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1 Nondivisibility problem for sparse polynomialsLet f = P1�i�t aiXJi , g = P1�i�t biXKi 2 ZZ [X1; : : : ; Xn] be two at most t-sparsepolynomials. Assume that every degree degxj(f), degxj(g) < d, 1 � j � n and the bit-sizel(ai), l(bi) of each integer coe�cient ai, bi is less than M . The problem is to test, whetherg divides f . Observe that the bit-size of input data is O(t(M + n log d)).First, we consider the case n = 1 of one-variable polynomials f = P1�i�t aixji , g =P1�i�t bixki .Lemma 1. Any nonzero root of g (also of f) has multiplicity less than t.Proof. Assume the contrary and let x0 6= 0 be a root of g with multiplicity at least t.Then g(x0) = g(1)(x0) = � � �= g(t�1)(x0) = 0. Hence the t� t matrix1 � � � 1k1 � � � ktk1(k1 � 1) � � � kt(kt � 1)k1(k1 � 1)(k1� 2) � � � kt(kt � 1)(kt � 2)...k1(k1 � 1) � � �(k1 � t+ 2) � � � kt(kt � 1) � � �(kt � t+ 2)is singular. This leads to a contradiction since this matrix by elementary transformationsof its rows can be reduced to a Vandermonde matrix. 22



Assume that g does not divide f . Then there exists a factor h 2 ZZ[x] of g that isirreducible over Q , and such that its multiplicity mg in g is larger than its multiplicitymf in f . The Lemma 1 above shows mg < t.There exist polynomials u; v 2 Q [x] with deg(u), deg(v) < d such that 1 = uh +v � fhmf �. Taking into account the bounds l(h), l � fhmf � � M + d that apply to factorsof g, f , respectively, we obtain l(u), l(v) � MdO(1) by virtue of the bounds on the bit-size of minors of the Sylvester matrix (see e.g. [CG 82, L 82, M 82]). Let us rewrite theequality in the following way: w0 = u0h + v0 � fhmf �, where w0 2 ZZ , u0, v0 2 ZZ [x].There exist at most M � dO(1) primes which divide w0. Therefore, there exists a primep � N = (Md)O(1) (provided the ERH holds [LO 77, W 72]) which does not divide any ofw0, the leading coe�cient lc(g) of g and the discriminant of h, and moreover the polynomialh(modp) 2 GF(p)[x] has a root in GF(p). Then the multiplicity of this root in f equalsmf and in g is at least mg.The nondeterministic procedure under construction guesses a prime p � N and anelement � 2 GF(p) and tests whether for some 0 � i � t � 1 one has g(�) = g(1)(�) =� � � = g(i)(�) = 0, f (i)(�) 6= 0, lc(g) 6= 0 in GF(p).One can easily see that if such p, � exist then g does not divide f . Indeed, in theopposite case, (lc(g))sf = ge for some integer s and a polynomial e 2 ZZ[x]. Reducingthis equation mod p, one gets a contradiction.Now we return to the multivariate case. Suppose again that g does not divide f . Let3



h 2 ZZ[X1; : : : ; Xn] have a similar property to the h in the univariate case. Assume withoutloss of generality that a variable X1 occurs in h. Then g also does not divide f in thering Q (X2; : : : ; Xn)[X1] by the Gauss lemma. Consider division of f by g with remainderin the latter ring: f = g� + �. Then degXi(�), degXi(�) < d2, 2 � i � n (cf. [L 82])and the denominators of �, � are the powers of lcX1(g) 2 ZZ [X2; : : :Xn]. Hence for someintegers 0 � x2; : : : ; xn � d2 + d we have (lcX1(g) � lcX1(�))(x2; : : : ; xn) 6= 0. Therefore,the polynomial g(X1; x2; : : : ; xn) 2 ZZ[X1] does not divide f(X1; x2; : : : ; xn) 2 ZZ [X1] inthe ring Q [X1].The nondeterministic procedure guesses an index 1 � i � n, thus Xi (in our argumentabove its role was played by X1), the integers 0 � x2; : : : ; xn � d2 + d and applies thenondeterministic procedure described before to one-variable polynomials g(X1; x2; : : : ; xn),f(X1; x2; : : : ; xn). Thus, we have proved the followingPROPOSITION 1. Nondivisibility of sparse multivariate polynomials belongs to NPprovided the Extended Riemann Hypothesis holds.2 Divisibility problem for sparse rational function given bya black boxThe Proposition 1 can be improved if t-sparse f , g 2 ZZ[X1; : : : ; Xn] are not explicitelygiven, but we only have a black box (see e.g. [GK 91, GKS 90]) for the rational functionf=g provided that lcX1(g) = 1, i.e. g = Xm1 + P0�i�m�1 giX i1 where the polynomials4



gi 2 ZZ [X2; : : : ; Xn], and a bound on d is given. This is due to the fact that in theone-variable case we need only a bound on M which one can compute by the parallelNC-algorithm from a black box relying on the construction from [GK 91]. To do this weproceed as follows.Assume that f = P1�i�t1 aixji , g = P1�i�t2 bixki , t1; t2 � t and g has a minimal possibledegree for any t-sparse representation of the rational function q = f=g.Let M = maxi fl(ai); l(bi)g+ 1.Take successive primes p1; � � � ; pt and for each p among them calculate (by black box)q(p); q(p2); � � � ; q(p2t2+1). For at least one p all these values are de�ned, i.e. g does notvanish in these points. Let us �x such p.Lemma 2. At least one of q(p); q(p2); � � � ; q(p2t2+1) has absolute value greater than2M=2t=t4dt2.Proof. Denote N = maxfjq(p)j; � � � ; jq(p2t2+1)jg. The homogenous linear system in theindeterminates Ai; BiX1�i�t1Aipsji = ( X1�i�t2Bipski)q(ps); 1 � s � 2t2 + 1has a unique solution since the polynomials f; g provide a minimal t-sparse representationof q, hence ( P1�i�t1Aixji)=( P1�i�t2Bixki) = q(x). Therefore, each ai; bi equals to a quotientof a suitable pair of (t1 + t2 � 1) � (t1 + t2 � 1) minors of this linear system. Thenmaxfjaij; jbijg � (N p2t2d _2t)2t � (N t4dt2)2t. The lemma is proved. 25



One can construct (by an NC-algorithm) the integer t4dt2 (see, e.g., [BCH 86]), thenby Lemma 2 an integer larger than 2M=2t and again using [BCH 86] an integer larger than2M .Then the algorithm constructs an integer N0 > 36 � 23M � d5 . Finally, the algorithmyields the number N = q(q(N0)). We claim that N is big enough (see [GK 91]), namely,divide with the remainder f = eg + rem(f; g), then for each integer N1 � N we have0 < jrem(f;g)g (N1)j < 12 , provided that rem(f; g) 6= 0.Let us prove the claim. Denote d1 = deg(f), d0 = deg(g). Without loss of generality,assume that lc(f) > 0. Then f(N0) > Nd10 � dNd1�10 2M > 12Nd10 , 0 < g(N0) < Nd00 +dNdo�10 2M < 32Nd00 , hence q(N0) > 13Nd1�d00 . On the other hand f(N0) < 2MdNd10 ,g(N0) > Nd00 �2MdNd0�10 > 12Nd00 , therefore q(N0) < 2M+1dNd1�d00 . We get that q(N0) <13N0 if and only if d1 = d0. In this case g divides f if and only if f=g � const; arguingas in the proof of Lemma 2 the latter identity is equivalent to the equalities q(p) = � � � =q(p2t2+1). So, we assume now that d1 � d0 > 0. Notice that the absolute value of eachcoe�cient of rem(f; g) is at most ((d1 � d0 + 2)2M)d1�d0+2 (see e.g. [L 82]). In a similarwayN = q(q(N0)) > 13(q(N0))d1�d0 > 3d0�d1�1N (d1�d0)20 and g(N) > Nd0�2Md0Nd0�1 >12Nd0 . Hence 0 < jrem(f; g)(N)j< ((d1�d0+2)2M)d1�d0+2d0Nd0�1 < 14Nd0 . This provesthe claim.So, divisibility gjf is equivalent to (f=g)(N) being an integer. The number of the blackbox evaluations and arithmetic operations of the exhibited algorithm is at most (t log d)O(1)6



with the depth O(log t log log d). Thus, the divisibility problem for one-variable rationalfunction given by a black box, is in NC.In the multivariate case divide with the remainder f = eg + rem(f; g) with respect tothe variable X1, namely in the ring Q (X2; � � � ; Xn)[X1], thus e; rem(f; g) 2 Q [X1; � � � ; Xn]since lcX1(g) = 1. After substituting X1 = Xdn�1 ; X2 = Xdn�2; � � � ; Xn = Xd0 , we get anequality f = e g + rem(f; g) for polynomials f; e; g; rem(f; g) 2 Q [X ] that do not vanishidenti�cally and an inequality degX(g) = dn�1 degX1(g) > degX rem(f; g). Therefore0 6= rem(f; g) = rem(f; g) and we conclude that g divides f if and only if g divides f . So,we apply the divisibility test for one-variable case exhibited above to the rational functionq = f=g.Hence the number of arithmetic operations can be bounded by (tn log d)O(1) with thedepth O(log(tn) log log d) invoking the bounds for one-variable case.PROPOSITION 2. The problem of testing whether a sparse multivariate rationalfunction, given by a black box, equals to a polynomial, belongs to NC, provided that abound on the degree of some t-sparse representation f=g is given such that lcX1(g) = 1.
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