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Abstract

We define the complexity of a computational problem given by a relation using
the model of a computation tree with Ostrowski complexity measure. To a sequence
of problems we assign an exponent similar as for matrix multiplication. For the
complexity of the following computational problems in linear algebra

e KI'R,: Compute a basis of the kernel for a given n X n—matrix.

e OGB,: Find an invertible matrix that transforms a given symmetric n X n—
matrix to diagonal form.

e SPR,: Find a sparse representation of a given n X n—matrix.

we prove relative lower bounds of the form aM, — b and absolute lower bounds
dn?, where M, denotes the complexity of matrix multiplication and a,b,d are
suitably chosen constants. We show that the exponent of the problem sequences
KFER, OGB, SPR is the same as the exponent w of matrix multiplication.
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1 Introduction

It is well known that matrix multiplication is crucial for many computational problems
in linear algebra. Problems like matrix inversion, computation of the determinant or of
all coefficients of the characteristic polynomial, LR-decomposition and over the complex
numbers also QR-decomposition and unitary transformation to Hessenberg form are all
known to be as hard as matrix multiplication.(See [3, 4, 6, 7, 11, 12, 15].) In this paper we
study some computational problems in linear algebra that are not specified by a function
but by a relation.

Let F' denote a field of characteristic zero that may be endowed with an ordering <.
The reader may keep in mind the two important examples ¥ = C or ' = R. A problem
is given by a relation

P CF™xF™

Given an input @ € F we are asked to find a y € F'* such that (z,y) € P. We say that
a function

f:F" — F"
solves the problem P if and only if

graph(f) C P.

In order to investigate the complexity of a problem we use the model of a computation
tree T' using the operation symbols F' U {4, — *, /} and the relation symbol = (or <
when we are working over an ordered field). We define the cost of a computation tree
T as the maximal number of multiplications and divisions that may be performed in a
computation of the tree T'.(Compare [10, 13, 14, 16].) The complexity C'(f) of a function
is then defined as the minimal cost of a tree computing f, and finally we put

C(P):=min{C(f): f function solving P}

for the complexity of the problem P. We have chosen the Ostrowski complexity measure
because only this gives us enough flexibility to carry through lower bound proofs. How-
ever the upper bounds given in this paper also hold when we count all operations and
comparisons.

One of the leading problems in computational linear algebra is matrix multiplication.
In our formal framework

MAMU(, 0 = 1{((A,B),C) € (F™ )2 x F™" 0 AjAgAs = By By}

We put for its complexity M, := C(MAMU(n7n7n)). The rate of growth of M,, is measured

by the exponent w of matrix multiplication, which is defined by
w:=inf{r e R: M, = O(n")}.
We will study the following sequences of problems:
(1) 3-COMPRESSION:
3—CPRn = {((Al,AQ,Ag), (Bl, Bz)) € (ann)S X (ann)Q : A1A2A3 = BlBQ}.
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The investigation of this problem is motivated by the phenomenon that a corre-
sponding problem for the addition of bitnumbers allows savings. The task

given bitnumbers a,b,c, find bitnumbers u,v such that a+b+4c=u+v

can be solved more efficiently than by just adding up the numbers a,b,c. This is
done with the so-called carry save adders which are used in the theory of boolean
functions in several places in order to speed up computations. The lower bound
we are going to prove shows that an analogue of the carry save adders for matrix
multiplication does not exist.(Compare [18].)

(2) KERNEL:

KER, :={(A,B) € F*™"x| | F™: B ¢ F*0=FW) R(A) 4 R(B) =n, AB = 0}.
1=0

This is of course the problem of computing a basis of the kernel for a given matrix.

(3) ORTHOGONAL BASIS:

OGB, :={(A,S) € ™" x Gl, : A symmetric, SAST diagonal }.

(4) SPARSE REPRESENTATION:
SPR, :={(A,(S,T,B)) € F*" x (GI> x F""): B = SAT, |supp(B)| < en}
(¢ > 0 a fixed constant).

(5) SPARSENESS TRANSFORMATION MATRICES:
SPTM, :={(A,(S,T)) € F'"" x GI? : |supp(SAT)| < en}

(¢ > 0 a fixed constant).
In contrast to the SPARSE REPRESENTATION problem only the transformation

matrices, but not the sparse representation matrix need to be computed.

The main goal of this paper is to prove lower bounds on the complexity of the problems
cited above in terms of the complexity of matrix multiplication. The proofs rest on ideas
from [15] and the important Derivation Theorem (see [3] ). In the last section we employ
the notion of dimension for an affine variety.

Let us summarize our results: We can assign to any sequence P = (P,) of problems
an exponent

wp:=inf{r e R: C(P,) =0(n")}.
For any of the problem sequences P listed under (1)—(5) we have

wp < w.
In section 5 we prove for the sequences P listed under (1)—(4) the lower bound

Vn C(P,) > aM, — bn®



for suitably chosen constants a,b > 0. This implies immediately
wp > w,

provided that w > 2. For the sequence SPT M this estimate is also shown to be true.

¢

The aim of section 6 is to remove this assumption “ w > 2 7 by showing absolute lower

bounds

Vn C(P,) > dn®

(d a positive constant).
So for any of the sequences listed under (1)—(5) we have

wWp = Ww.

2 Some terminology

We treat two cases in parallel. In the first case [’ denotes a field of characteristic zero, in

the second F' stands for an ordered field. (Think of the two examples F' = C and F' = R.)
A problem P is defined as being a subset
PCF™xF"

We say that a function
fF" — F"

solves the problem P if and only if

graph(f) C P.

In order to investigate these objects from the point of view of computations, we use the
model of a computation tree. Let us shortly describe this notion, a detailed discussion

can be found in [10, 13, 14, 16].

As the set Q of operational symbols and the set R of relational symbols (together with
arity functions) we take

Q:FU{O,1,+,—,*,/}

and
Rk ={=}
(or R = {<} when we consider an ordered field (F, <)).
Let sq,s9,... be variables denoting storage locations in a computer. A computation tree

T of type (2, R) with output list of length n is a binary tree together with a function that
assigns

e to any simple vertex an operational instruction of the form
Sit=w(Syy, .y 85,),
where k >0, 4, j1,..., 7 > 0 and w € Q k-ary,
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e to any branching vertex a test instruction of the form

10(5117 s 7Sjk)7

where & > 0, ji,...,5¢ > 0 and p € R k-ary
and

e to any leaf an output instruction of the form

(5117 .. '75jn)7

where j1,...,7, > 0.

The assumption that all output lists have the same length n is made in order to sim-
plify notation and is not essential. When fixing additionally an input length m such a
computation tree T' computes a partial function

[P S def(f) — F"

in the following way: given £ € ' we assign to the variables at the root of the tree the
values (&1, ...,&m,00,00,...). Wesay £ € def(f) if and only if the directed path starting
from the root and defined in an obvious manner by the computation tree T' leads to a
leaf. If this is the case the values of the output instruction are (fi(§),..., fu(£)). It is
easy to see that for a directed path 7 from the root to the leaf the set

D. CF™

of inputs defining this path 7 is a locally closed semialgebraic set and that the restriction
of f to D, is restriction of some rational function.

Now we are going to define the complexity of problems and functions. We chose
Ostrowski’s complexity measure, e.g. we count only the “noncsalar” multiplications and
divisions and allow the linear operations and comparisons for free. We do so not only for
simplicity and elegance, but mainly because only this measure provides us with enough
flexibility to succeed in proving lower bounds. Let be given a computation tree T and a
path 7 from the root to a leaf. The cost of 7 is defined as the number of vertices of =
equipped with an operational instruction w € {*, /}. By maximizing over all such paths 7
of T we get the cost cost(T) of the computation tree. As the complexity C'(f) of a partial
function

[P S def(f) — F"

we then define
C(f) := min{cost(T) : T computation tree computing f}
and finally we call
C(P):=min{C(f): f a function solving P}
the complexity of the problem P C F™ x F".

The sequence of the matrix multiplication problems

MAMU( = {((A,B),C) € (F*" x F'"Yy x ¥ AB = C'}
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is fundamental in linear algebra. We put
M, := C(MAMU, ;. »)-

As a lower bound only the estimate M, > 2nr? — 1 is known ([2, 9]). The asymptotic
behaviour of (M,,) is measured by the so-called exponent w of matrix multiplication

w:=inf{r e R: M, = O(n")}.

The currently best known estimate is 2 < w < 2.376 ([5, 17]). Of course we can assign to
any sequence P = (P,) of problems an exponent

wp:=inf{r e R: C(P,) = O(n")}.

We will show that the exponent for various sequences of computational problems in linear
algebra equals the exponent of matrix multiplication.

We outline our method for giving lower bounds on the complexity of problems. To do
so we need the notion of the nonscalar complexity of a family of rational functions. Let
a subring A

Flag,...ixm] CAC F(ay,...,2m)

of the field of rational functions in the variables zq,...,z, be given which contains
the polynomial ring Flxy,...,2,]. Let fi,...,f, € A. The nonscalar complexity
La(fiy..oyfu)of fi,..., f, with respect to the subring A is defined as the minimal num-
ber of multiplications and divisions by units in the ring A that are sufficient to compute
fi,- .y fu from the input set F'U{xq,...,2,,} by a straight line program using the oper-
ations F'U{0,1,+,—,*,/}. Let P C F™ x I'" be a problem, f : F™ — F™ be an optimal
function solving P and T be an optimal computation tree computing f. Then we know

C(P)=C(f) = cost(T).
We already noticed that we have a finite disjoint union

" = | { D : m directed path from root to leaf},

where D, denotes the set of inputs defining the path 7. The sets D, are locally closed and
the restriction of f to D, is restriction of some rational function. There must be a path
7o such that D, is Zariski-dense in I’ for the simple reason that F is irreducible. Let
us call such a path 7y a typical one. If we are considering a field ' without ordering, there
is exactly one typical path, because in this case a nonempty locally closed set contains a
nonempty Zariski-open subset and two of them must intersect. However, if we are working
over an ordered field (F, <) there might be many typical paths. Let mg be a typical one.
Then we can consider the g; := f; |p, as elements of F'(zy,...,2,) and we easily see that

cost(T') > cost(mo) > Lppy(gis-- - 9n)

and
V€€ Dy (& (91(6),- - 9n(8)) € P.
We proved



Lemma 1 Let P C F™ X F™ be a problem. Then there are rational functions
JiseoosGn € F(a,...,2y) such that

(& (qn(E),...,ga(8))) € P for Zariski-almost all £ € F™
and

C(P) =z Lrw(91;- - 9n)-

So we gave a lower bound for the complexity of a problem in terms of the nonscalar com-
plexity of rational functions from which we only know that they satisfy certain relations.
For dealing with the nonscalar complexity of rational functions we will use some known
techniques that are listed in the next section.

3 Properties of the nonscalar complexity

Let us recall some ideas from [15]. For A € F we consider the local rings
Oy:={f € Flxq,...,xn): [ defined at X }.

It is well known that O, is contained in the ring F'[yi, ..., y.] of formal power series via
the imbedding
Or = Flyi,- -y ym], i— A=y

So the image of an element f € O, is just the taylor expansion of f around A.

Lemma 2 For given fi,..., fo € F(x1,...,2y) the equality

LF(@)(flv . 7fn) = Lox(flv' . 7fn)
holds for Zariski-almost all X € F'™,

We omit the trivial proof.

The next theorem will be used throughout in the paper.

Theorem 1 (“Vermeidung von Divisionen” [15]) Let A € F™, fi,..., [, € O\, d €
N. Then

d(d — 1)

..... 9 Lox(flv"'vfn)v

where Y77 fi(k)(g) denotes the taylor expansion of f; around the point X.

Observe that the complexity on the lefthand side is defined with respect to
the polynomial ring Flyi,...,yn]. A well known consequence of the statement above is

M, = C(MAMU ) = Ly ({3 XYy : 1 <4, 5 < n}).

=1

The proof of Theorem 1 (see [15]) immediately leads to
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Corollary 1 Let F' be algebraically closed. Let A € F™ fi,....f, € Ox,d € N. Then

there exists a closed cone 7 C F™ with vertex in the origin such that

d(d — 1)

codim(Z) < 5

Lo, (fiy---y [n)

and

Zc{neF™: fP)=0foralie{l,...,n}, ke{2,...,d}}

Fvery irreducible component of Z is again a cone with vertex in the origin.

This corollary will be of help in section 6 of this paper.

We will frequently use the simple fact that a linear substitution does not increase the
complexity, provided we are working in the polynomial ring. More precisely, let be

fl,...,anF[l'l,...,l'm], AEmem,

and put
g = fZ(Ag)
Then
Lpwg(g1s---290) < Lwg(fr- ooy fa)-

Finally we cite the important

Theorem 2 (“Derivation Theorem” [3]) Let f € F(xy,...,2m) be a rational func-

tion. Then
of of

—_— — ) <

4 Relative upper bounds

We recall the definitions of the computational problems we are interested in.

o t-COMPRESSION:

[t—CPR, = {((An,...,A),(By,...,Bi_1)) € (F™™) x (F™")=!
A1A2 o At — B1B2 o Bt—l}-

(t > 3 a natural number).

e KERNEL:

KER, :={(A,B) € F*™"x| | F™: B ¢ F*0=FW) R(A) 4 R(B) =n, AB = 0}.

=0
e ORTHOGONAL BASIS:
OGB, :={(A,S) € ™" x Gl, : A symmetric, SAST diagonal }.



o SPARSE REPRESENTATION:
SPR, :={(A,(S,T,B)) € F"*" x (GI? x F*™"): B = SAT, |supp(B)| < en}
(¢ > 0 a fixed constant).
o SPARSENESS TRANSFORMATION MATRICES:
SPTM, :={(A,(S,T)) € F™" x GI2 : |supp(SAT)| < en}

(¢ > 0 a fixed constant).

The following theorem gives an upper bound relative to the complexity of matrix multi-
plication.

Theorem 3 The exponent for any of the sequences of problems
t—CPR, KER, OGB, SPR, SPTM

is less or equal the exponent w of matriz multiplication.

The proof is based on ideas from [4, 11, 12]. See also [1, pages 233-240]. The proceeding is
to subdivide the occuring matrices into blocks, to perform a sort of Gaussian Elimination
blockwise using a fast hypothetical matrix multiplication algorithm, and then to continue
recursively. We leave the details to the reader. For the problem t—C' PR the statement is
of course trivial.

Remark: Theorem 3 remains true when we count all rational operations and tests
at unit cost.

5 Relative lower bounds

We are going to prove lower bounds in terms of M, for the various problems defined
above.

Theorem 4
1
Proof: Let A, B,C be n x n—matrices whose entries are indeterminates over I’ and put
K := F(A;, Bij, Cij). By Lemma 1 there are U,V € K™*" such that
UV = ABC

and

Lix(U,V) < C(3=CPR,).



If we take into consideration that the trace of the product of two n x n—matrices can be
computed with n? multiplications, we get

Li(Tr(ABC)) < C(3—CPR,) + n

FPurthermore

dTr(ABC)
e — B 'Z"
aAij ( C)]
Theorem 2 implies now

M, = Li(BC) < 3C(3—CPR,) + 3n?,

which completes the proof of the theorem. a

We do not know how to prove a similar lower bound for the problem sequences t—C' PR
when t > 3.

Theorem 5

C([(ERn) > MLn/4J'

Proof: W.l.o.g. we may assume that n = 4m, m € N. Let X,Y denote 2m x 2m-
matrices whose entries are indeterminates over F'. We put K := F(X,;,Y;;) and R :=
F[X.;,Y;;]. When we apply Lemma 1 to the restricted problem

e 5 n . 2mXx2m " nXi
IxERnﬂ({(O 0 ¢ erF ><Z|:(|)F \
we see that there exists a matrix B € K**4" with
R(B)=2m, (X,Y)B=0

and

Lk(B) < C(KER,).
There must be a matrix U € Gy, (K) such that

XU
b- (520

Lg(X7'U,Y™'U) < C(KER,).
;From Lemma 2 we obtain that there are &,n € Gly,,(F) such that det U(£,n) # 0 and

We therefore have

Loy, (XTTU,Y W) = Lg(X~'U,Y'0).

(¢&m

We may replace U by UU(£,n)! and therefore assume that U(&,n) = E. Application of
the automorphism

w € AutpK : o(X) = Xf_l,c,o(Y) = Yn_l

shows that we can assume w.l.o.g. that £ = = E. Furthermore

Loy (B = X)WVA(E=Y) V) = Lo, , (X710, YU,

10



when we put V:=U(F — X, F —Y). We use now Theorem 1 with d = 2 and get
Le(X?+ XWW 4 WO 2 yw® 4 W) < Lo (B = X)W, (E—Y)™'W),

where W = E + WO £ W@ 4 ... denotes the taylor expansion of W around the point
(0,0). The complexity on the lefthand side can be estimated from below by

Lp(X? = Y24 (X —Y)WW)

Xll X12 Yll Y12
X:(Xm Xzz)aY:(Ym Yzz)

where X% Y% € K™*™ and make the linear substitution v

H(X) ;:(XOQI §;z)7¢(Y) ‘:(8 XOH)'

One calculates immediately that

We write

12 y21 12 22
¢(X2—Y2+(X—Y)W<1>):(X XTATX )

P Q
for some P, () € K™*™. Therefore

M, = Lp(X"?X*) < C(KER,).

Theorem 6

1

Proof W.l.o.g. we may assume that n = 4m, m € N. Let A denote a symmetric
n X n—matrix whose entries are indeterminates over F.. Put K := F(A;; 11 < 7 <n) and
R = F[A;; : 1 <j <n]. By Lemma 1 there is a matrix S € G/,(K) such that

D := SAST is diagonal

and
Lk (S) < C(OGB,).
By writing
Dyy 1 1
Lol =D | =SAET ] ),
Dy, 1 1

we see that D can be computed from A and S with 2n? multiplications. We have
Tr(A™) = Tr(ST(D™'S)).

Therefore
Li(Tr(A™"Y) < L (S) +4n® + n.
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We proceed now similar as in [6]. Let V € F™*™ be symmetric and € be an indeterminate
over K. Then

Tr

e 2
aA” ‘/ZJ —I_ 0(6 )

Tr((A+ V)™ = J+ey, 0

i<j
On the other hand one easily calculates
Tr((A+ GV)_I) = TT(A_l) — eTr(A_1VA_1) + 0(62).
Comparing the two equations we get
OTr(A™Y) { —2(A7Y); il Ay
0A; | —(A7);; , otherwise.
JFrom the Derivation Theorem 2 we deduce

%LK(A_Q) < Lg(Tr(A™Y) < Lg(S) +4n* +n.

By Lemma 2 there exists a symmetric matrix o € GI,,(F') such that
Loy(A7%) = Li(A™2),
Furthermore
Lo, (A™%) = Lo, (A7) = Lo, (B — A)7%).
Using Theorem 1 with d = 2 and taking into account that
(E—A)7?=E+2A+3A4%+ ...

we get

La(A4?) < Loy((E — A7)
We divide the matrix A into m x m-blocks AY € K™*™ and define the substitution v by

0 0 A0

0 0 A% 0

¢(A) T (AIS)T (AZS)T 0 0

0 0 0 0

Obviously
AIB(AIB)T AIB(AZB)T 0 0
A23(A13)T A23(A23)T 0 0
2 __

0 0 0 0

where W = (AIS)TAI?’ + (A23)TA23. Hence
M, = Lr(A®(A®)T) < Lr(A?) < 3(C(OGB,) + 4n* +n).

Let ¢ > 0 be fixed. We call a matrix A € F"*" sparse if and only if

|[supp(A)| < en.

Observe that an arbitrary n X n—matrix can be multiplied with a sparse matrix using only
en? multiplications.
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Theorem 7

1
C(SPR,) > §MLn/3J — (2 + 10¢/3)n”.

Proof W..o.g. we can assume that n = 3m, m € N. Let A denote a n X n—matrix
whose entries are indeterminates over F'. We set K := F(A;;: 1,7 <n)and R:= F[A,;:
1,7 < n]. By Lemma 1 there exist ST € Gl,(K) and a sparse matrix B € K™™ such
that

B =SAT
and

Li(S,T,B) < C(SPR,).
Lemma 2 shows that there is a matrix o € GI,,(F') such that
Lo (3.7, B) = Ly(3.7.B)
and ) )
S(a), T(a) € GL,(F).

By applying the substitution A — a(FE — A) we see that there exist S, T € GI,(K),
B € K™*" satisfying
B = S(E— AT,

S(0),T(0) € Gl,,(F), B sparse
and o
LOO(SvTvB) = Loa(SvTvB)‘
Let S=50O 4+ W4 T=7O470 4 B=pBO4 RO  denote the taylor

expansions around 0 of S, 7T, B respectively. The matrices B*) are also sparse. We put
B := BO).
Theorem 1 implies

Lp(S@,56) 73 TG < 3Ly, (S, T, B).

By comparing the third order terms in the taylor expansion of both sides of the equation
(FE—-A)'=TB"'S

we get ' 4
Tr(A% = S Tr(TO(B DMy,
i+j+k=3
We are going to show now that the products (B~ S® (j 4+ k < 3) can be computed
from B®, BG) §(3) SG) with only 10en? multiplications:

A short calculation yields (put v := (B®)™1)

(B™HW = —yBWy, (1)
(B = =By +yBWyBMy, (2)
(B_l)(?’) = —yBO~ 4+ yBAyBWy 4 yBU~N B~y 4 4 By gy g, (3)

Observe furthermore that a product
RRNLDRERLDIL]
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where

vy € GL(F), T'e K™

and
¥, € K™ sparse (i = 1,...,1),

can be computed from the matrices ¥;, I' with only c¢tn? nonscalar multiplications. (Com-
pute from the righthand side to the left.) Taking this into account the upper bound 10cn?
follows now easily.

The result of this intermediate reasoning gives the upper bound
Lr(Tr(A%) <3C(SPR,)+ 6n* 4+ 10cn®.
We subdivide A into m x m-blocks AY € K™*™ and make the substitution 1) defined by
0 A2 0
P(A) = 0 0 A% .
AP0 0
One easily verifies
A12A23A31 0 0
@Z)(A)S — 0 A23A31A12 0
0 0 31412 423

and hence

D(Tr(A%)) = Tr(y(A)°) = 3Tr(AZ A A,

So we showed that
LR(A12A23A31) < LR(TT(AS)).

When we apply the Derivation Theorem 2 we finally get

1
ng < LR(A12A23A31)
which implies the desired bound

1
§Mm — (24 10¢/3)n* < C(SPR,).

As an immediate consequence of Theorem 3 and Theorems 4 - 7 we get the following

Corollary 2 Any of the sequences of problems
3—CPR, KER, OGB, SPR

has as exponent the exponent w of matriz multiplication, provided that w > 2.

For the sequence SPTM we will only make a statement about the exponent. We need
the following
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Lemma 3 The sequence of problems MAMU, , | /z)) has an exponent strictly smaller
than the exponent w of matriz multiplication, provided that w > 2.

Proof: We assume w > 2 and chose ¢ satisfying 0 < ¢ < w/2—1. For a suitable constant
d > 0 and all squares n we have

Therefore
C(MAMU, , /) = O(n/? ¥ty
But w/2 4+ ¢+ 1 < w and the statement follows. O

Theorem 8 The exponent for the sequence SPTM equals the exponent w of matriz mul-
tiplication, provided that w > 2.

Proof: Suppose w > 2. Since we already proved Theorem 7 it is sufficient to show the
following:

Given (A,S5,T) € F™" x GI? and the information that B := SAT is sparse, then we
can compute the matrix B with cost O(n"), where 7 < w.

So let (A,S5,T) € F™"™ x GI? be given. We put B := SAT and assume that B is
sparse. For ¢ € {1,...,n} we define

[i :{]E{l,,n}Bw%O}

veey

M :=max{i : |L;] < [vn]}.
Then
n—M < eyn.

We now chose a matrix U € F™*lV7] with the property that all its subdeterminants are
different from zero. According to the preceeding remark we can compute the product C'

C:= BV = S(A(TU))

with cost O(n7), where 7 < w. However, the first M rows of B can be computed from C
without any nonscalar operations: for a fixed ¢ < [\/n]| we have

J€l;
Now observe that (Ujz)jer, k=1,..1,| s an invertible matrix with entries in F.

In order to get the remaining rows of B we do simply the following. We chose a matrix
V € Gl,—p(F) and put
W:=(0,V) ¢ Fr(n=M)xn_

The product
WB=(WSA)T

can be computed with only O(n") nonscalar operations.
But from W B we can obtain (Bi;)i=m+1....n, j=1,..,» Without using any nonscalar opera-
tions. O
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6 Absolute lower bounds

The aim of this section is to show that the assumption “w > 27 in Corollary 2 and
Theorem 8 is unnecessary. We will do so by proving lower bounds of the type

2
constant - n

for the various computational problems in linear algebra we considered before. There is
no harm in assuming that [ is algebraically closed.

We need the following
Lemma 4 The set
A, i={ac F"" :a® =0}

is a closed subvariety of the affine variety F*". For its dimension we have the estimate

n?.

dim(A,) <

[OVH N W)

This inequality is sharp if n is a multiple of 3.

This lemma is of course classical and can be proved by standard techniques. For the
reader’s convenience we add a proof.

Proof: Let 3 be a matrix in Jordan normal form, i.e.

B =diag(J(ni, A1), ..., J(ne, Ar)),

where (ny,...,n¢) is a partition of n and J(n;, A;) is defined as
A1 0 0
T =| O T 0 | g o,
0 0 X 1
0 0 0 A

We denote the dimension of the conjugacy class of 3 by dy(ny,...,n). It is easy to see
that
ﬁSZO <~ \V/Z)\ZZO,TLZS?)

This implies at once
dim(A,) = max{do(n1,...,n¢) : (n1,...,n:) partition of n with n; <3 for all ¢}.

The value of dy(nq,...,n:) can be exactly determined, namely

do(ny,. .., ne) = n® — Z(n;)Za

where (n/,...,n}) denotes the partition dual to (ny,...,n:). (See [8, page 192].) Using
this fact we conclude

dim(A,,) :max{n2—(a+b—|—c)2—(a—|—b)2—a2 :n=3a+2b+c¢ a,bceN} §2n2/3,
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with equality when n is a multiple of 3. O

Remark: We sketch here a more elementary proof method, which, however, only

vields the bound 8n?/9.

By thinking of the Jordan normal form of a matrix we see that
A, C{a€e F™": R(a) < 2n/3}.
Employing the well known fact
dim({a € F"™" : R(a) <r})=7r(2n —71)

we obtain

dim({a € F™" : R(a) < 2n/3}) < 8n?/9.

Theorem 9

ligr_lﬂi)gf C(SPTM,)n™* >

O] =

Proof: Let A denote a n X n—-matrix whose entries are indeterminates over ['.
Put K := F(A;; : 1,5 < n). The same reasonings as in the proof of Theorem 8 show that
there are

S, T € Gl,(K), B K™ such that
B = S(E— AT,

S(0),T(0) € Gl,,(F), B sparse

and

Lo, (S,T) < C(SPTM,).

Suppose that Lo,(S,T) < en? for some € > 0. Corollary 1 says that there is a closed cone
Z C F™*" with vertex in the origin satisfying

codim(Z) < 3en®

and
Z C{ae P 8B =178 =0 for k=2,3).
iFrom (F — A)™' = TB™'S we get
A= ¥ TO(B=1H0) gk,
i+jtk=3

We define
Z'i=7ZN{ae F"7" B(k)(oz) =0for k=1,2,3 }.

7' is again a closed cone with vertex in the origin and we have

codimpnxn(Z") < 3en? + 3en,
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k)

since the matrices B are sparse. From the equations (1) (3) of section 5 follows

7' c{ae F"  (B~H®(a) =0 for k =1,2,3}.
We have therefore shown that
7' c{a€ F"™" o’ =0}
Lemma 4 and a comparison of dimensions lead to the inequality
3en? 4 3en > n2/3

or

€+c¢/n>1/9.

If ¢ < 1/9 we get a contradiction for sufficiently large n. So we have proved that
Ve < 1/9 3ng ¥Yn > ng C(SPTM,) > en,

which proves the theorem.
Theorem 10

lminfC(3—CPR.)n™ >

liminf C(OGB, )™ >

liminf C(SPR,)n™* >

L
500 9
Since the proof is very similar to the previous one, we only give some hints.
3 — C'PR: Consider the restricted problem
{(A, (U, V) € F™ " x (F™")?: A= UV},
OGB: Use
dim({a € F™" : o symmetric, R(a) <r})=rn—r(r—1)/2
in order to show that
dim({a € F™" : a symmetric, o® = 0}) < 4n*/9 + n/3.

SPR: The statement follows trivially from C(SPR,) > C(SPTM,).

Putting all our information together we get the final result

Theorem 11 Any of the sequences of problems
3—CPR, KFER, OGB, SPR, SPTM

has as exponent the exponent w of matriz multiplication.
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