An Approximation Algorithm for the Number of Zeros of Arbitrary Polynomials over $G F[q]$

Dima Grigoriev *
Max-Planck Institute of Mathematics
5300 Bonn 1

Marek Karpinski ${ }^{\dagger}$
Dept. of Computer Science
University of Bonn
5300 Bonn 1
and
International Computer Science Institute
Berkeley, California

Abstract

We design the first polynomial time (for an arbitrary and fixed field $G F[q]$) (ϵ, δ)-approximation algorithm for the number of zeros of arbitrary polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over $G F[q]$. It gives the first efficient method for estimating the number of zeros and nonzeros of multivariate polynomials over small finite fields other than $G F[2]$ (like $G F[3]$), the case important for various circuit approximation techniques (cf. [BS 90]).

The algorithm is based on the estimation of the number of zeros of an arbitrary polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over $G F[q]$ in the function on the number m of its terms. The bounding ratio number is proved to be $m^{(q-1) \log q}$ which is the main technical contribution of this paper and could be of independent algebraic interest.

[^0]
1 Introduction

Recently there has been a progress in design of efficient approximation algorithms for algebraic counting problems. The first polynomial time (ϵ, δ)-approximation algorithm for the number of zeros of a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over the field $G F[2]$ has been designed by Karpinski and Luby ([KL 91a]) and this result was extended to arbitrary multilinear polynomials over $G F[q]$ by Karpinski and Lhotzky ([KL 91b]).

In this paper we construct the first (ϵ, δ)-approximation algorithm for the number of zeros of an arbitrary polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with m terms over an arbitrary (but fixed) finite field $G F[q]$ working in polynomial time in the size of the input, the ratio $m^{(q-1) \log q}$, and $\frac{1}{\epsilon}, \log \left(\frac{1}{\delta}\right)$. (The corresponding (ϵ, δ)-approximation algorithm for the number of nonzeros of a polynomial can be constructed to work in time polynomial in the size of the input, the ratio $m^{\log q}$, and $\frac{1}{\epsilon}, \log \left(\frac{1}{\delta}\right)$.)

2 Approximation Algorithm

We refer to [KLM 89], [KL 91a], [KL 91b] for the more detailed discussion of the abstract structure of the Monte-Carlo method for estimating cardinalities of finite sets.

$$
\begin{aligned}
& \text { Given } f \in G F[q]\left[x_{1}, \cdots, x_{n}\right], f=\sum_{i=1}^{m} t_{i} \text {, and } c \in G F[q] \text {. Denote } \\
& \quad \#_{c} f=\left|\left\{\left(x_{1}, \ldots, x_{n}\right) \in G F[q]^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=c\right\}\right| .
\end{aligned}
$$

Our (ϵ, δ)-approximation algorithm will have the following overall structure:

Monte Carlo Approximation Algorithm

Input

$$
f \in G F[q]\left[x_{1}, \cdots, x_{n}\right], c \in G F[q], \epsilon>0, \delta>0,(f \not \equiv 0)
$$

Output $\quad \tilde{Y}\left(\right.$ such that $\left.\operatorname{Pr}\left[(1-\epsilon) \#_{c} f \leq \tilde{Y} \leq(1+\epsilon) \#_{c} f\right] \geq 1-\delta\right)$

1. Construct a universe set U (the size $|U|$ of U must be efficiently computable.)
2. Choose randomly with the uniform probability distribution N members u_{i} from $U, u_{i} \in U, i=1,2, \ldots, N$.
3. Construct now from a polynomial f an indicator function $\tilde{f}: U \rightarrow\{0,1\}$ such that $\left|\tilde{f}^{-1}(1)\right|=\# c f$.
4. Compute the number $N=\frac{1}{\beta} \frac{4 \log (2 / \delta)}{\epsilon^{2}}$ for $\beta \geq|U| / \#_{c} f$.
5. Compute for all $i, 1 \leq i \leq N$, the values $\tilde{f}\left(u_{i}\right)$ and set $Y_{i} \leftarrow|U| \tilde{f}\left(u_{i}\right)$.
6. Compute $\tilde{Y} \leftarrow \frac{\sum_{i=1}^{N} Y_{i}}{N}$.
7. Output: \tilde{Y}.

Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1 (Zero-One Estimator Theorem [KLM 89])
Let $\mu=\frac{\# c f}{U \mid}$. Let $\epsilon \leq 2$. If $N \geq \frac{1}{\mu} \frac{4 \log (2 / \delta)}{\epsilon^{2}}$, then the above Monte Carlo Algorithm is an (ϵ, δ)-approximation algorithm for $\#_{c} f$.

We shall distinguish two (technically different) cases:

Case 1. Polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over $G F[q]$ is constant free and $c=0$.
Case 2. Polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over $G F[q]$ is arbitrary and $c \neq 0$.

Let us denote $\bar{f}=(f-c)^{q-1}-1=\sum_{i} \bar{t}_{i}$.
The corresponding universes and indicator functions will be $U_{1}=G F[q]^{n}, \tilde{f}_{1}(s)=1$ if and only if $f(s)=1$, and $U_{2}=\left\{(s, i) \mid \bar{t}_{i}(s) \neq 0\right\}, \tilde{f}_{2}(s, i)=1$ if and only if $f(s)=c$ and for no $j<i,(s, j) \in U_{2}$.
Let us observe that $\left.\frac{\left|U_{2}\right|}{\# c f} \leq m^{q-1} \cdot \frac{\left|\tilde{G}_{(f-c) q-1}\right|}{\# c f} \right\rvert\,$ for $\tilde{G}_{(f-c)^{q-1}-1}=\left\{(s, i) \mid \bar{t}_{i}(s) \neq\right.$ 0 , there is no $j, j<i$ such that $\left.\bar{t}_{j}(s) \neq 0\right\}$, see figure 1 . (Observe that $\left|\tilde{G}_{(f-c)^{q-1}-1}\right|=$ $\mid\left\{s \mid\right.$ there is a term \bar{t}_{i} of $(f-c)^{q-1}-1$ such that $\left.\left.\bar{t}_{i}(s) \neq 0\right\} \mid.\right)$

The corresponding bounds $\beta_{i} \geq \frac{\left|U_{i}\right|}{\# c f}$ will be proven to satisfy

$$
\begin{aligned}
& \beta_{1} \leq(m+1)^{(q-1) \log q} \quad \text { and } \\
& \beta_{2} \leq m^{q-1}(m+1)^{(q-1) \log q} .
\end{aligned}
$$

Figure 1

The rest of the paper will be devoted to the proofs of these two bounds.
We shall denote the corresponding algorithms by A_{1} and A_{2}.
Let us analyze the bit complexity of both algorithms (for the corresponding subroutines see [KL 91a], [KL 91b], and [KLM 89]).

Denote by $P(q)$ the bit costs of multiplication and powering over $G F[q], P(q)=$ $O\left(\log ^{2} q \log \log q \log \log \log q\right)(c f$. [We 87]). The evaluation of the polynomial takes time $O(n m P(q))$ and the overall complexity of the algorithm A_{1} is

$$
O\left(n m(m+1)^{(q-1) \log q} P(q) \log (1 / \delta) / \epsilon^{2}\right)
$$

and of the algorithm A_{2}

$$
O\left(n m(m+1)^{(q-1)(1+\log q)} q \log q P(q) \log (1 / \delta) / \epsilon^{2}\right) .
$$

For the fixed finite field $G F[q]$ the running time of both algorithms is bounded by a polynomial of the degree depending on the order of the ground field. The bounds for β_{1} and β_{2} which are proven polynomial in m only, are the main technical contribution of this paper.

Please note that the condition whether $f=0$ is satisfiable can be checked deterministically for arbitrary polynomial $f \in G F[q]\left[x_{1}, \ldots, x_{n}\right]$ within the bounds stated above because of the following (for a problem of a black-box interpolation of f, see [GKS 90]):

Proposition 1. Let $f \in G F[q]\left[x_{1}, \cdots, x_{n}\right]$ and $c \in G F[q]$, the equation $f=c$ is satisfiable if and only if $g=(f-c)^{q-1}-1$ has at least one nonconstant term.

Proof. $\quad f=c$ is satisfiable iff $(f-c)^{q-1}=0$ is satisfiable iff the inequality $(f-c)^{q-1}-1 \neq 0$ is satisfiable. The inequality $(f-c)^{q-1}-1 \neq 0$ is satisfiable iff there exists in $(f-c)^{q-1}-1$ at least one nonconstant term.

3 Main Theorem

Given an arbitrary polynomial $f \in G F[q]\left[X_{1}, \cdots, X_{n}\right], \operatorname{deg}_{X_{i}} f \leq q-1$, denote $G=G_{f}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid f\left(x_{1}, \cdots, x_{n}\right) \neq 0\right\}, \bar{G}=\bar{G}_{f}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid \exists t_{i} \in f \quad:\right.$ $\left.t_{i}\left(x_{1}, \cdots, x_{n}\right) \neq 0\right\}$ (For notational reasons from now on in this section, variables will be written in capital (e.g. X_{i}) and values in small (e.g. $\left.x_{i}\right)$).

Denote by $m=m_{f}$ the number of terms in f.
By the support of a term t we mean the set of indices of variables occurring in t.
Theorem $2 \quad \left\lvert\, \frac{\bar{G} \mid}{|G|} \leq m^{\log _{2} q}\right.$
Remark. This bound is sharp. Example: for $0 \leq k \leq n$

$$
g_{k}=X_{1}^{q-1} \cdots X_{k}^{q-1}\left(1-X_{k+1}^{q-1}\right) \cdots\left(1-X_{n}^{q-1}\right) .
$$

In this case $|\bar{G}|=(q-1)^{k} q^{n-k},|G|=(q-1)^{k}, m=2^{n-k}$.
Proof. For any subset $J \subset\{1, \cdots, n\}$ define an elementary cylinder $C(J)=$ $\left\{\left(x_{1}, \cdots, x_{n}\right) \in G F[q]^{n} \mid x_{j} \neq 0\right.$ for $j \in J$ and $x_{i}=0$ for $\left.i \notin J\right\}$. Observe that for $J_{1} \neq J_{2} \quad C\left(J_{1}\right) \cap C\left(J_{2}\right)=\emptyset$. Define the cone of J

$$
\operatorname{CON}(J)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in G F[q]^{n} \mid x_{j} \neq 0 \text { for } j \in J\right\}=\bigcup_{J_{1} \supseteq J} C\left(J_{1}\right) .
$$

By $f_{J} \in G F[q]\left[\left\{X_{j}\right\}_{j \in J}\right]$ we denote the polynomial obtained from f in the following way: mutiply f by the term $X_{J}=\prod_{j \in J} X_{j}$, replace each appeared power X_{j}^{q} by X_{j}, make necessary cancellation, denote this intermediate result by $f \cdot X_{J}$ and finally, substitute zeroes instead of X_{i} for all $i \notin J$. Remark that each for term of f_{J} its support coincides with J, moreover $m_{f_{J}} \leq m_{f \cdot X_{J}} \leq m_{f}$.

Lemma 1 For every $J \subseteq\{1, \cdots, n\}$
a) $G \cap C(J)=G_{f_{J}}$ (here under equality we mean a canonical isomorphism);
b) $G \cap C O N(J)=G_{f \cdot X_{J}}$.

Proof. Observe that for any point $\left(x_{1}, \cdots, x_{n}\right) \in C(J)$ (respectively $\left.C O N(J)\right)$ $f\left(x_{1}, \cdots, x_{n}\right) \neq 0$ iff $f_{J}\left(\left\{x_{j}\right\}_{j \in J}\right) \neq 0$ (respectively $f X_{J}\left(x_{1}, \cdots, x_{n}\right) \neq 0$), this proves lemma 1.

Lemma 2 a) $G \cap C(J) \neq \emptyset$ iff $f_{J} \not \equiv 0$;
b) $G \cap \operatorname{CON}(J) \neq \emptyset$ iff $f \cdot X_{J} \not \equiv 0$;
c) if $f_{J} \not \equiv 0$ then $\bar{G} \supseteq C(J)=\bar{G}_{f_{J}}$ and $\bar{G} \supseteq \operatorname{CON}(J)=\bar{G}_{f \cdot X_{j}}$.

Proof. a) (respectively b)) follows from lemma 1a) (respectively 1b)).
c) follows from the statement that if $f_{J} \not \equiv 0$ then f contains a term with a support being a subset of J.

We call J active if $f_{J} \not \equiv 0$.

Lemma 3 Assume J is active. Then $\frac{\left|\bar{G}_{f_{J}}\right|}{\left|G_{f_{J}}\right|}=\frac{|C(J)|}{|G \cap C(J)|} \leq m_{f_{J}}^{\log _{2} q-1}\left(\leq m_{f_{J}}^{\log _{2} q}\right)$.

Note. This lemma states the theorem for the case of the polynomial f_{J}.
Proof. We conduct by induction on $|J|$. Remark that $\left|\bar{G}_{f_{J}}\right|=|C(J)|=(q-1)^{|\cdot J|}$. Assume that for a certain $j_{0} \in J$ the polynomial f_{J} does not divide by $\left(X_{j_{0}}-\alpha\right)$ for each $\alpha \in G F[q]^{*}$. Then $f_{J, \alpha}=f_{J}\left(X_{j_{0}}=\alpha\right) \not \equiv 0$. Then by lemma $2 a$) we can apply inductive hypothesis to each of these polynomials $f_{J, \alpha}$. Since $\left|G_{f_{J}}\right|=\sum_{\alpha \in G F[q]^{*}}\left|G_{f_{J, \alpha}}\right|$ and $m_{f_{J, \alpha}} \leq m_{f_{J}}$, we get by induction the statement of the lemma in this case.

Assume now that $\prod_{j \in J}\left(X_{j}-\alpha_{j}\right) \mid f_{J}$ for some $\alpha_{j} \in G F[q]^{*}, j \in J$. We claim in this case that $m_{f_{J}} \geq 2^{|J|}$. By lemma 1a) this would prove lemma 3 . We prove the claim by induction on $|J|$.
Fix some $j_{0} \in J$ and write (uniquely) $f_{J}=\sum h_{J_{1}}\left(X_{j_{0}}\right) M_{J_{1}}$ where $M_{J_{1}}$ are terms in the variables $\left\{X_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}}$ and $h_{J_{1}}\left(X_{j_{0}}\right) \in G F[q]\left[X_{j_{0}}\right]$. Then $\left(X_{j_{0}}-\alpha_{j_{0}}\right) \mid h_{J_{1}}\left(X_{j_{0}}\right)$ for each $M_{J_{1}}$, hence $h_{J_{1}}\left(X_{j_{0}}\right)$ contains at least two terms.
Take a certain $x_{j_{0}} \in G F[q]^{*}$ such that $0 \not \equiv f_{J}\left(X_{j_{0}}=x_{j_{0}}\right) \in G F[q]\left[\left\{X_{j}\right\}_{j \in J \backslash\left\{j_{0}\right\}}\right]$ and apply inductive hypothesis of the claim to $f_{J}\left(X_{j_{0}}=x_{j_{0}}\right)$, taking into account that $m_{f_{J}} \geq 2 m_{f_{J}\left(X_{j_{0}}=x_{j_{0}}\right)}$. Lemma 3 is proved.

Lemma 4 If $J \subseteq\{1, \cdots, n\}$ is a minimal (w.r.t. inclusion relation) support of the terms in f then J is active.

Proof. Represent (uniquely) $f=f_{1}+f_{2}$ where f_{1} is the sum of all terms occurring in f with the support J. Then the polynomial $f_{J}=X_{J} f_{1} \not \equiv 0$ has the same number of terms as f_{1}, this proves lemma 4.

Corollary $1 \bar{G}$ coincides with the union of the cones $C O N(J)$ for all (minimal) active J.

Now we consider the lattice $\mathcal{L}=2^{\{1, \cdots, n\}}$ and for $J \in \mathcal{L}$ we denote its cone $\operatorname{con}(J) \subseteq \mathcal{L}$, cone $(J)=\left\{J^{\prime} \mid J \subseteq J^{\prime}\right\}$. We'll construct a partition \mathcal{P} of the union \mathcal{G} of $\operatorname{con}(J)$ for all active J.
Take any linear ordering \prec of the active elements with the only property that if $J_{1} \varsubsetneqq J_{2}$ for two active elements then $J_{1} \succ J_{2}$ (e.g. as the first element one can take arbitrary maximal one, then a maximal in the rest set etc.).
Associate with any element $J_{1} \in \mathcal{G}$ an active element J minimal w.r.t. ordering \prec with the property $J \subseteq J_{1}$. Then as an element of the partition \mathcal{P} which is attached to an active element J (denote it by $\mathcal{P}(J)$) consists of all such elements of \mathcal{G} which are associated with J.

For any J_{1} call a subset $S \subset \operatorname{con}\left(J_{1}\right)$ a relative principal ideal with the generator J_{1} if for any $J_{2} \supseteq J_{3} \supseteq J_{1}$ and $J_{2} \in S$ we have $J_{3} \in S$.

Lemma 5 a) \mathcal{P} is a partition of \mathcal{G};
b) For each active element $J, \mathcal{P}(J)$ is a relative principal ideal with the generator J (with the unique active element J).

Proof. Part a) is clear. To prove part b) consider $J_{1} \in \mathcal{P}(J)$ and $J_{1} \supseteq J_{2} \supseteq J$, then $J_{2} \in \mathcal{G}$ (since \mathcal{G} is a union of the cones). We have to prove that J corresponds to J_{2}. Assume the contrary and let $J_{0} \subseteq J_{2}$ for some active J_{0} such that $J_{0} \prec J$, hence $J_{0} \subseteq J_{1}$ and we get a contradiction with $J_{1} \in \mathcal{P}(J)$ which proves lemma 5 .

Lemma 6 For any active element J and each $J_{1} \in \mathcal{P}(J)$ the sum $M_{J_{1}}$ of the terms occurring in $f X_{J}$ with the support J_{1} equals to

$$
f_{J}\left(\frac{X_{J_{1}}}{X_{J}}\right)^{q-1}(-1)^{\left|J_{1} \backslash J\right|}
$$

Proof. We prove it by induction on $\left|J_{1} \backslash J\right|$.
The base for $J_{1}=J$ is clear. Take any $J_{1} \in \mathcal{P}(J)$, then for each $J_{1} \supsetneqq J_{2} \supseteq J$ we
have $J_{2} \in \mathcal{P}(J)$ by lemma 5 and by inductive hypothesis $M_{J_{2}}=f_{J}\left(\frac{X_{J_{2}}}{X_{J}}\right)^{q-1}(-1)^{\left|J_{2} \backslash J\right|}$. Since J_{1} is not active we have $f_{J_{1}} \equiv 0$. Observe that $f_{J_{1}}=\left(\sum_{J \subseteq J_{2} \subseteq J_{1}} M_{J_{2}}\right) \frac{X_{J_{1}}}{X_{J}}$. Therefore $f_{J_{1}}=\frac{X_{J_{1}}}{X_{J}}\left(-f_{J}\left(\frac{X_{J_{1}}}{X_{J}}\right)^{q-1}(-1)^{\left|J_{1} \backslash J\right|}+M_{J_{1}}\right)$ and we obtain

$$
M_{J_{1}}=f_{J}\left(\frac{X_{J_{1}}}{X_{J}}\right)^{q-1}(-1)^{\left|J_{1} \backslash J\right|}
$$

taking into account that each term in f_{J} has a support equal to J. Induction and lemma 6 are proved.

Corollary 2 For any active element J

$$
m_{f} \geq m_{f \cdot X_{J}} \geq m_{f_{J}} \cdot|\mathcal{P}(J)| .
$$

Lemma 7 For any relative principal ideal $S \subset \operatorname{con}(J)$ with the generator J the weight K of S

$$
K=\sum_{s \in S}(q-1)^{|s \backslash J|} \leq|S|^{\log _{2} q} .
$$

Proof. We prove by induction on $n-|J|$.
The base for $n=|J|$ (then $|S|=1$) is obvious. For the inductive step take some index $i_{0} \notin J$. Consider a partition of $S=S_{0} \cup S_{1}$ where S_{1} (respectively S_{0}) consists of all elements containing (respectively not containing) i_{0}. Then S_{0} can be considered as a relatively principal ideal with the generator J in the lattice $2^{\{1, \cdots, n\} \backslash\left\{i_{0}\right\}}$. By S_{1}^{\prime} denote a subset of $2^{\{1, \cdots, n\} \backslash\left\{i_{0}\right\}}$ obtained from S_{1} by deleting i_{0} from each element. Then S_{1}^{\prime} is also a relative principal ideal (may be empty) with the generator J and $S_{1}^{\prime \prime} \subset S_{0}$, in particular $\left|S_{1}\right| \leq\left|S_{0}\right|$.

According to this partition represent $K=K_{0}+(q-1) K_{1}$ where $K_{0}=\sum_{s_{0} \in S_{0}}(q-1)^{\left|s_{0} \backslash \cdot J\right|}$, $K_{1}=\sum_{s_{1} \in S_{1}}(q-1)^{\left|s_{1} \backslash J\right|}$. By inductive hypothesis

$$
K \leq\left|S_{0}\right|^{\log _{2} q}+(q-1)\left|S_{1}\right|^{\log _{2} q} \leq\left(\left|S_{0}\right|+\left|S_{1}\right|\right)^{\log _{2} q}
$$

the latter inequality follows from the convexity of the function $X \rightarrow X^{\log _{2} q}$ (on the ray $I R_{+}$of nonnegative reals), namely rewrite this inequality in the form

$$
\left|S_{0}\right|^{\log _{2} q}+\left(2\left|S_{1}\right|\right)^{\log _{2} q} \leq\left|S_{1}\right|^{\log _{2} q}+\left(\left|S_{0}\right|+\left|S_{1}\right|\right)^{\log _{2} q} .
$$

This completes the proof of the induction and lemma 7.

Corollary 3 For any active element J

$$
\left|\bar{G} \cap \bigcup_{J_{1} \in \mathcal{P}(J)} C\left(J_{1}\right)\right| \leq|G \cap C(J)|\left(m_{f X_{J}}\right)^{\log _{2} q} \leq|G \cap C(J)|\left(m_{f}\right)^{\log _{2} q}
$$

Proof. $\quad\left|\bar{G} \cap \bigcup_{J_{1} \in \mathcal{P}(J)} C\left(J_{1}\right)\right|=(q-1)^{|\cdot J|} . \sum_{J_{1} \in \mathcal{P}(J)}(q-1)^{\left|J_{1} \backslash J\right|}$. By lemma $3(q-1)^{|J|} \leq$ $|G \cap C(J)|\left(m_{f_{J}}\right)^{\log _{2} q}$. By lemma 5 b$) \mathcal{P}(J)$ is a relative principal ideal, hence $\sum_{J_{1} \in \mathcal{P}(J)}(q-$ $1)^{\left|J_{1} \backslash J\right|} \leq|\mathcal{P}(J)|^{\log _{2} q}$ by lemma 7 . Therefore we get the corollary 3 applying corollary 2 .

Finally, we complete the proof of the theorem summing left and right sides of the inequalities from corollary 3 ranging over all active elements J, taking into account corollary 1 , lemma 5a) and lemma 2a).

4 Bounds for β_{1} and β_{2}

We shall apply now Theorem 2 to derive upper bounds for β_{1} and β_{2}.

Theorem 3 Given any polynomial $f \in G F[q]\left[x_{1}, \cdots, x_{n}\right]$ with m terms and without constant terms. Then

$$
\frac{q^{n}}{\#_{0} f} \leq \beta_{1}=\left(m^{q-1}+1\right)^{\log q} \leq(m+1)^{(q-1) \log q}
$$

Proof. Consider the polynomial $g=f^{q-1}$.
For $s \in G F[q]^{n}, f(s)=0 \Leftrightarrow\left(f^{q-1}-1\right)(s) \neq 0$. Apply Theorem 2 to the polynomial $f^{q-1}-1 \in G F[q]\left[x_{1}, \cdots, x_{n}\right],|\bar{G}|=q^{n},|G|=\#_{0} f$, and the number of terms of $f^{q-1}-1$ is $m^{q-1}+1$. So the exact bound is $\left(m^{q-1}+1\right)^{\log q}$.

Theorem 4 Given any polynomial $f \in G F[q]\left[x_{1}, \cdots, x_{n}\right]$ with m terms and $c \neq 0$. Then

$$
\frac{\left|\tilde{G}_{(f-c)^{q-1}-1}\right|}{\#_{c} f} \leq \beta_{2} / m^{q-1}=\left((m+1)^{q-1}-1\right)^{\log q} \leq(m+1)^{(q-1) \log q}
$$

Proof. For $s \in G F[q]^{n}, f(s)=c \Leftrightarrow(f-c)^{q-1}(s)=0 \Leftrightarrow(f-c)^{q-1}(s)-1 \neq 0$. Observe that $(f-c)^{q-1}-1$ polynomial is constant free. Apply Theorem 2 to the polynomial $(f-c)^{q-1}-1$ with $|G|=\# c f$ and $m^{q-1}-1$ terms which results in $\beta_{2}=\left((m+1)^{q-1}-1\right)^{\log q}$.

Observe that in Theorem 4, taking the set $\bar{G}_{(f-c)^{q-1}-1}$ is neccesary as the set \bar{G}_{f} does not have a polynomial bound for the ratio $\frac{\left|\bar{G}_{f}\right|}{\#_{c} f}$. Take for example the polynomial

$$
(q-2) x_{1}^{q-1} \cdots x_{n-1}^{q-1}+x_{n}^{q-1}=-1 .
$$

$\frac{\left|\bar{G}_{f}\right|}{\# c f}=\frac{q^{n-1}}{(q-1)^{n}}$ tends to infinity with growing n and does not satisfy the inequality $\leq q^{q-1}$.
The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).

5 Open Problem

Our method yields the first polynomial time (ϵ, δ)-approximation algorithm for the number of zeros of arbitrary polynomials $f \in G F[q]\left[x_{1}, \ldots, x_{n}\right]$ for the fixed field $G F[q]$. Degree of the polynomial bounding the running time of the algorithm depend on the order of the ground field.

Is it possible to remove dependence of the degree on q in the approximation algorithm?

Acknowledgements.

We are thankful to Dick Karp, Hendrik Lenstra, Barbara Lhotzky, Mike Luby, Andrew Odlyzko, Mike Singer, and Mario Szegedy for the number of fruitful discussions.

References

[AH 86] Adleman, L. M., Huang, M. A., "Recognizing Primes in Random Polynomial Time", Proc. $18^{\text {th }}$ ACM STOC (1986), pp. 316-329.
[AH 87] Adleman, L. M., Huang, M. A., "Computing the Number of Rational Points on the Jacobian of a Curve", Manuscript, 1987.
[B 68] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, 1968.
[BS 90] Boppana, R. B., Sipser, M., The Complexity of Finite Functions; Handbook of Theoretical Computer Science A, North Holland, 1990.
[EK 90] Ehrenfeucht, A., Karpinski, M., "The Computational Complexity of (XOR, AND)-Counting Problems", Technical Report TR-90-031, International Computer Science Institute, Berkeley, 1990.
[GK 90] Grigoriev D., and Karpinski, M. Lower Bounds for the Number of Zeros of Multivariate Polynomials over GF[q], preprint, 1990.
[GKS 90] Grigoriev, D., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, SIAM Journal on Computing 19 (1990), pp. 1059-1063.
[KL 83] Karp, R., Luby, M., "Monte-Carlo Algorithms for Enumeration and Reliability Problems", $24^{\text {th }}$ STOC, November 7-9, 1983, pp. 54-63.
[KLM 89] Karp, R., Luby, M., Madras, N., "Monte-Carlo Approximation Algorithms for Enumeration Problems", J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429-448.
[KL 91a] Karpinski, M., Luby, M., Approximating the Number of Solutions of a GF[2] Polynomial, Technical Report TR-90-025, International Computer Science Institute, Berkeley, 1990, in Proc. $2^{\text {nd }}$ ACM-SIAM SODA (1991), pp. 300303.
[KL 91b] Karpinski, M., and Lhotzky, B., An (ϵ, δ)-Approximation Algorithm for the Number of Zeros for a Multilinear Polynomial over GF[q], Technical Report TR-91-022, International Computer Science Institute, Berkeley, 1991.
[KR 90] Karp, R., Ramachandran, V., A Survey of Parallel Algorithms for SharedMemory Machines; Research Report No. UCB/CSD 88/407, University of California, Berkeley (1988); Handbook of Theoretical Computer Science A, North-Holland, 1990.
[KT 70] Kasami, T., Tokura, N., "On the Weight Structure of Reed-Muller Codes", IEEE Trans. Inform. Theory IT-16, (1970), pp. 752-759.
[MS 81] MacWilliams, F. J., Sloan, N. J. A., The Theory of Error Correcting Codes, North-Holland, 1981.
[NW 88] Nisan, N., Widgerson, A., "Hardness and Randomness", Proc $29^{\text {th }}$ ACM STOC, (1988), pp. 2-11.
[R 70] Renyi, A., Probability Theory, North-Holland, 1970.
[We 87] Wegener, I., The Complexity of Boolean Functions, John Wiley \& Sons, 1987.

[^0]: *On leave from Steklov Institute of Mathematics, Soviet Academy of Sciences, Leningrad 191011
 ${ }^{\dagger}$ Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1 and by the SERC Grant GR-E 68297

