An (€,0)-Approximation Algorithm of the Number
of Zeros of a Multilinear Polynomial over GF|q]

Marek Karpinski*
Dept. of Computer Science
University of Bonn
5300 Bonn 1
and
International Computer Science Institute
Berkeley, California

Barbara Lhotzky
Dept. of Computer Science
University of Bonn

5300 Bonn 1

Abstract

We construct a polynomial time (e, d)-approximation algorithm for esti-
mating the number of zeros of an arbitrary multilinear polynomial f(zq,...,2,)
over GF[¢]. This extends the recent result of Karpinski/Luby ([?]) on approx-
imating the number of zeros of polynomials over the field GF[2].

*Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant
KA 673/4-1 and by the SERC Grant GR-E 68297

1 Introduction

There are only few cases of algebraic counting problems known having polynomial
time solutions (cf. [?, 7, 7, ?]) despite their paramount importance in algebra and
various applications in coding theory and in the design of algebraic circuits. The
general problems of counting exactly the number of points on algebraic varieties
over arbitrary (and fixed) finite fields GF[q], even if restricted to cubic multilinear
polynomials, was proven recently to be #P-complete ([?]). The first polynomial
(¢, 0)-approximation algorithm for the number of zeros of a polynomial f(x1,...,x,)
over the field GF[2] was designed recently by Karpinski and Luby ([?]).

In this paper we construct the first approximation algorithm for estimating the
number of zeros of arbitrary multilinear polynomials over GF[¢], extending the re-
sults of [?]. The algorithm takes as input a multilinear polynomial f(x1,...,x,),
a constant ¢ and two parameters ¢ > 0 and § > 0. It computes an estimate Y
which is between (1 — €) and (1 + ¢€) times the number of solutions of the equa-
tion f(x1,...,2,) = ¢ with probability at least 1 — . Let m denote the num-
ber of terms of f and Q(q) = logqloglog qlogloglog ¢ the multiplication time of
two elements in GF[¢]. Then the running time of the approximation algorithms is

O(nm?qlog 4Q(q) In(1/8)/¢2).

Besides the direct algebraic and algebraic geometric interest, our algorithm provides
also the first known estimation method for the number of assignmnents of (4, %)-
arithmetic circuits of depth 2 over arbitrary finite fields GF[g]. For the constant
free circuits we can approximate the number of 0-assignments directly from the
black box even without interpolating explicitely a polynomial from the black box

(by extending the ground field GF[¢], cf. [?]).

2 Notations and Definitions

Let GF[g] be an arbitrary ground field of order g.

flz,...,2,) € GF[¢][#1,. .., 2,] denotes a polynomial in n variables over the field
GF[g¢]. In the following we assume that f is represented by the sum of its nonzero

terms ¢;:
m m

fla,onan) =D tiwn, . mn) =Y [[25
=1

=1 =1

with ¢; € GF[g] \ {0}, and all monomials [T7_, 23"’ being different from each other.

i=1

We further assume f to be multilinear meaning that all exponents ¢; ; are either 0
or 1.

Let n denote the number of variables, m the number of terms and Var (f) the set
of variables of f.

In the following we consider the equation f(xy,...,2,) = ¢ with a constant ¢ €
GF[g]. We are interested in the number of solutions of this equation, i.e. the
number of assignments s € GF[q]" to the variables of f such that the equation
flz1,...,2,) = c is satisfied. Therefore we can assume w.l.o.g. that f has no
constant term.

Let S.(f) = {s € GF[q]"|f(s) = ¢} denote the set of solutions of the equation
flz1,...,2,) =cand #.f = |S.(f)| the number of solutions.

An important role for our algorithm plays the set D(f) = {s € GF[¢]"|3t; ti(s) #
0} of all those assignments to the variables such that at least one term of f evaluates
to nonzero.

Let |J M; denote the union and >~ M; denote the disjoint union of the sets M;.

An (e,0)-approximation algorithm (cf. e.g. [?]) is an algorithm which takes as
input a problem instance (in our case f,¢) and two additional parameters € > 0, the
accuracy requirement, and § > 0, the confidence level. It computes an estimate Y
for the desired value #.f which satisfies the condition

Pr{(1 —e)#.f <Y < (1 4+ e)#.f} >1—04.

The running time has to be polynomial in the length of the problem instance, 1/¢,

1/6 and q.

3 Main Theorem

The core of our approximation algorithm is a polynomial bound on the fraction of
the size of the set of assignments that evaluate at least one term of f to nonzero
to the size of the whole solution set. This can be viewed as a generalization of a

method applied in the Karpinski/Luby paper ([?]) for the field GF[2]. We will prove
the existence of such a bound in our Main Theorem.

Let us start with a Lemma, bounding the minimum number of solutions of a mul-
tilinear equation over GF[q].

Lemma 3.1 Let g € GFg][x1,...,x,] be a multilinear polynomial (with a possible
constant term), g # const. Then

Vee GFlgl: #.9>(¢—1)"".

Proof: By induction on n, the number of variables.

Induction Basis (n = 1):
g(x) = ax + b with a # 0. Since every a # 0 is a generator of the additive group
(GF[q], +), there exists for all ¢ a unique solution s € GF[¢] with ¢g(s) = ¢. Therefore

Induction Assumption:

Vg € GF[q][zy,...,2,], g #Z const, ¢ € GF[q] : H#.9>(¢g—1)""

Induction Step:

Let const # g € GF[¢][z1,...,2,41] and ¢ € GF[¢] be fixed. Decompose ¢ according
to the variable ,,11:

g(@1, . tng1) = Tpgr - h(xy, o) + E(2, . 1),

1st case: h(xy,...,2,) =0.
Then
#eg=q #hk=q-(¢—1)"" > (¢—1)".

2nd case: h(wy,...,2,) =d # 0 for a constant d € G F[q].
Then for all possible values a of k(x1,...,2,) there is a unique solution of
dz,11 + a = c. Therefore

#g=1-¢">(q—1)".

3rd case: h(xy,...,x,) Z d for any constant d € GF[q].
According to the induction hypothesis, there are at least (¢ — 1)"~! solutions
s € GF[q]" to the equation h(x1,...,2,) = d for a constant 0 # d € GF[q].
For all these solutions s there exists a unique value for z,,; whatever the value
of k(s) is such that g(x) = c is satisfied. Since there are (¢— 1) possible values
of d # 0, we get

#eg= Y, H#ih>(q=1)-(¢—1)""=(¢g—1)".
0£deGF[q]

We shall use now Lemma 3.1 to prove our Main Theorem.

Theorem 3.1 (Main Theorem) Let f € GFlq|[zy,...,2,] be a multilinear poly-
nomial and ¢ € GFlg|. Let m be the number of terms of f. D(f) = {s €
GFq|"|13t: ti(s) # 0} and let S.(f) = {s € GFlq]"|f(s) = ¢}. If [is constant

free or the constant term of f is c, then

D)
|Se(/)]

<(¢g—1)-m.

Proof:

The idea of the proof is to define a partition of D(f) into sets D, ;(f) and to define
an equal number of sets R, ;j(f) which cover the set S.(f) in such a way that the
ratio between the sizes of two corresponding sets D; ; and R; ; is bounded by (¢—1).
Therefore the Theorem follows.

At first, we divide the set D(f) into sets D;(f) of roughly those assignments by
which the 7-th term ¢; evaluates to nonzero:

Di(f)={s € GF[q]"|ti(s) £0 and Vj#1i, tj(s)#0: Var(t,) ¢ Var(t;)}

fore=1,...,m.
(The sets D;(f) are not necessarily disjoint.)

So D;(f) is the set of the assignments for which the term t; is variable maximal
out of all those which evaluate to nonzero by this assignment. We will need this
technical detail in the following.

Now define a partition of the sets D;(f) into ¢"~9°¢% many disjoint sets D; ;(f)
of those assignments in D;(f) that are identical on the variables not in Var(%;).
Obviously

n—degt;

Z: Dy i(f).

q

|
=

!
Cs
S
=

!
Cs

o
Il
—
o
Il
—

The size of each set D, ;(f) is bounded by the number of nonzero assignments to
the variables of the term #; since the values of all other variables are fixed:

1Di;(f)] < (g—1)%en,

n—degt;

In order to get the sets R; ;(f)fori=1,...,mandj=1,...,q covering S.(f),
we consider the partial assignment of the fixed values of D; ;(f) to all variables not
in Var (t;). Then define R; j(f) to be the set of those assignments consisting of the
fixed values for the variables not in Var (¢;) and those values for the variables of ¢;
such that the equation f(xq,...,2,) = ¢ is satisfied.

Since the second condition in the definition of the sets D;(f) makes sure that f does
not become constant under the partial assignment to all variables except to those of
one variable maximal term ¢;, we get a lower bound on the sizes of the sets R, ;(f)

by Lemma 3.1:
|Ri;(f)] > (g —1)et! for all 7, j.

The sets R; ;(f) are not necessarily disjoint, but they cover S.(f):
U Rij(f) = S:(f)-
i\j

Consequently we have

S0 < SR

Since the elements in R; ;(f) and R, x(f) for j # k define different assignments to
the variables not in ¢;, they are disjoint. So every element s € S.(f) may appear in
at most m different sets R, ;(f).

Therefore
1S 2 3 IR

Combining the intermediate results from above, we get

DO o X IDu(Dl o Zile = DIR()]

SN = TS 1R D] = T Ryt~ Y

The bound given in Theorem 3.1 is sharp. Consider for instance the polynomial

f(xla--'va):Hxi-

There are (¢ — 1)* many assignments evaluating the single term of f to nonzero and
(¢ — 1)"~! many assignments evaluating f to 1. Therefore

DI _ (g=1)"

Si(f)] (¢g—1)~! =(g—1)-m.

We derive a new bound for the number of zeros for the special case of constant free
polynomials.

Corollary 3.1 Let [€ GFlg|[x1,...,2,] be a multilinear polynomial with
f(0,...,0) = 0 (without a constant term). Let m be the number of terms of f.
Then

vl

q
#o(f)

<(g—=1)-m+1

Proof:

Consider the function f(:z;l, coy@y) = fla1,...,2,) + ¢ for an arbitrary ¢ # 0 out of

) !
GF[q] and define the sets D, ;(f), R;;j(f) and D, ;(f), R ;j(f) as shown in the proof
of Theorem 3.1.

We have D;;(f) = Di;(f) and Ri;(f) = R;;(f) for = = 1,...,m. There are
the additional sets D,,11,(f) partitioning the set D, +1(f) = {s € GF[¢]"|Vi <
m : t(s) = 0} of all those assignments to the variables that evaluate all noncon-

stant terms of f to zero. These assignments are obviously solutions to the equation

flz1,...,2,) = c. Therefore R, 41 ,;(f) = Dm_|_17j(f).

Since D(f) = GF[q]" and So(f) = Sc(f), we get the inequality

" _ D)
#o(f) [Sc ()]

< Zi<m,] |Dm(f)|:|'zj |Drn+1u(f)|~
= ymy AR (DHYS) Rma; ()]

(q—l)z,‘<md |Rm(f)|+zj |Rpnt1,5 ()]
- Zigm,] |Rm(f)|+zj |Rm1,5 ()]

< (g—1)-m+1

4 The Algorithm

We are ready to formulate our approximation algorithm. The specific construction
of the universe set U and the indicator function () will be given later.

Input: I € GFlg][x1,...,2,], ¢ € GF[q], ¢ >0, 6 > 0;
Output: Y with Pr{(1 —¢)- #f <Y <(1+¢)-#f}>1-4;

fix a universe U;
N=>b-4/¢*-In2/6 with b > |U|/#.f;
choose independently N elements u of U according to a uniform distribution;

Y =|U}- 2, e(u)/N.

sl

Karp/Luby/Madras ([?]) derived the bound N = |U|/#.f -4/€¢* -1n2/§ (Zero-One
Estimator Theorem) for the number of trials necessary to obtain an estimate of
the required precision using the Bernstein inequality ([?]) in the general settings
of universe sets U and indicator functions . The following conditions have to be
satisfied:

The size |U]| is efficiently computable.

Elements of U can be chosen efficiently according to a uniform distribution.

The ratio |U|/#.f is polynomially bounded.

The indicator function ¢ : U — IN is efficiently computable.
e The mean value Flp] is equal to #.f/|U|.

Now we shall distinguish between two cases.
The first case is for ¢ = 0 and for f without a constant term.

Here the Corollary 3.1 is applicable. So we choose

U = GFlq]"
and (s)
)1 if f(s)=20
wls) = { 0 otherwise.

Since we need O(n -log ¢) many random bits to write an arbitrary element of GF[q]"
and the evaluation of f(s) takes at most O(mn@)(q)) time (recall that Q(q) = log ¢
log log g log log log ¢ denotes the time necessary for the multiplication of two elements
in GF[g]), the approximation algorithm needs

((m+1)(g— 1)+ 1)4In(2/5)/€

many trials and every trial needs O(nm@(q)) bit operations.

Therefore in this case the algorithm takes

O(nm?*qQ(q) In(1/8)/€?) time.

In the second case f(x1,...,2,) = ¢ with ¢ # 0 and f has no constant term. The
choice of universe U = GF[¢]" is not good now because there are easy examples for
equations with the ratio GF[q]"/#.f growing exponentially (for instance []7_, x; =
1). choose elements from D(f) according to a uniform distribution. But we shall
see that the following choice of U and ¢ satisfies the conditions:

U= iUi with U; = {(s,7)|s € GF[q]" and #,(s) # 0}

(note that U; # D;(f)) and

):{ 1 if f(s) =cand i =min{j|(s,j) € U}

s, 0 otherwise.

Now we show that the conditions formulated above are satisfied.

The size U] = X2, |U:] = X7, ¢85 . (¢ — 1)%8% is computable in
O(mnlogn@Q(q)) time. This precomputation has to be done only once.

A random element (s,2) € U can be chosen uniformly by the following two step
process:

1. Randomly choose i € {1,...,m} with probability |U;|/|U|.

2. Randomly choose (s,7) € U; such that (s,7) is chosen with probability 1/|U;].

The first step can be implemented by choosing a random value r in the interval
[1,...,|U]] and selecting that ¢ which satisfies Z;;ll |U;] < r < 2;21 |U;| using
binary search ([?]). For the second step, we need O(nlog ¢q) random bits. Therefore
the choice of a random element from U takes at most O(log(mg")log m + nlog q) =
O(log* m + nlog mlog q) time.

The ratio |U|/#.f is bounded by m?(q — 1):

LA T (24 B £21¥0 | R L)
#.f DN #S T D)

The first inequality holds because of the Main Theorem and the second since every

m(g—1) < m*-(¢g—1).

element of D(f) evaluates at most m terms to nonzero.

The cost of the computation of ¢(s,17) is dominated by the evaluation of f(s). This
takes O(mn@)(q)) many operations.

So the complete approximation algorithm for estimating the number of solutions of

flz1,...,2,) = ¢ # 0 demands
m?*(q— 1)41n(2/48)/ ¢
many trials, where each trial costs O(nm@Q(q)).

Consequently the time complexity of the algorithm is

O(nmqlog 4Q(q) In(1/8)/).
We summarize now our main results of this section.

Theorem 4.1 There exists an (€,6)-approximation algorithm for the number of ze-
ros of an arbitrary multilinear polynomial over GF|q] with m terms working in time

O(nm?qlog 4Q(q) In(1/6)/).

If additionally the polynomial does not contain constant terms, there exists
an (€,0)-approximation algorithm for the number of zeros working in time

O(nm*qQ(q)In(1/8)/€*).

5 DParallel Implementation of the Algorithm

The parallel arithmetic in GF[¢] can be done in boolean parallel time O(log ¢) with
O(Q(q)) processors (cf. [?, ?]) and the evaluation of a polynomial f over GF[q¢] in
O(log(mn) + log ¢) boolean parallel time with O(nm@(q)) processors.

The Monte-Carlo part of the algorithm is parallisable in O(log(mqIn(1/5)/€e?))
depth. Therefore for a fixed field GF[q¢] and fixed ¢,d, we have:

Corollary 5.1 There exists for a fived field GFlq] and fized numbers ¢,6 > 0, a
randomized parallel (€,6)-approzimation algorithm (RNC?) for approzimating the
number of zeros of an arbitrary multilinear polynomial f € GFlq|[z1,...,x,] with
m terms. The algorithm works in O(log(nm)) parallel boolean time with O(nm?)
PTOCESSOTS.

6 Black Box Counting Interpolation

We apply now Corollary 3.1 for the black box (for the formal definition see [?])
counting problem of GF[g]. The polynomial f € GF[q][z1,...,z,] with m terms is
given by a black box over GF|q]; the counting problem is the problem of estimating
number of zeros of f over GF[¢].

We have the following Corollary:

Corollary 6.1 Given a black box for a multilinear polynomial f € GFlq][x1, ..., x,]
with m terms and no constant terms. There exvists an (€,0)-approzimation algo-
rithm for estimating the number of zeros of f over GFlq]. The algorithm works is

O(nm?qQ(q)In(1/68)/e*) time.
Proof:

We construct a universe U = GF[q]" and pick up elements x of U uniformly. To

perform our approximation algorithm (first case) we need only evaluations of the
black box at «’s. O

10

The result above is interesting in view of the computational difficulty of exact iden-
tification of f from the black box without using proper field extension (cf. [?, ?]).

Intuitively our algorithm does not depend on the exact identification of the polyno-
mial f given by the black box.

7 Conclusion and Open Problems

Our approximation method is based on the special property of multilinear polyno-
mials. The bounds stated in Theorem 3.1 are not valid in general. Consider for
instance the following function:

n

fla, . en) = [[(z "+ 1) = 1.

=1

f has a unique zero (0,...,0), but it has m = 2" — 1 many terms. f does not have
a constant term, and the ratio is

vl

q qn — 2(logq)n _ mlogq‘

#of

Counting the number of nonzeros is even worse, because there are polynomial equa-
tions without any solution, for instance

n

An important open question remains whether there is an (e, d)-approximation al-
gorithm for approximating number of zeros of arbitrary polynomials over arbitrary

finite fields GF[q].

Another important question is whether it is possible to design a deterministic (e, 0)-
approximation algorithm for the multilinear counting problem.

8 Acknowledgements

We are indebted to Hendrik Lenstra, Dick Karp, Mike Luby and Andrew Odlyzko

for the number of interesting discussions.

11

