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1 IntroductionRecently there has been a progress in design of e�cient approximation algorithms foralgebraic counting problems. The �rst polynomial time (�; �)-approximation algorithmfor the number of zeros of a polynomial f(x1; : : : ; xn) over the �eld GF [2] has beendesigned by Karpinski and Luby ([KL 91a]) and this result was extended to arbitrarymultilinear polynomials over GF [q] by Karpinski and Lhotzky ([KL 91b]).In this paper we construct the �rst (�; �)-approximation algorithm for the numberof zeros of an arbitrary polynomial f(x1; : : : ; xn) with m terms over an arbitrary (but�xed) �nite �eld GF [q] working in polynomial time in the size of the input, the ratiom(q�1) log q, and 1� , log(1� ). (The corresponding (�; �)-approximation algorithm for thenumber of nonzeros of a polynomial can be constructed to work in time polynomial inthe size of the input, the ratio mlog q, and 1� , log(1� ).)2 Approximation AlgorithmWe refer to [KLM 89], [KL 91a], [KL 91b] for the more detailed discussion of the abstractstructure of the Monte-Carlo method for estimating cardinalities of �nite sets.Given f 2 GF [q][x1; � � � ; xn], f = mPi=1 ti, and c 2 GF [q]. Denote#cf = jf(x1; : : : ; xn) 2 GF [q]n j f(x1; : : : ; xn) = cgj :Our (�; �)-approximation algorithm will have the following overall structure:Monte Carlo Approximation AlgorithmInput f 2 GF [q][x1; � � � ; xn], c 2 GF [q], � > 0, � > 0, (f 6� 0)Output ~Y (such that Pr[(1� �)#cf � ~Y � (1 + �)#cf ] � 1 � � )1. Construct a universe set U (the size jU j of U must be e�ciently computable.)2. Choose randomly with the uniform probability distribution N members ui fromU , ui 2 U , i = 1; 2; : : : ; N .3. Construct now from a polynomial f an indicator function ~f : U ! f0; 1gsuch that j ~f�1(1)j = #cf . 2



4. Compute the number N = 1� 4 log(2=�)�2 for � � jU j=#cf .5. Compute for all i, 1 � i � N , the values ~f(ui) and set Yi  jU j ~f(ui).6. Compute ~Y  NPi=1 YiN .7. Output: ~Y .Correctness of the above algorithm is guaranteed by the following Theorem.Theorem 1 (Zero-One Estimator Theorem [KLM 89])Let � = #cfjU j . Let � � 2. If N � 1� 4 log(2=�)�2 , then the above Monte Carlo Algorithm is an(�; �)-approximation algorithm for #cf .We shall distinguish two (technically di�erent) cases:Case 1. Polynomial f(x1; : : : ; xn) over GF [q] is constant free and c = 0.Case 2. Polynomial f(x1; : : : ; xn) over GF [q] is arbitrary and c 6= 0.Let us denote �f = (f � c)q�1 � 1 = Pi �ti .The corresponding universes and indicator functions will be U1 = GF [q]n, ~f1(s) = 1 ifand only if f(s) = 1, and U2 = f(s; i) j �ti(s) 6= 0g, ~f2(s; i) = 1 if and only if f(s) = cand for no j < i, (s; j) 2 U2.Let us observe that jU2j#cf � mq�1 � j ~G(f�c)q�1�1j#cf for ~G(f�c)q�1�1 = f(s; i) j �ti(s) 6=0 ; there is no j, j < i such that �tj(s) 6= 0g, see �gure 1. (Observe that j ~G(f�c)q�1�1j =jfs j there is a term �ti of (f � c)q�1 � 1 such that �ti(s) 6= 0gj.)The corresponding bounds �i � jUij#cf will be proven to satisfy�1 � (m+ 1)(q�1) log q and�2 � mq�1(m+ 1)(q�1) log q :
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Figure 1The rest of the paper will be devoted to the proofs of these two bounds.We shall denote the corresponding algorithms by A1 and A2.Let us analyze the bit complexity of both algorithms (for the corresponding subroutinessee [KL 91a], [KL 91b], and [KLM 89]).Denote by P (q) the bit costs of multiplication and powering over GF [q], P (q) =O(log2 q log log q log log log q) (cf. [We 87]). The evaluation of the polynomial takes timeO(nmP (q)) and the overall complexity of the algorithm A1 isO(nm(m+ 1)(q�1) log qP (q) log(1=�)=�2)and of the algorithm A2O(nm(m+ 1)(q�1)(1+log q)q log qP (q) log(1=�)=�2) :For the �xed �nite �eld GF [q] the running time of both algorithms is bounded by apolynomial of the degree depending on the order of the ground �eld. The bounds for �1and �2 which are proven polynomial in m only, are the main technical contribution ofthis paper.Please note that the condition whether f = 0 is satis�able can be checked determin-istically for arbitrary polynomial f 2 GF [q][x1; : : : ; xn] within the bounds stated abovebecause of the following (for a problem of a black-box interpolation of f , see [GKS 90]):4



Proposition 1. Let f 2 GF [q][x1; � � � ; xn] and c 2 GF [q], the equation f = c issatis�able if and only if g = (f � c)q�1 � 1 has at least one nonconstant term.Proof. f = c is satis�able i� (f � c)q�1 = 0 is satis�able i� the inequality(f � c)q�1 � 1 6= 0 is satis�able. The inequality (f � c)q�1 � 1 6= 0 is satis�able i�there exists in (f � c)q�1 � 1 at least one nonconstant term. 23 Main TheoremGiven an arbitrary polynomial f 2 GF [q][X1; � � � ;Xn]; degXi f � q � 1, denoteG = Gf = f(x1; � � � ; xn) j f(x1; � � � ; xn) 6= 0g, �G = �Gf = f(x1; � � � ; xn) j 9ti 2 f :ti(x1; � � � ; xn) 6= 0g (For notational reasons from now on in this section, variables will bewritten in capital (e.g. Xi) and values in small (e.g. xi)).Denote by m = mf the number of terms in f .By the support of a term t we mean the set of indices of variables occurring in t.Theorem 2 j �GjjGj � mlog2 qRemark. This bound is sharp. Example: for 0 � k � ngk = Xq�11 � � �Xq�1k (1 �Xq�1k+1) � � � (1�Xq�1n ) :In this case j �Gj = (q � 1)kqn�k; jGj = (q � 1)k;m = 2n�k.Proof. For any subset J � f1; � � � ; ng de�ne an elementary cylinder C(J) =f(x1; � � � ; xn) 2 GF [q]n j xj 6= 0 for j 2 J and xi = 0 for i =2 Jg. Observe that forJ1 6= J2 C(J1) \ C(J2) = ;. De�ne the cone of JCON(J) = f(x1; � � � ; xn) 2 GF [q]n j xj 6= 0 for j 2 Jg = [J1�J C(J1) :By fJ 2 GF [q][fXjgj2J ] we denote the polynomial obtained from f in the following way:mutiply f by the term XJ = Qj2J Xj, replace each appeared power Xqj by Xj , makenecessary cancellation, denote this intermediate result by f �XJ and �nally, substitutezeroes instead of Xi for all i =2 J . Remark that each for term of fJ its support coincideswith J , moreover mfJ � mf �XJ � mf .Lemma 1 For every J � f1; � � � ; nga) G \ C(J) = GfJ (here under equality we mean a canonical isomorphism);b) G \ CON(J) = Gf �XJ . 5



Proof. Observe that for any point (x1; � � � ; xn) 2 C(J) (respectively CON(J))f(x1; � � � ; xn) 6= 0 i� fJ (fxjgj2J) 6= 0 (respectively fXJ (x1; � � � ; xn) 6= 0), this proveslemma 1.Lemma 2 a) G \ C(J) 6= ; i� fJ 6� 0;b) G \ CON(J) 6= ; i� f �XJ 6� 0;c) if fJ 6� 0 then �G � C(J) = �GfJ and �G � CON(J) = �Gf �Xj .Proof. a) (respectively b)) follows from lemma 1a) (respectively 1b)).c) follows from the statement that if fJ 6� 0 then f contains a term with a support beinga subset of J .We call J active if fJ 6� 0.Lemma 3 Assume J is active. Then j �GfJ jjGfJ j = jC(J)jjG\C(J)j � mlog2 q�1fJ (� mlog2 qfJ ).Note. This lemma states the theorem for the case of the polynomial fJ .Proof. We conduct by induction on jJ j. Remark that j �GfJ j = jC(J)j = (q � 1)jJ j.Assume that for a certain j0 2 J the polynomial fJ does not divide by (Xj0 � �) foreach � 2 GF [q]�. Then fJ;� = fJ (Xj0 = �) 6� 0. Then by lemma 2a) we can applyinductive hypothesis to each of these polynomials fJ;�. Since jGfJ j = P�2GF [q]� jGfJ;� j andmfJ;� � mfJ , we get by induction the statement of the lemma in this case.Assume now that Qj2J(Xj � �j)jfJ for some �j 2 GF [q]� ; j 2 J . We claim in thiscase that mfJ � 2jJ j. By lemma 1a) this would prove lemma 3. We prove the claim byinduction on jJ j.Fix some j0 2 J and write (uniquely) fJ = P hJ1(Xj0)MJ1 where MJ1 are terms in thevariables fXjgj2Jnfj0g and hJ1(Xj0) 2 GF [q][Xj0]. Then (Xj0 � �j0)jhJ1(Xj0) for eachMJ1, hence hJ1(Xj0 ) contains at least two terms.Take a certain xj0 2 GF [q]� such that 0 6� fJ (Xj0 = xj0) 2 GF [q][fXjgj2Jnfj0g] andapply inductive hypothesis of the claim to fJ(Xj0 = xj0), taking into account thatmfJ � 2mfJ (Xj0=xj0 ). Lemma 3 is proved.Lemma 4 If J � f1; � � � ; ng is a minimal (w.r.t. inclusion relation) support of theterms in f then J is active. 6



Proof. Represent (uniquely) f = f1 + f2 where f1 is the sum of all terms occurringin f with the support J . Then the polynomial fJ = XJf1 6� 0 has the same number ofterms as f1, this proves lemma 4.Corollary 1 �G coincides with the union of the cones CON(J) for all (minimal)active J .Now we consider the lattice L = 2f1;���;ng and for J 2 L we denote its cone con(J) � L,cone(J) = fJ 0jJ � J 0g. We'll construct a partition P of the union G of con(J) for allactive J .Take any linear ordering � of the active elements with the only property that if J1�6= J2for two active elements then J1 � J2 (e.g. as the �rst element one can take arbitrarymaximal one, then a maximal in the rest set etc.).Associate with any element J1 2 G an active element J minimal w.r.t. ordering � withthe property J � J1. Then as an element of the partition P which is attached to an activeelement J (denote it by P(J)) consists of all such elements of G which are associatedwith J .For any J1 call a subset S � con(J1) a relative principal ideal with the generator J1if for any J2 � J3 � J1 and J2 2 S we have J3 2 S.Lemma 5 a) P is a partition of G;b) For each active element J , P(J) is a relative principal ideal with the generator J(with the unique active element J).Proof. Part a) is clear. To prove part b) consider J1 2 P(J) and J1 � J2 � J , thenJ2 2 G (since G is a union of the cones). We have to prove that J corresponds to J2.Assume the contrary and let J0 � J2 for some active J0 such that J0 � J , hence J0 � J1and we get a contradiction with J1 2 P(J) which proves lemma 5.Lemma 6 For any active element J and each J1 2 P(J) the sum MJ1 of the termsoccurring in fXJ with the support J1 equals tofJ(XJ1XJ )q�1(�1)jJ1nJ j :Proof. We prove it by induction on jJ1 n J j.The base for J1 = J is clear. Take any J1 2 P(J), then for each J1�6= J2 � J we7



have J2 2 P(J) by lemma 5 and by inductive hypothesis MJ2 = fJ (XJ2XJ )q�1(�1)jJ2nJ j.Since J1 is not active we have fJ1 � 0. Observe that fJ1 = ( PJ�J2�J1 MJ2)XJ1XJ . ThereforefJ1 = XJ1XJ (�fJ(XJ1XJ )q�1(�1)jJ1nJ j +MJ1) and we obtainMJ1 = fJ(XJ1XJ )q�1(�1)jJ1nJ jtaking into account that each term in fJ has a support equal to J .Induction and lemma 6 are proved.Corollary 2 For any active element Jmf � mf �XJ � mfJ � jP(J)j :Lemma 7 For any relative principal ideal S � con(J) with the generator J the weightK of S K =Xs2S(q � 1)jsnJ j � jSjlog2 q :Proof. We prove by induction on n � jJ j.The base for n = jJ j (then jSj = 1) is obvious. For the inductive step take some indexi0 =2 J . Consider a partition of S = S0 [ S1 where S1 (respectively S0) consists of allelements containing (respectively not containing) i0. Then S0 can be considered as arelatively principal ideal with the generator J in the lattice 2f1;���;ngnfi0g. By S01 denotea subset of 2f1;���;ngnfi0g obtained from S1 by deleting i0 from each element. Then S01 isalso a relative principal ideal (may be empty) with the generator J and S01 � S0, inparticular jS1j � jS0j.According to this partition representK = K0+(q�1)K1 whereK0 = Ps02S0(q�1)js0nJ j,K1 = Ps12S1(q � 1)js1nJ j. By inductive hypothesisK � jS0jlog2 q + (q � 1)jS1jlog2 q � (jS0j+ jS1j)log2 qthe latter inequality follows from the convexity of the function X ! X log2 q (on the rayIR+ of nonnegative reals), namely rewrite this inequality in the formjS0jlog2 q + (2jS1j)log2 q � jS1jlog2 q + (jS0j+ jS1j)log2 q :This completes the proof of the induction and lemma 7.8



Corollary 3 For any active element Jj �G \ [J12P(J)C(J1)j � jG \ C(J)j(mfXJ)log2 q � jG \ C(J)j(mf)log2 q :Proof. j �G \ SJ12P(J)C(J1)j = (q � 1)jJ j � PJ12P(J)(q � 1)jJ1nJ j. By lemma 3 (q � 1)jJ j �jG\C(J)j(mfJ)log2 q. By lemma 5b) P(J) is a relative principal ideal, hence PJ12P(J)(q�1)jJ1nJ j � jP(J)jlog2 q by lemma 7. Therefore we get the corollary 3 applying corollary 2.Finally, we complete the proof of the theorem summing left and right sides of theinequalities from corollary 3 ranging over all active elements J , taking into accountcorollary 1, lemma 5a) and lemma 2a).4 Bounds for �1 and �2We shall apply now Theorem 2 to derive upper bounds for �1 and �2.Theorem 3 Given any polynomial f 2 GF [q][x1; � � � ; xn] with m terms and withoutconstant terms. Thenqn#0f � �1 = (mq�1 + 1)log q � (m+ 1)(q�1) log q :Proof. Consider the polynomial g = f q�1.For s 2 GF [q]n, f(s) = 0 , (f q�1 � 1)(s) 6= 0. Apply Theorem 2to the polynomial f q�1 � 1 2 GF [q][x1; � � � ; xn], j �Gj = qn, jGj = #0f ,and the number of terms of f q�1 � 1 is mq�1 + 1. So the exact bound is (mq�1 + 1)log q.2Theorem 4 Given any polynomial f 2 GF [q][x1; � � � ; xn] with m terms and c 6= 0.Then j ~G(f�c)q�1�1j#cf � �2=mq�1 = ((m+ 1)q�1 � 1)log q � (m+ 1)(q�1) log q :Proof. For s 2 GF [q]n, f(s) = c, (f�c)q�1(s) = 0, (f�c)q�1(s)�1 6= 0. Observethat (f � c)q�1 � 1 polynomial is constant free. Apply Theorem 2 to the polynomial(f�c)q�1�1 with jGj = #cf andmq�1�1 terms which results in �2 = ((m+1)q�1�1)log q.2 9



Observe that in Theorem 4, taking the set �G(f�c)q�1�1 is neccesary as the set �Gf doesnot have a polynomial bound for the ratio j �Gf j#cf . Take for example the polynomial(q � 2)xq�11 � � � xq�1n�1 + xq�1n = �1 :j �Gf j#cf = qn�1(q�1)n tends to in�nity with growing n and does not satisfy the inequality � qq�1.The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).5 Open ProblemOur method yields the �rst polynomial time (�; �)-approximation algorithm for the num-ber of zeros of arbitrary polynomials f 2 GF [q][x1; : : : ; xn] for the �xed �eld GF [q].Degree of the polynomial bounding the running time of the algorithm depend on theorder of the ground �eld.Is it possible to remove dependence of the degree on q in the approximation algo-rithm?Acknowledgements.We are thankful to Dick Karp, Hendrik Lenstra, Barbara Lhotzky, Mike Luby, AndrewOdlyzko, Mike Singer, and Mario Szegedy for the number of fruitful discussions.References[AH 86] Adleman, L. M., Huang, M. A., \Recognizing Primes in Random PolynomialTime", Proc. 18th ACM STOC (1986), pp. 316-329.[AH 87] Adleman, L. M., Huang, M. A., \Computing the Number of Rational Pointson the Jacobian of a Curve", Manuscript, 1987.[B 68] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, 1968.[BS 90] Boppana, R. B., Sipser, M., The Complexity of Finite Functions; Handbookof Theoretical Computer Science A, North Holland, 1990.[EK 90] Ehrenfeucht, A., Karpinski, M., \The Computational Complexity of (XOR,AND)-Counting Problems", Technical Report TR-90-031, InternationalComputer Science Institute, Berkeley, 1990.10
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