a �xed set n�Iiot1i=1 [ f �Jjgt2j=1 can be bounded by (t1 + t2)0(t1+t2). Thus the number ofexponent vectors can also be bounded by (t1 + t2)0(t1+t2).We now prove the last statement of b). Assume that po=qo = p=q are two di�erent6



minimal (t1; t2)-sparse representations with the same exponent vectors in the correspondingnumerators and denominators. For suitable c 2 C , po � cpqo � cq = pq is a representation thatis either (t1 � 1; t2)- or (t1; t2 � 1)-sparse, contradicting the minimality of (t1; t2). Thiscompletes the proof of Lemma 3.We have the following immediate consequence of Lemma 3 a).Corollary 4. Any normalized minimal (t1; t2)-sparse quasi-rational representation of arational function has exponents that are integers.2 Linear OperatorsIn the following sections it will be useful to consider the actions of certain linear operatorson �elds of quasirational functions.De�nition. a) Let p1; : : : pn be distinct prime numbers and let Dn : C hhX1; : : : ;Xnii !C hhX1; : : : ;Xnii be the C -linear operator de�ned by Dn(X�i ) = p�i X�i , where the numberp�i is de�ned to be e� logpi for some �xed branch of the logarithm. When n = 1 we willwrite C hhXii instead of C hhX1ii and D instead of D1.b) Let D : C hhXii ! C hhXii be the C -linear operator de�ned byD(X�) = X ddX(X�) = �X�:Note that Dn is a homomorphism, i.e. Dn(fg) = Dn(f)Dn(g) while D is a derivation,i.e. D(fg) = D(f)g + fD(g). This di�erence will force us to deal with these operatorsseparately. We begin by studying Dn.Lemma 5. a) Let f 2 C (X1; : : : ;Xn) and assume that Dn(f) = f . Then f 2 C .b) Let f 2 IRhhXii and assume that D(f) = f . Then f 2 IR.Proof. a) If Dn(f) = f , then f(X1; : : : ;Xn) = f(p1X1; : : : ; pnXn) =f(p21X1; : : : ; p2nXn) = � � � . Lemma 1 implies that f(X1; : : : ;Xn) = f(X1Y1; : : : ;XnYn)7



for new variables Y1; : : : ; Yn. If f = g=h, let g = XI aIXI ; h = XJ bJXJ . Comparingcoe�cients of the corresponding monomials in X and Y we have that, after a suitablere-ordering, I1 = J1; I2 = J2; : : : and aIbJ = aJbI for all I; J . Therefore f 2 C .b) The proof is the same as in a) using Lemma 2 instead of Lemma 1.Note that Lemma 5 a) is not true for f 2 IRhhX1; : : : ;Xnii � C hhX1; : : : ;Xnii, n � 2.To see this let f = X log2 51 X� log3 52 ; p1 = 2; p2 = 3. Lemma 5 b) is not true for f 2 C hhXiisince, for p = 2; f = X 2�p�1log 2 gives a counterexample.Lemma 6. a) If y1; : : : ; ym 2 C (X1; : : : ;Xn) then y1; : : : ; ym are linearly dependentover C if and only ifWDn(y1; : : : ; ym) = det26666666664 y1 � � � ymDny1 � � � Dnym... ... ...Dm�1n y1 � � � Dm�1n ym 37777777775 = 0b) If y1; : : : ; ym 2 IRhhXii, then y1; : : : ; ym are linearly dependent over IR if and onlyif WD1(y1; : : : ; ym) = 0.Proof. a) If y1; : : : ; ym are linearly dependent over C then we clearly haveWDn(y1; : : : ; ym) = 0. Now assume that WDn(y1; : : : ; ym) = 0. In this case there existf1; : : : ; fm 2 C (X1; : : : ;Xn), not all zero, such thatf1y1 + : : :+ fmym = f1Dny1 + : : :+ fmDnym = : : : = f1Dm�1n y1 + : : :+ fmDm�1n ym = 0We may assume f1 = 1. Applying Dn to each of these equations, we haveDiny1 +Dnf2Diy2 + : : :+DnfnDinym = 0for i = 1; : : : ; n. This implies that(f2 �Dnf2)Diny2 + : : :+ (fm �Dnfm)Dinym = 08


