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1 IntroductionThere are only few cases of algebraic counting problems known having polynomialtime solutions (cf. [?, ?, ?, ?]) despite their paramount importance in algebra andvarious applications in coding theory and in the design of algebraic circuits. Thegeneral problems of counting exactly the number of points on algebraic varietiesover arbitrary (and �xed) �nite �elds GF[q], even if restricted to cubic multilinearpolynomials, was proven recently to be #P-complete ([?]). The �rst polynomial(�; �)-approximation algorithm for the number of zeros of a polynomial f(x1; : : : ; xn)over the �eld GF[2] was designed recently by Karpinski and Luby ([?]).In this paper we construct the �rst approximation algorithm for estimating thenumber of zeros of arbitrary multilinear polynomials over GF[q], extending the re-sults of [?]. The algorithm takes as input a multilinear polynomial f(x1; : : : ; xn),a constant c and two parameters � > 0 and � > 0. It computes an estimate Ywhich is between (1 � �) and (1 + �) times the number of solutions of the equa-tion f(x1; : : : ; xn) = c with probability at least 1 � �. Let m denote the num-ber of terms of f and Q(q) = log q log log q log log log q the multiplication time oftwo elements in GF[q]. Then the running time of the approximation algorithms isO(nm3q log qQ(q) ln(1=�)=�2).Besides the direct algebraic and algebraic geometric interest, our algorithm providesalso the �rst known estimation method for the number of assignmnents of (+; �)-arithmetic circuits of depth 2 over arbitrary �nite �elds GF[q]. For the constantfree circuits we can approximate the number of 0-assignments directly from theblack box even without interpolating explicitely a polynomial from the black box(by extending the ground �eld GF[q], cf. [?]).2 Notations and De�nitionsLet GF[q] be an arbitrary ground �eld of order q.f(x1; : : : ; xn) 2 GF[q][x1; : : : ; xn] denotes a polynomial in n variables over the �eldGF[q]. In the following we assume that f is represented by the sum of its nonzeroterms ti: f(x1; : : : ; xn) = mXi=1 ti(x1; : : : ; xn) = mXi=1 ci nYj=1 xei;jjwith ci 2 GF[q] n f0g, and all monomials Qnj=1 xei;jj being di�erent from each other.We further assume f to be multilinear meaning that all exponents ei;j are either 0or 1. 2



Let n denote the number of variables, m the number of terms and Var (f) the setof variables of f .In the following we consider the equation f(x1; : : : ; xn) = c with a constant c 2GF[q]. We are interested in the number of solutions of this equation, i.e. thenumber of assignments s 2 GF[q]n to the variables of f such that the equationf(x1; : : : ; xn) = c is satis�ed. Therefore we can assume w.l.o.g. that f has noconstant term.Let Sc(f) = fs 2 GF[q]njf(s) = cg denote the set of solutions of the equationf(x1; : : : ; xn) = c and #cf = jSc(f)j the number of solutions.An important role for our algorithm plays the set D(f) = fs 2 GF[q]nj9ti ti(s) 6=0g of all those assignments to the variables such that at least one term of f evaluatesto nonzero.Let SMi denote the union and PMi denote the disjoint union of the sets Mi.An (�; �)-approximation algorithm (cf. e.g. [?]) is an algorithm which takes asinput a problem instance (in our case f; c) and two additional parameters � > 0, theaccuracy requirement, and � > 0, the con�dence level. It computes an estimate Yfor the desired value #cf which satis�es the conditionPrf(1� �)#cf � Y � (1 + �)#cfg � 1� �:The running time has to be polynomial in the length of the problem instance, 1=�,1=� and q.3 Main TheoremThe core of our approximation algorithm is a polynomial bound on the fraction ofthe size of the set of assignments that evaluate at least one term of f to nonzeroto the size of the whole solution set. This can be viewed as a generalization of amethod applied in the Karpinski/Luby paper ([?]) for the �eld GF[2]. We will provethe existence of such a bound in our Main Theorem.Let us start with a Lemma, bounding the minimum number of solutions of a mul-tilinear equation over GF[q].Lemma 3.1 Let g 2 GF[q][x1; : : : ; xn] be a multilinear polynomial (with a possibleconstant term), g 6� const. Then8c 2 GF[q] : #cg � (q � 1)n�1:3



Proof: By induction on n, the number of variables.Induction Basis (n = 1):g(x) = ax + b with a 6= 0. Since every a 6= 0 is a generator of the additive group(GF[q];+), there exists for all c a unique solution s 2 GF[q] with g(s) = c. Therefore#cg = 1 = (q � 1)0:Induction Assumption:8g 2 GF[q][x1; : : : ; xn]; g 6� const; c 2 GF[q] : #cg � (q � 1)n�1:Induction Step:Let const 6� g 2 GF[q][x1; : : : ; xn+1] and c 2 GF[q] be �xed. Decompose g accordingto the variable xn+1:g(x1; : : : ; xn+1) = xn+1 � h(x1; : : : ; xn) + k(x1; : : : ; xn):1st case: h(x1; : : : ; xn) � 0:Then #cg = q �#ck � q � (q � 1)n�1 > (q � 1)n:2nd case: h(x1; : : : ; xn) � d 6= 0 for a constant d 2 GF [q]:Then for all possible values a of k(x1; : : : ; xn) there is a unique solution ofdxn+1 + a = c: Therefore #cg = 1 � qn � (q � 1)n:3rd case: h(x1; : : : ; xn) 6� d for any constant d 2 GF[q].According to the induction hypothesis, there are at least (q � 1)n�1 solutionss 2 GF[q]n to the equation h(x1; : : : ; xn) = d for a constant 0 6= d 2 GF[q].For all these solutions s there exists a unique value for xn+1 whatever the valueof k(s) is such that g(x) = c is satis�ed. Since there are (q�1) possible valuesof d 6= 0, we get#cg = X06=d2GF[q]#dh � (q � 1) � (q � 1)n�1 = (q � 1)n: �We shall use now Lemma 3.1 to prove our Main Theorem.4



Theorem 3.1 (Main Theorem) Let f 2 GF[q][x1; : : : ; xn] be a multilinear poly-nomial and c 2 GF[q]. Let m be the number of terms of f . D(f) = fs 2GF[q]nj9ti ti(s) 6= 0g and let Sc(f) = fs 2 GF[q]njf(s) = cg. If f is constantfree or the constant term of f is c, thenjD(f)jjSc(f)j � (q � 1) �m:Proof:The idea of the proof is to de�ne a partition of D(f) into sets Di;j(f) and to de�nean equal number of sets Ri;j(f) which cover the set Sc(f) in such a way that theratio between the sizes of two corresponding sets Di;j and Ri;j is bounded by (q�1).Therefore the Theorem follows.At �rst, we divide the set D(f) into sets Di(f) of roughly those assignments bywhich the i-th term ti evaluates to nonzero:Di(f) = fs 2 GF[q]njti(s) 6= 0 and 8j 6= i; tj(s) 6= 0 : Var (ti) 6� Var (tj)gfor i = 1; : : : ;m.(The sets Di(f) are not necessarily disjoint.)So Di(f) is the set of the assignments for which the term ti is variable maximalout of all those which evaluate to nonzero by this assignment. We will need thistechnical detail in the following.Now de�ne a partition of the sets Di(f) into qn�deg ti many disjoint sets Di;j(f)of those assignments in Di(f) that are identical on the variables not in Var (ti).Obviously D(f) = m[i=1Di(f) = m[i=1 qn�deg tiXj=1 Di;j(f):The size of each set Di;j(f) is bounded by the number of nonzero assignments tothe variables of the term ti since the values of all other variables are �xed:jDi;j(f)j � (q � 1)deg ti:In order to get the sets Ri;j(f) for i = 1; : : : ;m and j = 1; : : : ; qn�deg ti covering Sc(f),we consider the partial assignment of the �xed values of Di;j(f) to all variables notin Var (ti). Then de�ne Ri;j(f) to be the set of those assignments consisting of the�xed values for the variables not in Var (ti) and those values for the variables of tisuch that the equation f(x1; : : : ; xn) = c is satis�ed.5



Since the second condition in the de�nition of the sets Di(f) makes sure that f doesnot become constant under the partial assignment to all variables except to those ofone variable maximal term ti, we get a lower bound on the sizes of the sets Ri;j(f)by Lemma 3.1: jRi;j(f)j � (q � 1)deg ti�1 for all i; j:The sets Ri;j(f) are not necessarily disjoint, but they cover Sc(f):[i;j Ri;j(f) = Sc(f):Consequently we have jSc(f)j �Xi;j jRi;j(f)j:Since the elements in Ri;j(f) and Ri;k(f) for j 6= k de�ne di�erent assignments tothe variables not in ti, they are disjoint. So every element s 2 Sc(f) may appear inat most m di�erent sets Ri;j(f).Therefore m � jSc(f)j �Xi;j jRi;j(f)j:Combining the intermediate results from above, we getjD(f)jjSc(f)j � Pi;j jDi;j(f)j1=m �Pi;j jRi;j(f)j � Pi;j(q � 1)jRi;j(f)j1=m �Pi;j jRi;j(f)j = m � (q � 1): �The bound given in Theorem 3.1 is sharp. Consider for instance the polynomialf(x1; : : : ; xn) = nYi=1xi:There are (q�1)n many assignments evaluating the single term of f to nonzero and(q � 1)n�1 many assignments evaluating f to 1. ThereforejD(f)jjS1(f)j = (q � 1)n(q � 1)n�1 = (q � 1) �m:We derive a new bound for the number of zeros for the special case of constant freepolynomials.Corollary 3.1 Let f 2 GF[q][x1; : : : ; xn] be a multilinear polynomial withf(0; : : : ; 0) = 0 (without a constant term). Let m be the number of terms of f .Then qn#0(f) � (q � 1) �m+ 1:6



Proof:Consider the function ~f(x1; : : : ; xn) = f(x1; : : : ; xn)+ c for an arbitrary c 6= 0 out ofGF[q] and de�ne the sets Di;j(f), Ri;j(f) and Di;j( ~f), Ri;j( ~f ) as shown in the proofof Theorem 3.1.We have Di;j( ~f ) = Di;j(f) and Ri;j( ~f) = Ri;j(f) for i = 1; : : : ;m. There arethe additional sets Dm+1;j( ~f) partitioning the set Dm+1( ~f) = fs 2 GF[q]nj8i <m : ti(s) = 0g of all those assignments to the variables that evaluate all noncon-stant terms of ~f to zero. These assignments are obviously solutions to the equation~f(x1; : : : ; xn) = c. Therefore Rm+1;j( ~f) = Dm+1;j( ~f).Since D( ~f ) = GF[q]n and S0(f) = Sc( ~f ), we get the inequalityqn#0(f) = jD( ~f)jjSc( ~f)j� Pi�m;j jDi;j( ~f)j+Pj jDm+1;j ( ~f)j1=mPi�m;j jRi;j( ~f)j+Pj jRm+1;j( ~f)j� (q�1)Pi�m;j jRi;j( ~f)j+Pj jRm+1;j( ~f)jPi�m;j jRi;j( ~f)j+Pj jRm+1;j( ~f)j� (q � 1) �m+ 1 �4 The AlgorithmWe are ready to formulate our approximation algorithm. The speci�c constructionof the universe set U and the indicator function '(u) will be given later.Input: f 2 GF[q][x1; : : : ; xn]; c 2 GF[q]; � > 0; � > 0;Output: Y with Prf(1� �) �#f � Y � (1 + �) �#fg � 1� �;1. �x a universe U ;2. N = b � 4=�2 � ln 2=� with b � jU j=#cf ;3. choose independently N elements u of U according to a uniform distribution;4. Y = jU j �Pu '(u)=N .Karp/Luby/Madras ([?]) derived the bound N = jU j=#cf � 4=�2 � ln 2=� (Zero-OneEstimator Theorem) for the number of trials necessary to obtain an estimate ofthe required precision using the Bernstein inequality ([?]) in the general settingsof universe sets U and indicator functions '. The following conditions have to besatis�ed: 7



� The size jU j is e�ciently computable.� Elements of U can be chosen e�ciently according to a uniform distribution.� The ratio jU j=#cf is polynomially bounded.� The indicator function ' : U �! IN is e�ciently computable.� The mean value E['] is equal to #cf=jU j.Now we shall distinguish between two cases.The �rst case is for c = 0 and for f without a constant term.Here the Corollary 3.1 is applicable. So we chooseU = GF[q]nand '(s) = ( 1 if f(s) = 00 otherwise.Since we need O(n � log q) many random bits to write an arbitrary element of GF[q]nand the evaluation of f(s) takes at most O(mnQ(q)) time (recall that Q(q) = log qlog log q log log log q denotes the time necessary for the multiplication of two elementsin GF[q]), the approximation algorithm needs((m+ 1)(q � 1) + 1)4 ln(2=�)=�2many trials and every trial needs O(nmQ(q)) bit operations.Therefore in this case the algorithm takesO(nm2qQ(q) ln(1=�)=�2) time.In the second case f(x1; : : : ; xn) = c with c 6= 0 and f has no constant term. Thechoice of universe U = GF[q]n is not good now because there are easy examples forequations with the ratio GF[q]n=#cf growing exponentially (for instance Qni=1 xi =1). choose elements from D(f) according to a uniform distribution. But we shallsee that the following choice of U and ' satis�es the conditions:U = mXi=1 Ui with Ui = f(s; i)js 2 GF[q]n and ti(s) 6= 0g(note that Ui 6= Di(f)) and'(s; i) = ( 1 if f(s) = c and i = minfjj(s; j) 2 Ug0 otherwise.8



Now we show that the conditions formulated above are satis�ed.The size jU j = Pmi=1 jUij = Pmi=1 qn�deg ti � (q � 1)deg ti is computable inO(mn log nQ(q)) time. This precomputation has to be done only once.A random element (s; i) 2 U can be chosen uniformly by the following two stepprocess:1. Randomly choose i 2 f1; : : : ;mg with probability jUij=jU j.2. Randomly choose (s; i) 2 Ui such that (s; i) is chosen with probability 1=jUij.The �rst step can be implemented by choosing a random value r in the interval[1; : : : ; jU j] and selecting that i which satis�es Pi�1j=1 jUjj < r � Pij=1 jUj j usingbinary search ([?]). For the second step, we need O(n log q) random bits. Thereforethe choice of a random element from U takes at most O(log(mqn) logm+n log q) =O(log2m+ n logm log q) time.The ratio jU j=#cf is bounded by m2(q � 1):jU j#cf = jU jjD(f)j � jD(f)j#cf � jU jjD(f)j �m(q � 1) � m2 � (q � 1):The �rst inequality holds because of the Main Theorem and the second since everyelement of D(f) evaluates at most m terms to nonzero.The cost of the computation of '(s; i) is dominated by the evaluation of f(s). Thistakes O(mnQ(q)) many operations.So the complete approximation algorithm for estimating the number of solutions off(x1; : : : ; xn) = c 6= 0 demandsm2(q � 1)4 ln(2=�)=�2many trials, where each trial costs O(nmQ(q)).Consequently the time complexity of the algorithm isO(nm3q log qQ(q) ln(1=�)=�2):We summarize now our main results of this section.Theorem 4.1 There exists an (�,�)-approximation algorithm for the number of ze-ros of an arbitrary multilinear polynomial over GF[q] with m terms working in timeO(nm3q log qQ(q) ln(1=�)=�2). 9



If additionally the polynomial does not contain constant terms, there existsan (�,�)-approximation algorithm for the number of zeros working in timeO(nm2qQ(q) ln(1=�)=�2).5 Parallel Implementation of the AlgorithmThe parallel arithmetic in GF[q] can be done in boolean parallel time O(log q) withO(Q(q)) processors (cf. [?, ?]) and the evaluation of a polynomial f over GF[q] inO(log(mn) + log q) boolean parallel time with O(nmQ(q)) processors.The Monte-Carlo part of the algorithm is parallisable in O(log(mq ln(1=�)=�2))depth. Therefore for a �xed �eld GF[q] and �xed �,�, we have:Corollary 5.1 There exists for a �xed �eld GF[q] and �xed numbers �; � > 0, arandomized parallel (�,�)-approximation algorithm (RNC1) for approximating thenumber of zeros of an arbitrary multilinear polynomial f 2 GF[q][x1; : : : ; xn] withm terms. The algorithm works in O(log(nm)) parallel boolean time with O(nm3)processors.6 Black Box Counting InterpolationWe apply now Corollary 3.1 for the black box (for the formal de�nition see [?])counting problem of GF[q]. The polynomial f 2 GF[q][x1; : : : ; xn] with m terms isgiven by a black box over GF[q]; the counting problem is the problem of estimatingnumber of zeros of f over GF[q].We have the following Corollary:Corollary 6.1 Given a black box for a multilinear polynomial f 2 GF[q][x1; : : : ; xn]with m terms and no constant terms. There exists an (�; �)-approximation algo-rithm for estimating the number of zeros of f over GF[q]. The algorithm works isO(nm2qQ(q) ln(1=�)=�2) time.Proof:We construct a universe U = GF[q]n and pick up elements x of U uniformly. Toperform our approximation algorithm (�rst case) we need only evaluations of theblack box at x's. �10



The result above is interesting in view of the computational di�culty of exact iden-ti�cation of f from the black box without using proper �eld extension (cf. [?, ?]).Intuitively our algorithm does not depend on the exact identi�cation of the polyno-mial f given by the black box.7 Conclusion and Open ProblemsOur approximation method is based on the special property of multilinear polyno-mials. The bounds stated in Theorem 3.1 are not valid in general. Consider forinstance the following function:f(x1; : : : ; xn) = nYi=1(xiq�1 + 1)� 1:f has a unique zero (0; : : : ; 0), but it has m = 2n � 1 many terms. f does not havea constant term, and the ratio isqn#0f = qn = 2(log q)n = mlog q:Counting the number of nonzeros is even worse, because there are polynomial equa-tions without any solution, for instancenYi=1xiq�1 = 2:An important open question remains whether there is an (�; �)-approximation al-gorithm for approximating number of zeros of arbitrary polynomials over arbitrary�nite �elds GF[q].Another important question is whether it is possible to design a deterministic (�; 0)-approximation algorithm for the multilinear counting problem.8 AcknowledgementsWe are indebted to Hendrik Lenstra, Dick Karp, Mike Luby and Andrew Odlyzkofor the number of interesting discussions.11


