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Abstract

We design the first polynomial time (for an arbitrary and fixed field G'F[q])
(¢, 9)-approximation algorithm for the number of zeros of arbitrary polynomial
f(z1,...,2,) over GF[q]. It gives the first efficient method for estimating the
number of zeros and nonzeros of multivariate polynomials over small finite fields
other than G'F'[2] (like G F'[3]), the case important for various circuit approximation
techniques (cf. [BS 90]).

The algorithm is based on the estimation of the number of zeros of an arbitrary
polynomial f(z1,...,,) over GF[qg] in the function on the number m of its terms.
The bounding ratio number is proved to be m(¢=11°84 which is the main technical

contribution of this paper and could be of independent algebraic interest.
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1 Introduction

Recently there has been a progress in design of efficient approximation algorithms for
algebraic counting problems. The first polynomial time (¢, d)-approximation algorithm
for the number of zeros of a polynomial f(xy,...,x,) over the field GF[2] has been
designed by Karpinski and Luby ([KL 91a]) and this result was extended to arbitrary
multilinear polynomials over GG F'[q] by Karpinski and Lhotzky ([KL 91b]).

In this paper we construct the first (¢, d)-approximation algorithm for the number
of zeros of an arbitrary polynomial f(x1,...,x,) with m terms over an arbitrary (but
fixed) finite field GGF[¢q] working in polynomial time in the size of the input, the ratio
ma=Dlega  and L, log(). (The corresponding (e,d)-approximation algorithm for the
number of nonzeros of a polynomial can be constructed to work in time polynomial in

the size of the input, the ratio m!°8?, and L log().)

2 Approximation Algorithm

We refer to [KLM 89], [KL 91a], [KL 91b] for the more detailed discussion of the abstract

structure of the Monte-Carlo method for estimating cardinalities of finite sets.

Given f € GF|q][x1, -, 2., [ = f: t;, and ¢ € GF[q]. Denote
=1

#.f = {(x1,...;2,) € GF¢]" | flaa,...,2n) =c}].

Our (€, d)-approximation algorithm will have the following overall structure:
MONTE CARLO APPROXIMATION ALGORITHM

Input f S GF[Q][xlvvxn]v ce GF[Q]? € > 07 o> 07 (f % 0)

Output Y (such that Pr[(1 — )#.f <V < (14 )#.f] >1-6)

1. Construct a universe set U (the size |U| of U must be efficiently computable.)

2. Choose randomly with the uniform probability distribution N members u; from

Uyu;eU,i=1,2,....N.

3. Construct now from a polynomial f an indicator function f : U — {0,1}

such that |f_1(1)| =#.f.



4. Compute the number N = %Mg;—/él for 8 > |U|/#.f.

5. Compute for all 7, 1 <7 < N, the values f(uz) and set Y; « |U|f(u2)

ZY
6. Compute ¥ ¢ =L— 7

7. OUTPUT: Y.
Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1 (Zero-One Estimator Theorem [KLM 89])

Let = Tﬁ{ Let e <2. If N > iﬂgﬁf—/é), then the above Monte Carlo Algorithm is an

(€,0)-approximation algorithm for #.f.

We shall distinguish two (technically different) cases:

Case 1. Polynomial f(xq,...,2,) over GF[q] is constant free and ¢ = 0.

Case 2. Polynomial f(xy,...,2,) over GF|[q] is arbitrary and ¢ # 0.

Let us denote f = (f —¢)™! -1 = St

The corresponding universes and indicator functions will be U, = GF[q]", fi(s) =
and only if f(s) = 1, and Uy = {(s,7) | t:(s) # 0}, fg(s,i) = 1 if and only if f(s ) =
and for no j <1, (s,7) € Us.

Let us observe that % < mi uf—?;% for G o1 = {(s,2) | ti(s) #
0, there is no j, 7 < i such that ;(s) # 0}, see figure 1. (Observe that |G ya-1-1| =

|{s | there is a term ¢; of (f — ¢)?~! — 1 such that ¢;(s) # 0}].)

The corresponding bounds 3; > will be proven to satisfy

f

(m + 1)l loeg and
mq—l(m + 1)(q—1)10gq ‘
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Figure 1

The rest of the paper will be devoted to the proofs of these two bounds.

We shall denote the corresponding algorithms by A; and As,.
Let us analyze the bit complexity of both algorithms (for the corresponding subroutines

see [KL 91al, [KL 91b], and [KLM 89]).

Denote by P(q) the bit costs of multiplication and powering over G'F|q|, P(q) =
O(log” glog log qlog loglog q) (cf. [We 87]). The evaluation of the polynomial takes time
O(nmP(q)) and the overall complexity of the algorithm Ay is

Ofnm(m + 170951 P(g) log(1/8) /)
and of the algorithm A,

O(nm(m + 1)+ log g P(q) log(1/8) /)

For the fixed finite field GGF[g] the running time of both algorithms is bounded by a
polynomial of the degree depending on the order of the ground field. The bounds for 3,
and (3 which are proven polynomial in m only, are the main technical contribution of

this paper.

Please note that the condition whether f = 0 is satisfiable can be checked determin-
istically for arbitrary polynomial f € GFl[q|[1,...,z,] within the bounds stated above
because of the following (for a problem of a black-box interpolation of f, see [GKS 90]):



Proposition 1. Let f € GF[q|[z, -, x,] and ¢ € GF]q], the equation f = ¢ is

satisfiable if and only if ¢ = (f — ¢)?~! — 1 has at least one nonconstant term.

Proof. f = c is satisfiable iff (f — ¢)?™' = 0 is satisfiable iff the inequality
(f — )™t — 1 # 0 is satisfiable. The inequality (f — ¢)4™!' — 1 # 0 is satisfiable iff

there exists in (f — ¢)?~! — 1 at least one nonconstant term. a

3 Main Theorem

Given an arbitrary polynomial f € GFlq][Xy,---,X,], degy, f < ¢ — 1, denote
G =Gy = {(xlv"'vxn) | f(xlv"'va) # 0}, G = Cjf = {(xlv"'vxn) |3t e f
ti(xy,--,2,) # 0} (For notational reasons from now on in this section, variables will be

written in capital (e.g. X;) and values in small (e.g. x;)).
Denote by m = m; the number of terms in f.
By the support of a term ¢ we mean the set of indices of variables occurring in t.

Theorem 2 % < mlosat

REMARK. This bound is sharp. Example: for 0 < &k < n
ge=X{T o X = X - (1= X0,

In this case |G| = (¢ — 1)*¢" 7%, |G| = (¢ — 1)*,m = 277%,

Proof. For any subset J C {l,---,n} define an elementary cylinder C(J) =
{(x1,-+-,2,) € GF[¢]" | ©; # 0forj € Jand x; = 0fori ¢ J}. Observe that for
Ji# Jy C(Jy) N C(Jy) = 0. Define the cone of J
CON(J)={(z1, - 2,) EGFq" |x; £0for je J} = | C(J).
J1DJ
By f7 € GF[q|[{X,};es] we denote the polynomial obtained from f in the following way:

mutiply f by the term X; = [] Xj, replace each appeared power X! by X;, make
jed
necessary cancellation, denote this intermediate result by f - X; and finally, substitute

zeroes instead of X; for all ¢ ¢ J. Remark that each for term of f; its support coincides

with J, moreover m;, < my.x, < my.

Lemma 1  For every J C {1,--- ,n}
a) GNC(J) =Gy, (here under equality we mean a canonical isomorphism);

b) GNCON(J) =Gy,



Proof.  Observe that for any point (xq,---,2,) € C(J) (respectively CON(J))
flar, - xn) # 0ff fr({x;}jes) # 0 (vespectively fXj(ay,---,2,) # 0), this proves

lemma 1.

Lemma 2 o GNC(J)£0if f5 £0;
b) GNCON(J)# 0 iff f-Xs#0;
C) szjgé() then GQ C(J) :ij andGQ CON(J) = Gf.XJ.

Proof. a) (respectively b)) follows from lemma la) (respectively 1b)).
c) follows from the statement that if f; # 0 then f contains a term with a support being
a subset of J.

We call J active if f; £ 0.

G 1 -1 1
|fJ|_ [C ()] mong (<m0g2q).

Lemma 3  Assume J is active. Then ] = Grol = My S my,

NoOTE. This lemma states the theorem for the case of the polynomial f;.

Proof. We conduct by induction on |J|. Remark that |G},| = |C(J)| = (¢ — 1)L,
Assume that for a certain jo € J the polynomial f; does not divide by (X;, — «) for
each a € GF[q]*. Then f;, = f1(X;, = a) # 0. Then by lemma 2a) we can apply

inductive hypothesis to each of these polynomials f;,. Since |G,| = > |Gy, | and
a€GF[g]*

my,, < my,, we get by induction the statement of the lemma in this case.

Assume now that ,HJ(XJ — ;)| fs for some a; € GFq]*, j € J. We claim in this
€

case that m;, > 2V, ]]3y lemma la) this would prove lemma 3. We prove the claim by
induction on |.J|.
Fix some jo € J and write (uniquely) f; =3 hy, (X, )M, where M, are terms in the
variables {X;}jengi) and hy (X;,) € GF[q][X},]. Then (X;, — ajy)|hy, (X;,) for each
My, , hence hy, (X;,) contains at least two terms.
Take a certain ;, € GFlg]* such that 0 # f;(X;, = zj,) € GFq][{X;}jenyjy] and
apply inductive hypothesis of the claim to f;(X;, = =xj,), taking into account that

my, 2 2my(x . Lemma 3 is proved.

Jo :l’Jo)

Lemma4 [fJ C {l,---,n} is a minimal (w.r.t. inclusion relation) support of the

terms in f then J is active.



Proof.  Represent (uniquely) f = fi + f2 where f; is the sum of all terms occurring
in f with the support J. Then the polynomial f; = X;f; # 0 has the same number of

terms as fi, this proves lemma 4.

Corollary 1 G coincides with the union of the cones CON(J) for all (minimal)

active J.

Now we consider the lattice £ = 2817} and for J € £ we denote its cone con(J) C L,
cone(J) = {J'|J C J'}. We'll construct a partition P of the union G of con(.J) for all
active J.

Take any linear ordering < of the active elements with the only property that if J; g Jo
for two active elements then J; = J; (e.g. as the first element one can take arbitrary
maximal one, then a maximal in the rest set etc.).

Associate with any element J; € G an active element J minimal w.r.t. ordering < with
the property J C .J;. Then as an element of the partition P which is attached to an active
element J (denote it by P(.J)) consists of all such elements of G which are associated

with J.

For any J; call a subset S C con(.J;) a relative principal ideal with the generator .J;
if for any J; O J3 D Jy and Jy; € S we have J3 € S.

Lemma 5 a) P is a partition of G;
b) For each active element J, P(J) is a relative principal ideal with the generator J

(with the unique active element .J ).

Proof.  Part a) is clear. To prove part b) consider J; € P(J) and J; O Jy D J, then
Jy € G (since G is a union of the cones). We have to prove that .J corresponds to .Js.
Assume the contrary and let Jy C .J; for some active Jy such that Jy < .J, hence Jy C J;

and we get a contradiction with J; € P(J) which proves lemma 5.

Lemma 6  For any active element J and each Jy € P(J) the sum My, of the terms
occurring in fXj with the support Ji equals to

A ye- (_1)|J1\J| )

Proof.  We prove it by induction on |.J; \ J|.
The base for J; = J is clear. Take any J; € P(J), then for each .J; ; Jy O J we

7



have J, € P(J) by lemma 5 and by inductive hypothesis M, = fj(%)q_l(—1)|J2\J|.

Since Jp is not active we have f;, = 0. Observe that f; = (JCJZCJ MJ2))§(—JJ1. Therefore
fn = %(—fj(%)q_l(—1)|Jl\J| + My, ) and we obtain
X
My, = foyH
Xy

taking into account that each term in f; has a support equal to J.

Induction and lemma 6 are proved.

Corollary 2 For any active element J

my > myx, > myg, - |[P(J)].

Lemma 7  For any relative principal ideal S C con(J) with the generator J the weight
K of S

K=> (¢— DV < | §|lesza

sES

Proof.  We prove by induction on n — |.J|.
The base for n = |.J| (then |S| = 1) is obvious. For the inductive step take some index
io ¢ J. Consider a partition of S = Sy U S; where Sy (respectively Sy) consists of all
elements containing (respectively not containing) ig. Then Sy can be considered as a
relatively principal ideal with the generator J in the lattice 2{tm\lio} By §7 denote
a subset of 211 ni\iok ghtained from S by deleting iy from each element. Then 57 is
also a relative principal ideal (may be empty) with the generator J and S] C So, in
particular |S7]| < [So].

According to this partition represent K = Ko+(q—1)K; where Ko = Y (q—1)l%\],
s0€50

K=Y (¢g— 1)'51\‘]'. By inductive hypothesis
51E€S5]

K S |So|log2q + (q_ 1)|Sl|log2q S (|SO| + |Sl|)log2q

the latter inequality follows from the convexity of the function X — X'°%2¢ (on the ray

IR of nonnegative reals), namely rewrite this inequality in the form
[Sol'"82 7 4 (2151 )5 * < [.91['°52 7+ (S0 4 1S )52 7 .

This completes the proof of the induction and lemma 7.



Corollary 3  For any active element J

Gn U CUISIGNC)|(myx,) 5 < |G NCT)|(my) .
J1eP(J)

Proof. |G n U W) =Iq- 1)|J| Y (g— 1)|J1\J|‘ By lemma 3 (q — 1)|J| <
JLEP(J) JLEP(J)

|G C(J)|(my,)82%. By lemma 5b) P(J) is a relative principal ideal, hence Y (q—
J1EP(J)

1)"]1\‘]' < |P(J)|°&? by lemma 7. Therefore we get the corollary 3 applying corollary 2.

Finally, we complete the proof of the theorem summing left and right sides of the
inequalities from corollary 3 ranging over all active elements J, taking into account

corollary 1, lemma 5a) and lemma 2a).

4 Bounds for §; and 3

We shall apply now Theorem 2 to derive upper bounds for 3; and ;.

Theorem 3  Given any polynomial [ € GF[q][x1,- -, x,] with m terms and without
constant terms. Then

4 < By = (mq—l + 1)10gq < (m + 1)(q—1)10gq )
Hof

Proof. Consider the polynomial g = f77!.

For s € GF[q]", f(s) = 0 < (f©' — 1)(s) # 0. Apply Theorem 2
to the polynomial fi=' — 1 € GF[q|[zy,---.2z.], |G] = ¢° |G| = #of,
and the number of terms of 971 — 1 is m?~! + 1. So the exact bound is (mq_1 + 1)l°gq.

a

Theorem 4  Given any polynomial [ € GFlq|[x1,--,x,] with m terms and ¢ # 0.
Then

|G (=)ot -1
el

Proof. Forse GF[q]", f(s)=c& (f—c)'(s) =0 (f—c)?" ! (s)—1 # 0. Observe
that (f — ¢)?~! — 1 polynomial is constant free. Apply Theorem 2 to the polynomial
(f—c)?t—1 with |G| = #.f and m?~1—1 terms which results in 3, = ((m+1)771—1)lsq.
O

< Bafm = ((m A 1)7H — 1) < (am 1)



Observe that in Theorem 4, taking the set G(f_c)q—l_l is neccesary as the set Gi; does
not have a polynomial bound for the ratio % Take for example the polynomial

(g =2t~ ol bt = 1

fff' = % tends to infinity with growing n and does not satisfy the inequality < ¢?=!.

1

The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).

5 Open Problem

Our method yields the first polynomial time (¢, §)-approximation algorithm for the num-
ber of zeros of arbitrary polynomials f € GFq][z1,...,x,] for the fixed field GF[q].
Degree of the polynomial bounding the running time of the algorithm depend on the
order of the ground field.

Is it possible to remove dependence of the degree on ¢ in the approximation algo-
rithm?
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