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1 IntroductionIt is well known that matrix multiplication is crucial for many computational problemsin linear algebra. Problems like matrix inversion, computation of the determinant or ofall coe�cients of the characteristic polynomial, LR-decomposition and over the complexnumbers also QR-decomposition and unitary transformation to Hessenberg form are allknown to be as hard as matrix multiplication.(See [3, 4, 6, 7, 11, 12, 15].) In this paper westudy some computational problems in linear algebra that are not speci�ed by a functionbut by a relation.Let F denote a �eld of characteristic zero that may be endowed with an ordering � .The reader may keep in mind the two important examples F = C or F = R. A problemis given by a relation P � Fm � Fm:Given an input x 2 Fm we are asked to �nd a y 2 F n such that (x; y) 2 P . We say thata function f : Fm �! F nsolves the problem P if and only if graph(f) � P:In order to investigate the complexity of a problem we use the model of a computationtree T using the operation symbols F t f+;�; �; =g and the relation symbol = (or �when we are working over an ordered �eld). We de�ne the cost of a computation treeT as the maximal number of multiplications and divisions that may be performed in acomputation of the tree T .(Compare [10, 13, 14, 16].) The complexity C(f) of a functionis then de�ned as the minimal cost of a tree computing f , and �nally we putC(P ) := minfC(f) : f function solving Pgfor the complexity of the problem P . We have chosen the Ostrowski complexity measurebecause only this gives us enough exibility to carry through lower bound proofs. How-ever the upper bounds given in this paper also hold when we count all operations andcomparisons.One of the leading problems in computational linear algebra is matrix multiplication.In our formal frameworkMAMU(n;n;n) := f((A;B); C) 2 (F n�n)2 � F n�n : A1A2A3 = B1B2g:We put for its complexityMn := C(MAMU(n;n;n)). The rate of growth ofMn is measuredby the exponent ! of matrix multiplication, which is de�ned by! := inff� 2 R :Mn = O(n�)g:We will study the following sequences of problems:(1) 3-COMPRESSION:3�CPRn := f((A1; A2; A3); (B1; B2)) 2 (F n�n)3 � (F n�n)2 : A1A2A3 = B1B2g:2



The investigation of this problem is motivated by the phenomenon that a corre-sponding problem for the addition of bitnumbers allows savings. The taskgiven bitnumbers a,b,c, �nd bitnumbers u,v such that a+b+c=u+vcan be solved more e�ciently than by just adding up the numbers a,b,c. This isdone with the so-called carry save adders which are used in the theory of booleanfunctions in several places in order to speed up computations. The lower boundwe are going to prove shows that an analogue of the carry save adders for matrixmultiplication does not exist.(Compare [18].)(2) KERNEL:KERn := f(A;B) 2 F n�n� nGi=0F n�i : B 2 F n�(n�R(A)); R(A)+R(B) = n;AB = 0g:This is of course the problem of computing a basis of the kernel for a given matrix.(3) ORTHOGONAL BASIS:OGBn := f(A;S) 2 F n�n �Gln : A symmetric, SASTdiagonalg:(4) SPARSE REPRESENTATION:SPRn := f(A; (S; T;B)) 2 F n�n � (Gl2n � F n�n) : B = SAT; jsupp(B)j � cng(c > 0 a �xed constant).(5) SPARSENESS TRANSFORMATION MATRICES:SPTMn := f(A; (S; T )) 2 F n�n �Gl2n : jsupp(SAT )j � cng(c > 0 a �xed constant).In contrast to the SPARSE REPRESENTATION problem only the transformationmatrices, but not the sparse representation matrix need to be computed.The main goal of this paper is to prove lower bounds on the complexity of the problemscited above in terms of the complexity of matrix multiplication. The proofs rest on ideasfrom [15] and the important Derivation Theorem (see [3] ). In the last section we employthe notion of dimension for an a�ne variety.Let us summarize our results: We can assign to any sequence P = (Pn) of problemsan exponent !P := inff� 2 R : C(Pn) = O(n�)g:For any of the problem sequences P listed under (1){(5) we have!P � !:In section 5 we prove for the sequences P listed under (1){(4) the lower bound8n C(Pn) � aMn � bn23



for suitably chosen constants a; b > 0. This implies immediately!P � !;provided that ! > 2. For the sequence SPTM this estimate is also shown to be true.The aim of section 6 is to remove this assumption \ ! > 2 " by showing absolute lowerbounds 8n C(Pn) � dn2(d a positive constant).So for any of the sequences listed under (1){(5) we have!P = !:2 Some terminologyWe treat two cases in parallel. In the �rst case F denotes a �eld of characteristic zero, inthe second F stands for an ordered �eld. (Think of the two examples F = C and F = R.)A problem P is de�ned as being a subsetP � Fm � F n:We say that a function f : Fm �! F nsolves the problem P if and only if graph(f) � P:In order to investigate these objects from the point of view of computations, we use themodel of a computation tree. Let us shortly describe this notion, a detailed discussioncan be found in [10, 13, 14, 16].As the set 
 of operational symbols and the set R of relational symbols (together witharity functions) we take 
 = F t f0; 1;+;�; �; =gand R = f=g(or R = f�g when we consider an ordered �eld (F;�)).Let s1; s2; : : : be variables denoting storage locations in a computer. A computation treeT of type (
; R) with output list of length n is a binary tree together with a function thatassigns� to any simple vertex an operational instruction of the formsi := !(sj1 ; : : : ; sjk );where k � 0, i; j1; : : : ; jk > 0 and ! 2 
 k-ary,4



� to any branching vertex a test instruction of the form�(sj1; : : : ; sjk);where k � 0, j1; : : : ; jk > 0 and � 2 R k-aryand� to any leaf an output instruction of the form(sj1 ; : : : ; sjn);where j1; : : : ; jn > 0.The assumption that all output lists have the same length n is made in order to sim-plify notation and is not essential. When �xing additionally an input length m such acomputation tree T computes a partial functionf : Fm � def(f) �! F nin the following way: given � 2 Fm we assign to the variables at the root of the tree thevalues (�1; : : : ; �m;1;1; : : :). We say � 2 def(f) if and only if the directed path startingfrom the root and de�ned in an obvious manner by the computation tree T leads to aleaf. If this is the case the values of the output instruction are (f1(�); : : : ; fn(�)). It iseasy to see that for a directed path � from the root to the leaf the setD� � Fmof inputs de�ning this path � is a locally closed semialgebraic set and that the restrictionof f to D� is restriction of some rational function.Now we are going to de�ne the complexity of problems and functions. We choseOstrowski's complexity measure, e.g. we count only the \noncsalar" multiplications anddivisions and allow the linear operations and comparisons for free. We do so not only forsimplicity and elegance, but mainly because only this measure provides us with enoughexibility to succeed in proving lower bounds. Let be given a computation tree T and apath � from the root to a leaf. The cost of � is de�ned as the number of vertices of �equipped with an operational instruction ! 2 f�; =g. By maximizing over all such paths �of T we get the cost cost(T ) of the computation tree. As the complexity C(f) of a partialfunction f : Fm � def(f) �! F nwe then de�ne C(f) := minfcost(T ) : T computation tree computing fgand �nally we call C(P ) := minfC(f) : f a function solving Pgthe complexity of the problem P � Fm � F n.The sequence of the matrix multiplication problemsMAMU(e;h;l) := f((A;B); C) 2 (F e�h � F h�l)� F e�l : AB = Cg5



is fundamental in linear algebra. We putMn := C(MAMU(n;n;n)):As a lower bound only the estimate Mn � 2n2 � 1 is known ([2, 9]). The asymptoticbehaviour of (Mn) is measured by the so-called exponent ! of matrix multiplication! := inff� 2 R :Mn = O(n�)g:The currently best known estimate is 2 � ! < 2:376 ([5, 17]). Of course we can assign toany sequence P = (Pn) of problems an exponent!P := inff� 2 R : C(Pn) = O(n�)g:We will show that the exponent for various sequences of computational problems in linearalgebra equals the exponent of matrix multiplication.We outline our method for giving lower bounds on the complexity of problems. To doso we need the notion of the nonscalar complexity of a family of rational functions. Leta subring A F [x1; : : : ; xm] � A � F (x1; : : : ; xm)of the �eld of rational functions in the variables x1; : : : ; xm be given which containsthe polynomial ring F [x1; : : : ; xm]. Let f1; : : : ; fn 2 A. The nonscalar complexityLA(f1; : : : ; fn) of f1; : : : ; fn with respect to the subring A is de�ned as the minimal num-ber of multiplications and divisions by units in the ring A that are su�cient to computef1; : : : ; fn from the input set F [ fx1; : : : ; xmg by a straight line program using the oper-ations F tf0; 1;+;�; �; =g. Let P � Fm�F n be a problem, f : Fm ! F n be an optimalfunction solving P and T be an optimal computation tree computing f . Then we knowC(P ) = C(f) = cost(T ):We already noticed that we have a �nite disjoint unionFm = [fD� : � directed path from root to leafg;where D� denotes the set of inputs de�ning the path �. The sets D� are locally closed andthe restriction of f to D� is restriction of some rational function. There must be a path�0 such that D�0 is Zariski-dense in Fm for the simple reason that Fm is irreducible. Letus call such a path �0 a typical one. If we are considering a �eld F without ordering, thereis exactly one typical path, because in this case a nonempty locally closed set contains anonempty Zariski-open subset and two of themmust intersect. However, if we are workingover an ordered �eld (F;�) there might be many typical paths. Let �0 be a typical one.Then we can consider the gi := fi jD�0 as elements of F (x1; : : : ; xn) and we easily see thatcost(T ) � cost(�0) � LF (x)(g1; : : : ; gn)and 8� 2 D�0 (�; (g1(�); : : : ; gn(�)) 2 P:We proved 6



Lemma 1 Let P � Fm � F n be a problem. Then there are rational functionsg1; : : : ; gn 2 F (x1; : : : ; xm) such that(�; (g1(�); : : : ; gn(�))) 2 P for Zariski-almost all � 2 Fmand C(P ) � LF (x)(g1; : : : ; gn):So we gave a lower bound for the complexity of a problem in terms of the nonscalar com-plexity of rational functions from which we only know that they satisfy certain relations.For dealing with the nonscalar complexity of rational functions we will use some knowntechniques that are listed in the next section.3 Properties of the nonscalar complexityLet us recall some ideas from [15]. For � 2 Fm we consider the local ringsO� := ff 2 F (x1; : : : ; xm) : f de�ned at � g:It is well known that O� is contained in the ring F [[y1; : : : ; ym]] of formal power series viathe imbedding O� ,! F [[y1; : : : ; ym]]; xi � � 7! yi:So the image of an element f 2 O� is just the taylor expansion of f around �.Lemma 2 For given f1; : : : ; fn 2 F (x1; : : : ; xm) the equalityLF (x)(f1; : : : ; fn) = LO�(f1; : : : ; fn)holds for Zariski-almost all � 2 Fm.We omit the trivial proof.The next theorem will be used throughout in the paper.Theorem 1 (\Vermeidung von Divisionen" [15]) Let � 2 Fm, f1; : : : ; fn 2 O�, d 2N. ThenLF [y1;:::;ym](ff (k)i (y) : 0 � k � d; 1 � i � mg) � d(d � 1)2 LO�(f1; : : : ; fn);where P1k=0 f (k)i (y) denotes the taylor expansion of fi around the point �.Observe that the complexity on the lefthand side is de�ned with respect tothe polynomial ring F [y1; : : : ; ym]. A well known consequence of the statement above isMn = C(MAMU(n;n;n)) = LF [X;Y ](f nXl=1XilYlj : 1 � i; j � ng):The proof of Theorem 1 (see [15]) immediately leads to7



Corollary 1 Let F be algebraically closed. Let � 2 Fm; f1; : : : ; fn 2 O�; d 2 N. Thenthere exists a closed cone Z � Fm with vertex in the origin such thatcodim(Z) � d(d � 1)2 LO�(f1; : : : ; fn)and Z � f� 2 Fm : f (k)i (�) = 0 for all i 2 f1; : : : ; ng; k 2 f2; : : : ; dggEvery irreducible component of Z is again a cone with vertex in the origin.This corollary will be of help in section 6 of this paper.We will frequently use the simple fact that a linear substitution does not increase thecomplexity, provided we are working in the polynomial ring. More precisely, let bef1; : : : ; fn 2 F [x1; : : : ; xm]; A 2 Fm�m;and put gi = fi(Ax):Then LF [x](g1; : : : ; gn) � LF [x](f1; : : : ; fn):Finally we cite the importantTheorem 2 (\Derivation Theorem" [3]) Let f 2 F (x1; : : : ; xm) be a rational func-tion. Then LF (x)(f; @f@x1 ; : : : ; @f@xm ) � 3LF (x)(f):4 Relative upper boundsWe recall the de�nitions of the computational problems we are interested in.� t-COMPRESSION:[t�CPRn := f((A1; : : : ; At); (B1; : : : ; Bt�1)) 2 (F n�n)t � (F n�n)t�1 :A1A2 � � �At = B1B2 � � �Bt�1g:(t � 3 a natural number).� KERNEL:KERn := f(A;B) 2 F n�n� nGi=0F n�i : B 2 F n�(n�R(A)); R(A)+R(B) = n;AB = 0g:� ORTHOGONAL BASIS:OGBn := f(A;S) 2 F n�n �Gln : A symmetric, SASTdiagonalg:8



� SPARSE REPRESENTATION:SPRn := f(A; (S; T;B)) 2 F n�n � (Gl2n � F n�n) : B = SAT; jsupp(B)j � cng(c > 0 a �xed constant).� SPARSENESS TRANSFORMATION MATRICES:SPTMn := f(A; (S; T )) 2 F n�n �Gl2n : jsupp(SAT )j � cng(c > 0 a �xed constant).The following theorem gives an upper bound relative to the complexity of matrix multi-plication.Theorem 3 The exponent for any of the sequences of problemst�CPR; KER; OGB; SPR; SPTMis less or equal the exponent ! of matrix multiplication.The proof is based on ideas from [4, 11, 12]. See also [1, pages 233{240]. The proceeding isto subdivide the occuring matrices into blocks, to perform a sort of Gaussian Eliminationblockwise using a fast hypothetical matrix multiplication algorithm, and then to continuerecursively. We leave the details to the reader. For the problem t�CPR the statement isof course trivial.Remark: Theorem 3 remains true when we count all rational operations and testsat unit cost.5 Relative lower boundsWe are going to prove lower bounds in terms of Mn for the various problems de�nedabove.Theorem 4 C(3�CPRn) � 13Mn � n2:Proof: Let A;B;C be n� n{matrices whose entries are indeterminates over F and putK := F (Aij; Bij; Cij). By Lemma 1 there are U; V 2 Kn�n such thatUV = ABCand LK(U; V ) � C(3�CPRn):9



If we take into consideration that the trace of the product of two n � n{matrices can becomputed with n2 multiplications, we getLK(Tr(ABC)) � C(3�CPRn) + n2:Furthermore @Tr(ABC)@Aij = (BC)ji:Theorem 2 implies now Mn = LK(BC) � 3C(3�CPRn) + 3n2;which completes the proof of the theorem. 2We do not know how to prove a similar lower bound for the problem sequences t�CPRwhen t > 3.Theorem 5 C(KERn) �Mbn=4c:Proof: W.l.o.g. we may assume that n = 4m; m 2 N. Let X;Y denote 2m � 2m-matrices whose entries are indeterminates over F . We put K := F (Xij; Yij) and R :=F [Xij; Yij]. When we apply Lemma 1 to the restricted problemKERn \  ( � �0 0 ! : �; � 2 F 2m�2m) � nGi=0F n�i! ;we see that there exists a matrix B 2 K4m�4m withR(B) = 2m; (X;Y )B = 0and LK(B) � C(KERn):There must be a matrix U 2 Gl2m(K) such thatB =  X�1UY �1U ! :We therefore have LK(X�1U; Y �1U) � C(KERn):>From Lemma 2 we obtain that there are �; � 2 Gl2m(F ) such that detU(�; �) 6= 0 andLO(�;�)(X�1U; Y �1U) = LK(X�1U; Y �1U):We may replace U by UU(�; �)�1 and therefore assume that U(�; �) = E. Application ofthe automorphism ' 2 AutFK : '(X) = X��1; '(Y ) = Y ��1shows that we can assume w.l.o.g. that � = � = E. FurthermoreLO(0;0) ((E �X)�1V; (E � Y )�1V ) = LO(E;E) (X�1U; Y �1U);10



when we put V := U(E �X;E � Y ). We use now Theorem 1 with d = 2 and getLR(X2 +XW (1) +W (2); Y 2 + YW (1) +W (2)) � LO(0;0)((E �X)�1W; (E � Y )�1W );where W = E +W (1) +W (2) + � � � denotes the taylor expansion of W around the point(0; 0). The complexity on the lefthand side can be estimated from below byLR(X2 � Y 2 + (X � Y )W (1)):We write X =  X11 X12X21 X22 ! ; Y =  Y 11 Y 12Y 21 Y 22 !where X ij ; Y ij 2 Km�m and make the linear substitution   (X) :=  0 X12X21 X22 ! ;  (Y ) :=  0 X120 0 ! :One calculates immediately that (X2 � Y 2 + (X � Y )W (1)) =  X12X21 X12X22P Q !for some P;Q 2 Km�m. ThereforeMm = LR(X12X21) � C(KERn): 2Theorem 6 C(OGBn) � 13Mbn=4c � 4n2 � n:Proof W.l.o.g. we may assume that n = 4m; m 2 N. Let A denote a symmetricn� n{matrix whose entries are indeterminates over F . Put K := F (Aij : i � j � n) andR = F [Aij : i � j � n]. By Lemma 1 there is a matrix S 2 Gln(K) such thatD := SAST is diagonaland LK(S) � C(OGBn):By writing 2664 D11...Dnn 3775 = D 2664 1...1 3775 = S(A(ST 2664 1...1 3775));we see that D can be computed from A and S with 2n2 multiplications. We haveTr(A�1) = Tr(ST (D�1S)):Therefore LK(Tr(A�1) � LK(S) + 4n2 + n:11



We proceed now similar as in [6]. Let V 2 F n�n be symmetric and � be an indeterminateover K. Then Tr((A+ �V )�1) = Tr(A�1) + �Xi�j @Tr(A�1)@Aij Vij +O(�2):On the other hand one easily calculatesTr((A+ �V )�1) = Tr(A�1)� � T r(A�1V A�1) + O(�2):Comparing the two equations we get@Tr(A�1)@Aij = ( �2(A�2)ij , if i 6= j�(A�2)ij , otherwise.>From the Derivation Theorem 2 we deduce13LK(A�2) � LK(Tr(A�1)) � LK(S) + 4n2 + n:By Lemma 2 there exists a symmetric matrix � 2 Gln(F ) such thatLO�(A�2) = LK(A�2):Furthermore LO�(A�2) = LOE (A�2) = LO0((E �A)�2):Using Theorem 1 with d = 2 and taking into account that(E �A)�2 = E + 2A+ 3A2 + : : :we get LR(A2) � LO0((E �A)�2):We divide the matrix A into m�m{blocks Aij 2 Km�m and de�ne the substitution  by (A) := 0BBB@ 0 0 A13 00 0 A23 0(A13)T (A23)T 0 00 0 0 0 1CCCA :Obviously  (A)2 = 0BBB@ A13(A13)T A13(A23)T 0 0A23(A13)T A23(A23)T 0 00 0 W 00 0 0 0 1CCCA ;where W = (A13)TA13 + (A23)TA23. HenceMn = LR(A13(A23)T ) � LR(A2) � 3(C(OGBn) + 4n2 + n): 2Let c > 0 be �xed. We call a matrix A 2 F n�n sparse if and only ifjsupp(A)j � cn:Observe that an arbitrary n�n{matrix can be multiplied with a sparse matrix using onlycn2 multiplications. 12



Theorem 7 C(SPRn) � 19Mbn=3c � (2 + 10c=3)n2:Proof W.l.o.g. we can assume that n = 3m; m 2 N. Let A denote a n � n{matrixwhose entries are indeterminates over F . We set K := F (Aij : i; j � n) and R := F [Aij :i; j � n]. By Lemma 1 there exist ~S; ~T 2 Gln(K) and a sparse matrix ~B 2 Kn�n suchthat ~B = ~SA ~Tand LK( ~S; ~T; ~B) � C(SPRn):Lemma 2 shows that there is a matrix � 2 Gln(F ) such thatLO�( ~S; ~T; ~B) = LK( ~S; ~T; ~B)and ~S(�); ~T (�) 2 Gln(F ):By applying the substitution A 7! �(E � A) we see that there exist S; T 2 Gln(K),B 2 Kn�n satisfying B = S(E �A)T;S(0); T (0) 2 Gln(F ); B sparseand LO0(S; T;B) = LO�( ~S; ~T; ~B):Let S = S(0) + S(1) + : : : ; T = T (0)+ T (1)+ : : : ; B = B(0) +B(1)+ : : : denote the taylorexpansions around 0 of S; T;B respectively. The matrices B(k) are also sparse. We put� := B(0).Theorem 1 implies LR(S(2); S(3); T (2); T (3)) � 3LO0(S; T;B):By comparing the third order terms in the taylor expansion of both sides of the equation(E �A)�1 = TB�1Swe get Tr(A3) = Xi+j+k=3 Tr(T (i)((B�1)(j)S(k))):We are going to show now that the products (B�1)(j)S(k) (j + k � 3) can be computedfrom B(2); B(3); S(2); S(3) with only 10cn2 multiplications:A short calculation yields (put  := (B(0))�1)(B�1)(1) = �B(1); (1)(B�1)(2) = �B(2) + B(1)B(1); (2)(B�1)(3) = �B(3) + B(2)B(1) + B(1)B(2) + B(1)B(1)B(1): (3)Observe furthermore that a product�1�2 � � � �t�;13



where  2 Gln(F ); � 2 Kn�nand �i 2 Kn�n sparse (i = 1; : : : ; t);can be computed from the matrices �i;� with only ctn2 nonscalar multiplications. (Com-pute from the righthand side to the left.) Taking this into account the upper bound 10cn2follows now easily.The result of this intermediate reasoning gives the upper boundLR(Tr(A3)) � 3C(SPRn) + 6n2 + 10cn2:We subdivide A into m�m{blocks Aij 2 Km�m and make the substitution  de�ned by (A) := 0B@ 0 A12 00 0 A23A13 0 0 1CA :One easily veri�es  (A)3 = 0B@ A12A23A31 0 00 A23A31A12 00 0 A31A12A23 1CAand hence  (Tr(A3)) = Tr( (A)3) = 3Tr(A12A23A31):So we showed that LR(A12A23A31) � LR(Tr(A3)):When we apply the Derivation Theorem 2 we �nally get13Mm � LR(A12A23A31)which implies the desired bound19Mm � (2 + 10c=3)n2 � C(SPRn): 2As an immediate consequence of Theorem 3 and Theorems 4 - 7 we get the followingCorollary 2 Any of the sequences of problems3�CPR; KER; OGB; SPRhas as exponent the exponent ! of matrix multiplication, provided that ! > 2.For the sequence SPTM we will only make a statement about the exponent. We needthe following 14



Lemma 3 The sequence of problems MAMU(n;n;bpnc) has an exponent strictly smallerthan the exponent ! of matrix multiplication, provided that ! > 2.Proof: We assume ! > 2 and chose � satisfying 0 < � < !=2�1. For a suitable constantd > 0 and all squares n we haveC(MAMU(n;n;pn)) � C(MAMU(pn;pn;pn))C(MAMU(pn;pn;1)) � d(pn)!+2�n:Therefore C(MAMU(n;n;pn)) = O(n!=2 +�+1):But !=2 + �+ 1 < ! and the statement follows. 2Theorem 8 The exponent for the sequence SPTM equals the exponent ! of matrix mul-tiplication, provided that ! > 2.Proof: Suppose ! > 2. Since we already proved Theorem 7 it is su�cient to show thefollowing:Given (A;S; T ) 2 F n�n �Gl2n and the information that B := SAT is sparse, then wecan compute the matrix B with cost O(n� ), where � < !.So let (A;S; T ) 2 F n�n � Gl2n be given. We put B := SAT and assume that B issparse. For i 2 f1; : : : ; ng we de�neIi := fj 2 f1; : : : ; ng : Bij 6= 0g:In order to simplify notation we assume that (jIij)j=1;:::;n is a decreasing sequence. We setM := maxfi : jIij � bpncg:Then n�M � cpn:We now chose a matrix U 2 F n�bpnc with the property that all its subdeterminants aredi�erent from zero. According to the preceeding remark we can compute the product CC := BV = S(A(TU))with cost O(n�), where � < !. However, the �rst M rows of B can be computed from Cwithout any nonscalar operations: for a �xed i � bpnc we have8 k � bpnc Xj2IiBijUjk = Cik:Now observe that (Ujk)j2Ii; k=1;:::;jIij is an invertible matrix with entries in F .In order to get the remaining rows of B we do simply the following. We chose a matrixV 2 Gln�M (F ) and put W := (0; V ) 2 F (n�M)�n:The product WB = ((WS)A)Tcan be computed with only O(n� ) nonscalar operations.But from WB we can obtain (Bij)i=M+1;:::;n; j=1;:::;n without using any nonscalar opera-tions. 215



6 Absolute lower boundsThe aim of this section is to show that the assumption \! > 2" in Corollary 2 andTheorem 8 is unnecessary. We will do so by proving lower bounds of the typeconstant � n2for the various computational problems in linear algebra we considered before. There isno harm in assuming that F is algebraically closed.We need the followingLemma 4 The set �n := f� 2 F n�n : �3 = 0gis a closed subvariety of the a�ne variety F n�n. For its dimension we have the estimatedim(�n) � 23n2:This inequality is sharp if n is a multiple of 3.This lemma is of course classical and can be proved by standard techniques. For thereader's convenience we add a proof.Proof: Let � be a matrix in Jordan normal form, i.e.� = diag(J(n1; �1); : : : ; J(nt; �t));where (n1; : : : ; nt) is a partition of n and J(ni; �i) is de�ned asJ(ni; �i) = 0BBBB@ � 1 0 00 . . . . . . 00 0 � 10 0 0 � 1CCCCA 2 F ni�ni :We denote the dimension of the conjugacy class of � by d�(n1; : : : ; nt). It is easy to seethat �3 = 0 () 8i �i = 0; ni � 3:This implies at oncedim(�n) = maxfd0(n1; : : : ; nt) : (n1; : : : ; nt) partition of n with ni � 3 for all ig:The value of d0(n1; : : : ; nt) can be exactly determined, namelyd0(n1; : : : ; nt) = n2 � t0Xj=1(n0j)2;where (n01; : : : ; n0t0) denotes the partition dual to (n1; : : : ; nt). (See [8, page 192].) Usingthis fact we concludedim(�n) = maxfn2 � (a+ b+ c)2 � (a+ b)2 � a2 : n = 3a+ 2b+ c; a; b; c 2 Ng � 2n2=3;16



with equality when n is a multiple of 3. 2Remark: We sketch here a more elementary proof method, which, however, onlyyields the bound 8n2=9.By thinking of the Jordan normal form of a matrix we see that�n � f� 2 F n�n : R(�) � 2n=3g:Employing the well known factdim(f� 2 F n�n : R(�) � rg) = r(2n � r)we obtain dim(f� 2 F n�n : R(�) � 2n=3g) � 8n2=9:Theorem 9 lim infn!1 C(SPTMn)n�2 � 19 :Proof: Let A denote a n� n{matrix whose entries are indeterminates over F .Put K := F (Aij : i; j � n). The same reasonings as in the proof of Theorem 8 show thatthere areS; T 2 Gln(K); B 2 Kn�n such thatB = S(E �A)T;S(0); T (0) 2 Gln(F ); B sparseand LO0(S; T ) � C(SPTMn):Suppose that LO0(S; T ) � �n2 for some � > 0. Corollary 1 says that there is a closed coneZ � F n�n with vertex in the origin satisfyingcodim(Z) � 3�n2and Z � f� 2 F n�n : S(k) = T (k) = 0 for k = 2; 3g:>From (E �A)�1 = TB�1S we getA3 = Xi+j+k=3 T (i)(B�1)(j)S(k):We de�ne Z 0 := Z \ f� 2 F n�n : B(k)(�) = 0 for k = 1; 2; 3 g:Z 0 is again a closed cone with vertex in the origin and we havecodimFn�n(Z 0) � 3�n2 + 3cn;17



since the matrices B(k) are sparse. From the equations (1){ (3) of section 5 followsZ 0 � f� 2 F n�n : (B�1)(k)(�) = 0 for k = 1; 2; 3g:We have therefore shown that Z 0 � f� 2 F n�n : �3 = 0g:Lemma 4 and a comparison of dimensions lead to the inequality3�n2 + 3cn � n2=3or �+ c=n � 1=9:If � < 1=9 we get a contradiction for su�ciently large n. So we have proved that8� < 1=9 9n0 8n � n0 C(SPTMn) > �n2;which proves the theorem. 2Theorem 10 lim infn!1 C(3�CPRn)n�2 � 19 ;lim infn!1 C(OGBn)n�2 � 154 ;lim infn!1 C(SPRn)n�2 � 19 :Since the proof is very similar to the previous one, we only give some hints.3 �CPR: Consider the restricted problemf(A; (U; V )) 2 F n�n � (F n�n)2 : A3 = UV g:OGB: Use dim(f� 2 F n�n : � symmetric, R(�) � rg) = rn � r(r � 1)=2in order to show thatdim(f� 2 F n�n : � symmetric, �3 = 0g) � 4n2=9 + n=3:SPR: The statement follows trivially from C(SPRn) � C(SPTMn).Putting all our information together we get the �nal resultTheorem 11 Any of the sequences of problems3�CPR; KER; OGB; SPR; SPTMhas as exponent the exponent ! of matrix multiplication.18
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