An Approximation Algorithm for the Number of Zeros of Arbitrary Polynomials over GF[q]

Dima Grigoriev * Max-Planck Institute of Mathematics 5300 Bonn 1

> Marek Karpinski[†] Dept. of Computer Science University of Bonn 5300 Bonn 1

> > and

International Computer Science Institute Berkeley, California

Abstract

We design the first polynomial time (for an arbitrary and fixed field GF[q]) (ϵ, δ) -approximation algorithm for the number of zeros of arbitrary polynomial $f(x_1, \ldots, x_n)$ over GF[q]. It gives the first efficient method for estimating the number of zeros and nonzeros of multivariate polynomials over small finite fields other than GF[2] (like GF[3]), the case important for various circuit approximation techniques (cf. [BS 90]).

The algorithm is based on the estimation of the number of zeros of an arbitrary polynomial $f(x_1, \ldots, x_n)$ over GF[q] in the function on the number m of its terms. The bounding ratio number is proved to be $m^{(q-1)\log q}$ which is the main technical contribution of this paper and could be of independent algebraic interest.

^{*}On leave from Steklov Institute of Mathematics, Soviet Academy of Sciences, Leningrad 191011 [†]Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1 and by the SERC Grant GR-E 68297

1 Introduction

Recently there has been a progress in design of efficient approximation algorithms for algebraic counting problems. The first polynomial time (ϵ, δ) -approximation algorithm for the number of zeros of a polynomial $f(x_1, \ldots, x_n)$ over the field GF[2] has been designed by Karpinski and Luby ([KL 91a]) and this result was extended to arbitrary multilinear polynomials over GF[q] by Karpinski and Lhotzky ([KL 91b]).

In this paper we construct the first (ϵ, δ) -approximation algorithm for the number of zeros of an arbitrary polynomial $f(x_1, \ldots, x_n)$ with m terms over an arbitrary (but fixed) finite field GF[q] working in polynomial time in the size of the input, the ratio $m^{(q-1)\log q}$, and $\frac{1}{\epsilon}$, $\log(\frac{1}{\delta})$. (The corresponding (ϵ, δ) -approximation algorithm for the number of *nonzeros* of a polynomial can be constructed to work in time polynomial in the size of the input, the ratio $m^{\log q}$, and $\frac{1}{\epsilon}$, $\log(\frac{1}{\delta})$.)

2 Approximation Algorithm

We refer to [KLM 89], [KL 91a], [KL 91b] for the more detailed discussion of the abstract structure of the Monte-Carlo method for estimating cardinalities of finite sets.

Given
$$f \in GF[q][x_1, \dots, x_n]$$
, $f = \sum_{i=1}^m t_i$, and $c \in GF[q]$. Denote
 $\#_c f = |\{(x_1, \dots, x_n) \in GF[q]^n \mid f(x_1, \dots, x_n) = c\}|$.

Our (ϵ, δ) -approximation algorithm will have the following overall structure:

MONTE CARLO APPROXIMATION ALGORITHM

Input $f \in GF[q][x_1, \cdots, x_n], c \in GF[q], \epsilon > 0, \delta > 0, (f \neq 0)$

Output \tilde{Y} (such that $\Pr[(1-\epsilon)\#_c f \le \tilde{Y} \le (1+\epsilon)\#_c f] \ge 1-\delta$)

- 1. Construct a universe set U (the size |U| of U must be efficiently computable.)
- 2. Choose randomly with the uniform probability distribution N members u_i from $U, u_i \in U, i = 1, 2, ..., N$.
- 3. Construct now from a polynomial f an indicator function $\tilde{f} : U \to \{0, 1\}$ such that $|\tilde{f}^{-1}(1)| = \#_c f$.

- 4. Compute the number $N = \frac{1}{\beta} \frac{4\log(2/\delta)}{\epsilon^2}$ for $\beta \ge |U|/\#_c f$.
- 5. Compute for all $i, 1 \leq i \leq N$, the values $\tilde{f}(u_i)$ and set $Y_i \leftarrow |U|\tilde{f}(u_i)$.
- 6. Compute $\tilde{Y} \leftarrow \frac{\sum\limits_{i=1}^{N} Y_i}{N}$.
- 7. OUTPUT: \tilde{Y} .

Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1 (Zero-One Estimator Theorem [KLM 89]) Let $\mu = \frac{\#_c f}{|U|}$. Let $\epsilon \leq 2$. If $N \geq \frac{1}{\mu} \frac{4 \log(2/\delta)}{\epsilon^2}$, then the above Monte Carlo Algorithm is an (ϵ, δ) -approximation algorithm for $\#_c f$.

We shall distinguish two (technically different) cases:

Case 1. Polynomial $f(x_1, \ldots, x_n)$ over GF[q] is constant free and c = 0.

Case 2. Polynomial $f(x_1, \ldots, x_n)$ over GF[q] is arbitrary and $c \neq 0$.

Let us denote $\overline{f} = (f - c)^{q-1} - 1 = \sum_{i} \overline{t}_{i}$.

The corresponding universes and indicator functions will be $U_1 = GF[q]^n$, $\tilde{f}_1(s) = 1$ if and only if f(s) = 1, and $U_2 = \{(s,i) \mid \bar{t}_i(s) \neq 0\}$, $\tilde{f}_2(s,i) = 1$ if and only if f(s) = cand for no j < i, $(s,j) \in U_2$.

Let us observe that $\frac{|U_2|}{\#_{cf}} \leq m^{q-1} \cdot \frac{|\tilde{G}_{(f-c)q^{-1}-1}|}{\#_{cf}}$ for $\tilde{G}_{(f-c)q^{-1}-1} = \{(s,i) \mid \bar{t}_i(s) \neq 0\}$, there is <u>no</u> j, j < i such that $\bar{t}_j(s) \neq 0\}$, see figure 1. (Observe that $|\tilde{G}_{(f-c)q^{-1}-1}| = |\{s \mid \text{there is a term } \bar{t}_i \text{ of } (f-c)^{q-1}-1 \text{ such that } \bar{t}_i(s) \neq 0\}|$.)

The corresponding bounds $\beta_i \geq \frac{|U_i|}{\#_{cf}}$ will be proven to satisfy

$$\beta_1 \leq (m+1)^{(q-1)\log q} \quad \text{and} \\ \beta_2 \leq m^{q-1} (m+1)^{(q-1)\log q} .$$

Figure 1

The rest of the paper will be devoted to the proofs of these two bounds.

We shall denote the corresponding algorithms by A_1 and A_2 . Let us analyze the bit complexity of both algorithms (for the corresponding subroutines see [KL 91a], [KL 91b], and [KLM 89]).

Denote by P(q) the bit costs of multiplication and powering over GF[q], $P(q) = O(\log^2 q \log \log q \log \log \log q)$ (cf. [We 87]). The evaluation of the polynomial takes time O(nmP(q)) and the overall complexity of the algorithm A_1 is

$$O(nm(m+1)^{(q-1)\log q}P(q)\log(1/\delta)/\epsilon^2)$$

and of the algorithm A_2

$$O(nm(m+1)^{(q-1)(1+\log q)}q\log qP(q)\log(1/\delta)/\epsilon^2)$$
.

For the fixed finite field GF[q] the running time of both algorithms is bounded by a polynomial of the degree depending on the order of the ground field. The bounds for β_1 and β_2 which are proven polynomial in m only, are the main technical contribution of this paper.

Please note that the condition whether f = 0 is *satisfiable* can be checked deterministically for arbitrary polynomial $f \in GF[q][x_1, \ldots, x_n]$ within the bounds stated above because of the following (for a problem of a *black-box* interpolation of f, see [GKS 90]): **Proposition 1.** Let $f \in GF[q][x_1, \dots, x_n]$ and $c \in GF[q]$, the equation f = c is satisfiable if and only if $g = (f - c)^{q-1} - 1$ has at least one nonconstant term.

Proof. f = c is satisfiable iff $(f - c)^{q-1} = 0$ is satisfiable iff the inequality $(f - c)^{q-1} - 1 \neq 0$ is satisfiable. The inequality $(f - c)^{q-1} - 1 \neq 0$ is satisfiable iff there exists in $(f - c)^{q-1} - 1$ at least one nonconstant term.

3 Main Theorem

Given an arbitrary polynomial $f \in GF[q][X_1, \dots, X_n]$, $\deg_{X_i} f \leq q - 1$, denote $G = G_f = \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) \neq 0\}$, $\overline{G} = \overline{G}_f = \{(x_1, \dots, x_n) \mid \exists t_i \in f : t_i(x_1, \dots, x_n) \neq 0\}$ (For notational reasons from now on in this section, variables will be written in capital (e.g. X_i) and values in small (e.g. x_i)).

Denote by $m = m_f$ the number of terms in f.

By the support of a term t we mean the set of indices of variables occurring in t.

Theorem 2 $\frac{|\bar{G}|}{|G|} \le m^{\log_2 q}$

REMARK. This bound is sharp. Example: for $0 \le k \le n$

$$g_k = X_1^{q-1} \cdots X_k^{q-1} (1 - X_{k+1}^{q-1}) \cdots (1 - X_n^{q-1}).$$

In this case $|\bar{G}| = (q-1)^k q^{n-k}, |G| = (q-1)^k, m = 2^{n-k}.$

Proof. For any subset $J \subset \{1, \dots, n\}$ define an elementary cylinder $C(J) = \{(x_1, \dots, x_n) \in GF[q]^n \mid x_j \neq 0 \text{ for } j \in J \text{ and } x_i = 0 \text{ for } i \notin J\}$. Observe that for $J_1 \neq J_2 \quad C(J_1) \cap C(J_2) = \emptyset$. Define the *cone* of J

$$CON(J) = \{(x_1, \dots, x_n) \in GF[q]^n \mid x_j \neq 0 \text{ for } j \in J\} = \bigcup_{J_1 \supseteq J} C(J_1).$$

By $f_J \in GF[q][\{X_j\}_{j \in J}]$ we denote the polynomial obtained from f in the following way: mutiply f by the term $X_J = \prod_{j \in J} X_j$, replace each appeared power X_j^q by X_j , make necessary cancellation, denote this intermediate result by $f \cdot X_J$ and finally, substitute zeroes instead of X_i for all $i \notin J$. Remark that each for term of f_J its support coincides with J, moreover $m_{f_J} \leq m_{f \cdot X_J} \leq m_f$.

Lemma 1 For every $J \subseteq \{1, \dots, n\}$ a) $G \cap C(J) = G_{f_J}$ (here under equality we mean a canonical isomorphism); b) $G \cap CON(J) = G_{f \cdot X_J}$. **Proof.** Observe that for any point $(x_1, \dots, x_n) \in C(J)$ (respectively CON(J)) $f(x_1, \dots, x_n) \neq 0$ iff $f_J(\{x_j\}_{j \in J}) \neq 0$ (respectively $fX_J(x_1, \dots, x_n) \neq 0$), this proves lemma 1.

Lemma 2 a) $G \cap C(J) \neq \emptyset$ iff $f_J \not\equiv 0$; b) $G \cap CON(J) \neq \emptyset$ iff $f \cdot X_J \not\equiv 0$; c) if $f_J \not\equiv 0$ then $\bar{G} \supseteq C(J) = \bar{G}_{f_J}$ and $\bar{G} \supseteq CON(J) = \bar{G}_{f \cdot X_J}$.

Proof. a) (respectively b)) follows from lemma 1a) (respectively 1b)). c) follows from the statement that if $f_J \neq 0$ then f contains a term with a support being a subset of J.

We call J active if $f_J \not\equiv 0$.

Lemma 3 Assume J is active. Then $\frac{|\tilde{G}_{f_J}|}{|G_{f_J}|} = \frac{|C(J)|}{|G \cap C(J)|} \le m_{f_J}^{\log_2 q - 1} (\le m_{f_J}^{\log_2 q}).$

NOTE. This lemma states the theorem for the case of the polynomial f_J .

Proof. We conduct by induction on |J|. Remark that $|\bar{G}_{f_J}| = |C(J)| = (q-1)^{|J|}$. Assume that for a certain $j_0 \in J$ the polynomial f_J does not divide by $(X_{j_0} - \alpha)$ for each $\alpha \in GF[q]^*$. Then $f_{J,\alpha} = f_J(X_{j_0} = \alpha) \not\equiv 0$. Then by lemma 2a) we can apply inductive hypothesis to each of these polynomials $f_{J,\alpha}$. Since $|G_{f_J}| = \sum_{\alpha \in GF[q]^*} |G_{f_{J,\alpha}}|$ and $m_{f_{J,\alpha}} \leq m_{f_J}$, we get by induction the statement of the lemma in this case.

Assume now that $\prod_{j \in J} (X_j - \alpha_j) | f_J$ for some $\alpha_j \in GF[q]^*$, $j \in J$. We claim in this case that $m_{f_J} \geq 2^{|J|}$. By lemma 1a) this would prove lemma 3. We prove the claim by induction on |J|.

Fix some $j_0 \in J$ and write (uniquely) $f_J = \sum h_{J_1}(X_{j_0})M_{J_1}$ where M_{J_1} are terms in the variables $\{X_j\}_{j\in J\setminus\{j_0\}}$ and $h_{J_1}(X_{j_0}) \in GF[q][X_{j_0}]$. Then $(X_{j_0} - \alpha_{j_0})|h_{J_1}(X_{j_0})$ for each M_{J_1} , hence $h_{J_1}(X_{j_0})$ contains at least two terms.

Take a certain $x_{j_0} \in GF[q]^*$ such that $0 \not\equiv f_J(X_{j_0} = x_{j_0}) \in GF[q][\{X_j\}_{j \in J \setminus \{j_0\}}]$ and apply inductive hypothesis of the claim to $f_J(X_{j_0} = x_{j_0})$, taking into account that $m_{f_J} \geq 2m_{f_J(X_{j_0} = x_{j_0})}$. Lemma 3 is proved.

Lemma 4 If $J \subseteq \{1, \dots, n\}$ is a minimal (w.r.t. inclusion relation) support of the terms in f then J is active.

Proof. Represent (uniquely) $f = f_1 + f_2$ where f_1 is the sum of all terms occurring in f with the support J. Then the polynomial $f_J = X_J f_1 \neq 0$ has the same number of terms as f_1 , this proves lemma 4.

Corollary 1 \overline{G} coincides with the union of the cones CON(J) for all (minimal) active J.

Now we consider the lattice $\mathcal{L} = 2^{\{1,\dots,n\}}$ and for $J \in \mathcal{L}$ we denote its cone $con(J) \subseteq \mathcal{L}$, $cone(J) = \{J' | J \subseteq J'\}$. We'll construct a partition \mathcal{P} of the union \mathcal{G} of con(J) for all active J.

Take any linear ordering \prec of the active elements with the only property that if $J_1 \subsetneq J_2$ for two active elements then $J_1 \succ J_2$ (e.g. as the first element one can take arbitrary maximal one, then a maximal in the rest set etc.).

Associate with any element $J_1 \in \mathcal{G}$ an active element J minimal w.r.t. ordering \prec with the property $J \subseteq J_1$. Then as an element of the partition \mathcal{P} which is attached to an active element J (denote it by $\mathcal{P}(J)$) consists of all such elements of \mathcal{G} which are associated with J.

For any J_1 call a subset $S \subset con(J_1)$ a relative principal ideal with the generator J_1 if for any $J_2 \supseteq J_3 \supseteq J_1$ and $J_2 \in S$ we have $J_3 \in S$.

Lemma 5 a) \mathcal{P} is a partition of \mathcal{G} ; b) For each active element J, $\mathcal{P}(J)$ is a relative principal ideal with the generator J (with the unique active element J).

Proof. Part a) is clear. To prove part b) consider $J_1 \in \mathcal{P}(J)$ and $J_1 \supseteq J_2 \supseteq J$, then $J_2 \in \mathcal{G}$ (since \mathcal{G} is a union of the cones). We have to prove that J corresponds to J_2 . Assume the contrary and let $J_0 \subseteq J_2$ for some active J_0 such that $J_0 \prec J$, hence $J_0 \subseteq J_1$ and we get a contradiction with $J_1 \in \mathcal{P}(J)$ which proves lemma 5.

Lemma 6 For any active element J and each $J_1 \in \mathcal{P}(J)$ the sum M_{J_1} of the terms occurring in fX_J with the support J_1 equals to

$$f_J(\frac{X_{J_1}}{X_J})^{q-1}(-1)^{|J_1\setminus J|}$$
.

Proof. We prove it by induction on $|J_1 \setminus J|$. The base for $J_1 = J$ is clear. Take any $J_1 \in \mathcal{P}(J)$, then for each $J_1 \supseteq J_2 \supseteq J$ we have $J_2 \in \mathcal{P}(J)$ by lemma 5 and by inductive hypothesis $M_{J_2} = f_J(\frac{X_{J_2}}{X_J})^{q-1}(-1)^{|J_2 \setminus J|}$. Since J_1 is not active we have $f_{J_1} \equiv 0$. Observe that $f_{J_1} = (\sum_{J \subseteq J_2 \subseteq J_1} M_{J_2}) \frac{X_{J_1}}{X_J}$. Therefore $f_{J_1} = \frac{X_{J_1}}{X_J}(-f_J(\frac{X_{J_1}}{X_J})^{q-1}(-1)^{|J_1 \setminus J|} + M_{J_1})$ and we obtain

$$M_{J_1} = f_J (\frac{X_{J_1}}{X_J})^{q-1} (-1)^{|J_1 \setminus J|}$$

taking into account that each term in f_J has a support equal to J. Induction and lemma 6 are proved.

Corollary 2 For any active element J

$$m_f \geq m_{f \cdot X_J} \geq m_{f_J} \cdot |\mathcal{P}(J)|$$
.

Lemma 7 For any relative principal ideal $S \subset con(J)$ with the generator J the weight K of S

$$K = \sum_{s \in S} (q - 1)^{|s \setminus J|} \le |S|^{\log_2 q}$$

Proof. We prove by induction on n - |J|.

The base for n = |J| (then |S| = 1) is obvious. For the inductive step take some index $i_0 \notin J$. Consider a partition of $S = S_0 \cup S_1$ where S_1 (respectively S_0) consists of all elements containing (respectively not containing) i_0 . Then S_0 can be considered as a relatively principal ideal with the generator J in the lattice $2^{\{1,\dots,n\}\setminus\{i_0\}}$. By S'_1 denote a subset of $2^{\{1,\dots,n\}\setminus\{i_0\}}$ obtained from S_1 by deleting i_0 from each element. Then S'_1 is also a relative principal ideal (may be empty) with the generator J and $S'_1 \subset S_0$, in particular $|S_1| \leq |S_0|$.

According to this partition represent $K = K_0 + (q-1)K_1$ where $K_0 = \sum_{s_0 \in S_0} (q-1)^{|s_0 \setminus J|}$, $K_1 = \sum_{s_1 \in S_1} (q-1)^{|s_1 \setminus J|}$. By inductive hypothesis $K \le |S_0|^{\log_2 q} + (q-1)|S_1|^{\log_2 q} \le (|S_0| + |S_1|)^{\log_2 q}$

the latter inequality follows from the convexity of the function $X \to X^{\log_2 q}$ (on the ray IR_+ of nonnegative reals), namely rewrite this inequality in the form

$$|S_0|^{\log_2 q} + (2|S_1|)^{\log_2 q} \le |S_1|^{\log_2 q} + (|S_0| + |S_1|)^{\log_2 q}$$

This completes the proof of the induction and lemma 7.

Corollary 3 For any active element J

$$|\bar{G} \cap \bigcup_{J_1 \in \mathcal{P}(J)} C(J_1)| \le |G \cap C(J)| (m_{fX_J})^{\log_2 q} \le |G \cap C(J)| (m_f)^{\log_2 q}.$$

Proof. $|\bar{G} \cap \bigcup_{J_1 \in \mathcal{P}(J)} C(J_1)| = (q-1)^{|J|} \cdot \sum_{J_1 \in \mathcal{P}(J)} (q-1)^{|J_1 \setminus J|}$. By lemma 3 $(q-1)^{|J|} \leq |G \cap C(J)|(m_{f_J})^{\log_2 q}$. By lemma 5b) $\mathcal{P}(J)$ is a relative principal ideal, hence $\sum_{J_1 \in \mathcal{P}(J)} (q-1)^{|J_1 \setminus J|} \leq |\mathcal{P}(J)|^{\log_2 q}$ by lemma 7. Therefore we get the corollary 3 applying corollary 2.

Finally, we complete the proof of the theorem summing left and right sides of the inequalities from corollary 3 ranging over all active elements J, taking into account corollary 1, lemma 5a) and lemma 2a).

4 Bounds for β_1 and β_2

We shall apply now Theorem 2 to derive upper bounds for β_1 and β_2 .

Theorem 3 Given any polynomial $f \in GF[q][x_1, \dots, x_n]$ with *m* terms and without constant terms. Then

$$\frac{q^n}{\#_0 f} \le \beta_1 = (m^{q-1} + 1)^{\log q} \le (m+1)^{(q-1)\log q}$$

Proof. Consider the polynomial $g = f^{q-1}$. For $s \in GF[q]^n$, $f(s) = 0 \Leftrightarrow (f^{q-1} - 1)(s) \neq 0$. Apply Theorem 2 to the polynomial $f^{q-1} - 1 \in GF[q][x_1, \dots, x_n]$, $|\bar{G}| = q^n$, $|G| = \#_0 f$, and the number of terms of $f^{q-1} - 1$ is $m^{q-1} + 1$. So the exact bound is $(m^{q-1} + 1)^{\log q}$.

Theorem 4 Given any polynomial $f \in GF[q][x_1, \dots, x_n]$ with m terms and $c \neq 0$. Then

$$\frac{|G_{(f-c)^{q-1}-1}|}{\#_c f} \le \beta_2/m^{q-1} = ((m+1)^{q-1}-1)^{\log q} \le (m+1)^{(q-1)\log q}$$

Proof. For $s \in GF[q]^n$, $f(s) = c \Leftrightarrow (f-c)^{q-1}(s) = 0 \Leftrightarrow (f-c)^{q-1}(s) - 1 \neq 0$. Observe that $(f-c)^{q-1} - 1$ polynomial is constant free. Apply Theorem 2 to the polynomial $(f-c)^{q-1} - 1$ with $|G| = \#_c f$ and $m^{q-1} - 1$ terms which results in $\beta_2 = ((m+1)^{q-1} - 1)^{\log q}$. \Box

Observe that in Theorem 4, taking the set $\bar{G}_{(f-c)^{q-1}-1}$ is neccesary as the set \bar{G}_f does not have a polynomial bound for the ratio $\frac{|\bar{G}_f|}{\#_c f}$. Take for example the polynomial

$$(q-2)x_1^{q-1}\cdots x_{n-1}^{q-1}+x_n^{q-1}=-1$$
.

 $\frac{|\bar{G}_f|}{\#_c f} = \frac{q^{n-1}}{(q-1)^n}$ tends to infinity with growing n and does not satisfy the inequality $\leq q^{q-1}$.

The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).

5 Open Problem

Our method yields the first polynomial time (ϵ, δ) -approximation algorithm for the number of zeros of arbitrary polynomials $f \in GF[q][x_1, \ldots, x_n]$ for the fixed field GF[q]. Degree of the polynomial bounding the running time of the algorithm depend on the order of the ground field.

Is it possible to remove dependence of the degree on q in the approximation algorithm?

Acknowledgements.

We are thankful to Dick Karp, Hendrik Lenstra, Barbara Lhotzky, Mike Luby, Andrew Odlyzko, Mike Singer, and Mario Szegedy for the number of fruitful discussions.

References

[AH 86]	Adleman, L. M., Huang, M. A., "Recognizing Primes in Random Polynomial Time", <i>Proc.</i> 18 th ACM STOC (1986), pp. 316-329.
[AH 87]	Adleman, L. M., Huang, M. A., "Computing the Number of Rational Points on the Jacobian of a Curve", Manuscript, 1987.
[B 68]	Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, 1968.
[BS 90]	Boppana, R. B., Sipser, M., The Complexity of Finite Functions; Handbook of Theoretical Computer Science A, North Holland, 1990.
[EK 90]	Ehrenfeucht, A., Karpinski, M., "The Computational Complexity of (XOR, AND)-Counting Problems", Technical Report TR-90-031, International Computer Science Institute, Berkeley, 1990.

- [GK 90] Grigoriev D., and Karpinski, M. Lower Bounds for the Number of Zeros of Multivariate Polynomials over GF[q], preprint, 1990.
- [GKS 90] Grigoriev, D., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, SIAM Journal on Computing 19 (1990), pp. 1059–1063.
- [KL 83] Karp, R., Luby, M., "Monte-Carlo Algorithms for Enumeration and Reliability Problems", 24th STOC, November 7-9, 1983, pp. 54-63.
- [KLM 89] Karp, R., Luby, M., Madras, N., "Monte-Carlo Approximation Algorithms for Enumeration Problems", J. of Algorithms, Vol. 10, No. 3, Sept. 1989, pp. 429-448.
- [KL 91a] Karpinski, M., Luby, M., Approximating the Number of Solutions of a GF[2] Polynomial, Technical Report TR-90-025, International Computer Science Institute, Berkeley, 1990, in Proc. 2nd ACM-SIAM SODA (1991), pp. 300-303.
- [KL 91b] Karpinski, M., and Lhotzky, B., $An (\epsilon, \delta)$ -Approximation Algorithm for the Number of Zeros for a Multilinear Polynomial over GF[q], Technical Report TR-91-022, International Computer Science Institute, Berkeley, 1991.
- [KR 90] Karp, R., Ramachandran, V., A Survey of Parallel Algorithms for Shared-Memory Machines; Research Report No. UCB/CSD 88/407, University of California, Berkeley (1988); Handbook of Theoretical Computer Science A, North-Holland, 1990.
- [KT 70] Kasami, T., Tokura, N., "On the Weight Structure of Reed-Muller Codes", IEEE Trans. Inform. Theory IT-16, (1970), pp. 752-759.
- [MS 81] MacWilliams, F. J., Sloan, N. J. A., The Theory of Error Correcting Codes, North-Holland, 1981.
- [NW 88] Nisan, N., Widgerson, A., "Hardness and Randomness", Proc 29th ACM STOC, (1988), pp. 2-11.
- [R 70] Renyi, A., **Probability Theory**, North-Holland, 1970.
- [We 87] Wegener, I., The Complexity of Boolean Functions, John Wiley & Sons, 1987.