
Computational Complexity of Learning Read-Once Formulas overDi�erent BasesLisa Hellerstein �Laboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139Marek Karpinski yDept. of Computer ScienceUniversity of Bonn5300 Bonn 1andInternational Computer Science InstituteBerkeley, CaliforniaAbstractWe study computational complexity of learning read-once formulas over di�erent booleanbases. In particular we design a polynomial time algorithm for learning read-once formulasover a threshold basis. The algorithm works in time O(n3) using O(n3) membership queries.By the result of [Angluin, Hellerstein, Karpinski, 1989] on the corresponding unate class ofboolean functions, this gives a polynomial time learning algorithm for arbitrary read-onceformulas over a threshold basis with negation using membership and equivalence queries.Furthermore we study the structural notion of nondegeneracy in the threshold formulasgeneralizing the result of [Heiman, Newman, Wigderson, 1990] on the uniqueness of read-once formulas over di�erent boolean bases and derive a negative result on learnability ofnondegenerate read-once formulas over the basis (AND, XOR).�Supported by a Grant from the Siemens Corporation and an ONR Grant N00014-85-K-0445. The portion ofthis research was done while the author was visiting the Dept. of Computer Science, University of Bonn.ySupported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1and by the SERC Grant GR-E 68297 1

1 IntroductionRead-once formulas are boolean formulas over the basis (AND, OR, NOT) in which each vari-able in the formula appears exactly once. Various papers in learning theory have consideredthe learnability of read-once formulas in di�erent learning models [A 89], [AHK 89], [HK 89].Functions expressible by read-once formulas have been shown to have many interesting combi-natorial properties [KLNSW 88]. In this paper, we prove some results about classes of read-onceformulas over bases other than (AND, OR, NOT).Angluin, Hellerstein, and Karpinski [AHK 89] showed that read-once formulas over the basis(AND, OR) can be exactly learned in polynomial time using membership queries. In this paper,we extend the result by showing that read-once formulas over a threshold basis (which we callROTB formulas) can be learned exactly in polynomial time using membership queries. By theresults of Angluin, Hellerstein, and Karpinski [AHK 89], it follows that the corresponding unateclass (which includes the class of read-once formulas) can be learned exactly in polynomial timeusing membership and equivalence queries. 1Heiman, Newman, and Wigderson proved in [HNW 90] that each distinct, non-degenerate,ROTB formula expresses a unique function. Two formulas are distinct if they are not tree-isomorphic. The de�nition of Heiman, Newman, and Wigderson is that a ROTB formula isnon-degenerate if it does not contain either two adjacent AND gates on a root-leaf path, or twoadjacent OR gates on root-leaf path.We generalize this uniqueness result to apply to classes of read-once formulas over booleanbases B satisfying the following four properties:1. B is a symmetric basis (i.e. each gate of B computes a symmetric function).2. if f is a function computed by a gate in B, then �f (the complement of f) is not a monotonefunction.3. if f is a function computed by a gate in B, then B does not contain a gate computing �f .4. f does not contain a gate computing the function XOR.We begin by generalizing the condition of degeneracy to apply to read-once formulas overbases having the above four properties. We say that a read-once formula over such a basis isdegenerate if it contains two adjacent gates along a root leaf path that can be \collapsed", i.e.replaced by a single gate from B. We prove that a formula over such a basis is degenerate i�it contains either two ORs, two ANDs, two XORs in adjacent positions along a root-leaf path.(Therefore, our de�nition of degeneracy includes the de�nition of Heiman, Newman, and Wigder-son [HNW 90].) We end by proving that if B is a basis satisfying the above four properties,then each distinct non-degenerate read-once formula over B expresses a unique function.1A similar result has been also obtained independently by T. R. Hancock, cf. [H 90].2

2 PreliminariesThe variable set Vn is de�ned to be fX1; X2; : : : ; Xng. If V is any subset of Vn, 1V denotes thevector that assigns 1 to every element of V and 0 to every element of Vn � V . Similarly, 0V isthe complement of 1V | it assigns 0 to every element of V and 1 to every element of V � Vn.Let f be a monotone boolean function of n arguments. A set of variables V � Vn is aminterm of f if for every vector X that assigns 1 to every variable in S we have f(X) = 1, andthis property does not hold for any proper subset S0 of S. A set T of variables is a maxtermof f if for any assignment y that assigns 0 to all the variables in T we have f(y) = 0, and thisproperty does not hold for any proper subset T 0 of T .A boolean formula is unate if all negations in the formula occur next to the variables, all(other) gates in the formula compute monotone functions, and for every variable x in the formula,either x always occurs with a negation, or it always occurs without a negation.If f is a read-once formula over any basis B, and X and Y are two variables in f , then wede�ne lca(X; Y) to be the lowest common ancestor of X and Y in f .3 Learning Read-Once Formulas over the Threshold BasisLet Thmk denote the boolean function on m variables which has the value 1 if at least k of them variables are set to 1, and which has the value 0 otherwise. The boolean threshold basis is thebasis containing all gates computing functions of the form Thmk . Note that an AND gate withm inputs computes Thmm, and an OR gate with m inputs computes Thm1 .We present an algorithm for exactly learning ROTB formulas in polynomial time usingmembership queries.3.1 FindminEvery ROTB formula expresses a monotone function. Our algorithm for learning ROTB func-tions makes repeated use of the standard greedy procedure for �nding minterms of a monotonefunction f de�ned on Vn, using a membership oracle for f . This procedure takes as input asubset V of Vn known to contain a minterm of f , and outputs a minterm contained in V . Themethod is a greedy search, removing as many variables from V as possible while preserving thecondition that f(1V) = 1. We change the standard procedure slightly by forcing it to test thevariables in Q in increasing order of their indices (e.g. X1 is tested before X3).
3

We present the procedure, Findmin f , below for the bene�t of the reader. The superscriptindicates that the procedure uses a membership oracle for f .Suppose the variables of V are fXi1 ; : : : ; Xikg, and i1 < i2 < : : : < ik.Findmin f (V)1. S0 := V .2. For j = 1 to k do:(a) Use a membership query to test whether f(1S0�fXijg) = 1.If so, then S0 := S0 � fXijg.3. Output S0.A dual procedure Findmax f takes as input a subset Q containing a maxterm of f , andoutputs a maxterm contained in Q.3.2 The basic subroutineOur algorithm for learning ROTB formulas using membership queries relies on a basic subroutinecalles LcaRootT f . LcaRootT f takes as input a variable X , a minterm S, and a maxterm T , (ofthe target formula f) such that S \T = fXg. It outputs the set of variables Y in T �fXg suchthat lca(X; Y) is the root of f . A dual subroutine, LcaRootSf , �nds the set of variables Y inS � fXg such that lca(X; Y) is the root of f .We defer the presentation of theses subroutines to section 3.5.3.3 Outline of the AlgorithmIn this Section we present an outline of the algorithm. We present the full algorithm in Section4. The algorithm is recursive, and it learns the target formula f depth �rst.To begin, the algorithm generates a minterm S and a maxterm T such that S \ T = fXg.Suppose the root of f computes Thmk and that the inputs to the root are the outputs of thesubformulas f1; f2; : : : ; fm. Without loss of generality, assume X is a variable of f1. Because fis read-once, S is composed of minterms of exactly k of f1; f2; : : : ; fm (including f1). Withoutloss of generality, assume it is composed of the minterms of f1; f2; : : : ; fk. T is composed of themaxterms of m � k + 1 of f1; f2; : : : ; fm. It is well known that every minterm and maxterm ofa formula have a non-empty intersection. Because S \ T = fXg, T does not contain maxtermsof f2; f3; : : : ; fk. It follows that T contains maxterms of fk+1; fk+2; : : : ; fm, and of f1.The algorithm calls LcaRootT f to �nd the set T 0 of variables Y in T � fXg such thatlca(X; Y) is the root of f . This set is the union of the maxterms of fk+1; fk+2; : : : ; fm appearingin T . The algorithm then calls LcaRootSf to �nd the set S0 which is the union of the minterms4

of f2; f3; : : : ; fk appearing in S. The projection of f induced by setting the variables in S0 to1, and the variables in T 0 to 0, is equal to f1. The algorithm �nds f1 recursively by simulatingcalls to the membership oracle for f1 using the oracle for f .The algorithm then �nds the subformulas f2; f3; : : : ; fk as follows. Until all variables inS � fXg have appeared in some recursively generated subformula, the algorithm executes thefollowing loop. First it picks some arbitrary Y in S�fXg, such that Y has not yet appeared ina recursively generated subformula of f . Let f 0 2 ff2; : : : ; fmg be the subformula containing Y .The algorithm uses the greedy procedure to generate a maxterm TY such that S \TY = fY g. Itthen uses LcaRootT f and LcaRootSf on S and TY (as it did with S and T) to �nd a projectionof f that is equal to f 0. As the �nal step of the loop, the algorithm �nds f 0 recursively. Bycounting the number of iterations of this loop, the algorithm learns the value of k.In a dual way, the algorithm recursively generates fk+1; : : : ; fm and learns the value of m�k.The algorithm ends by outputing the formula Thmk (f1; f2; : : : ; fm).3.4 LemmasThe algorithm is based on �ve lemmas.Lemma 1 For any monotone function g, if S is a minterm of g, and X is a variable in S, thenthere exists a maxterm T of g such that T \ S = fXg. Dually, if T is a maxterm, and X is inT , then there exists a minterm S of g such that T \ S = fXg.Proof: A maxterm of g is a minimal set which has a non-empty intersection with eachminterm of g. Consider the set (Vn � S) [X . This set intersects S because it contains X .Every other minterm S0 of S must contain an element not in S � fXg, because otherwise S 0is a subset of S. Hence S 0 contains a variable in (Vn � S) [fXg. Therefore (Vn � S) [fXgintersects every minterm, implying that (Vn � S) [fXg must contain a maxterm. The dual isproved analogously. �Lemma 2 Let f be a ROTB formula de�ned on the variable set Vn. Let g be a subformula of f ,and let Z be the set of variables appearing in g. Let V 0 be a subset of Vn such that Z � V 0, andf(1V 0) = 1. Let S be the minterm of f output by Findmin f(V 0). We prove that if S \ Z 6= ;,then S \ Z is the minterm of g output by Findmin g(Z).Proof: Consider the execution of Findmin f(V 0).At each iteration of the loop, a variable Xij is tested (using a membership query) to seewhether it should be eliminated from S 0.Assume S \ Z = ;.In order to show the lemma, it su�ces to show the following two facts.1. Findmin f(V 0) tests the variables of Z in the same order as Findmin g(Z)5

2. For every Xi in Z, the output of the membership query in Findmin f (V 0) that tests Xi isthe same as the output of the membership query in Findmin g(Z) that tests Xi.Fact 1 follows immediately from the de�nition of Findmin, which speci�es that the variablesin the input set are tested in increasing order of their indices.Fact 2 follows from an observation and a claim. The jth iteration of the loop inFindmin f (V 0), tests whether Xij should be included in the output minterm S0. The obser-vation is that if Xij =2 Z, then the value of S 0 \ Z at the start of the jth iteration of the loop isthe same as the value of S 0 \Z after the iteration. Thus the value of S0\Z remains unchangedwhile Findmin tests variables not in Z.The claim is that if Xij 2 Z, then f(1s0�fXijg) (i.e. the value returned by the membershipquery in the jth iteration of the loop) is equal to g(1S0\Z�fXijg). A simple inductive argumentcombining the observation and the claim proves Fact 2.We now prove the claim. By assumption S \ Z = ;. Because g is a subformula of f , fis read-once, and S is a minterm of f , S must contain exactly one minterm of g. After everyiteration of the loop in Findmin f(V 0), S0 contains a set which is a superset of S. S containsa minterm of g, and therefore g(1V 0) = 1. By monotonicity, g(1S0) = 1 after every iteration ofthe loop. If f(1S0�fXijg) = 1, then Xij is removed from S 0. Therefore, f(1S0�fXijg) = 1 impliesthat g(1S0�fXij g) = g(1S0\Z�fXijg) = 1.Conversely, suppose g(1S0\Z�fXijg) = 1. Then g(1S0�fXijg) = 1. The assignment 1S0�fXijgis obtained from the assignment 1S0 by changing the setting of the variable Xij from 1 to 0. Sinceg(1S0) = g(1S0�fXij g) = 1, changing the assignment of Xij in 1S0 from 1 to 0 does not a�ect theoutput of g. The formula f is read-once, and g is a subformula of f , so changing the assignmentof Xij in 1S0 from 1 to 0 does not a�ect the output of f either. Therefore f(1S0�fXij g) = 1. �Lemma 3 Let f be a ROTB formula de�ned on the variable set Vn. Let S be the mintermof f output by Findmin f(Vn), and let X be a variable in S. Let T be the maxterm output byFindmin f ((Vn � S) [fXg). If Y is a variable of T � fXg, and SY is the minterm output byFindmin f ((Vn � T) [fY g), then1) SY � (SY \ S) is a minterm of the subformula rooted at the child of lca(X; Y) containing Y .2) S � (SY \ S) is a minterm of the subformula rooted at the child of lca(X; Y) containing X.Proof: Consider a gate on the path from X to the root. Suppose the gate computes Thmk . Tcontains maxterms of exactly m� k+ 1 of the m subformulas whose outputs are inputs to thisgate, including the subformula containing X . S contains a minterm of the subformula containingX , and of the remaining k � 1 subformulas of which T does not contain a maxterm.Similarly, if we consider a gate on the path from Y to the root computing Thmk , T will containmaxterms of exactly m�k+1 of the m subformulas, including the subformula containing Y . SY6

will contain a minterm of the subformula containing Y , and of the remaining k� 1 subformulasof which T does not contain a maxterm.Let A be a gate which is on the path from lca(X; Y) to the root such that A is not equalto lca(X; Y). S and SY contain minterms of the same subformulas (rooted at children of A),and by Lemma 2, they will contain the same minterms of these subformulas. Similarly, S andSY will contain the same minterms of the subformulas rooted at children of lca(X; Y) that donot contain X or Y , and for which T does not contain a maxterm. The two parts of the lemmafollow easily from these facts. �Lemma 4 Let f be a ROTB formula de�ned on the variable set Vn. Let S be the output ofFindmin f (V 0) for some V 0 � Vn, and let T be the output of Findmax f(V 00) for some V 00 � Vn.Let S \T = fXg. For all Y in T �fXg, let SY be the minterm output by Findmin f((Vn�T)[fY g). If there exists a Y in T � fXg such that S \ SY is empty, thenfY 2 T � fXgj lca(X; Y) = root of fg = fY 2 T � fXgj SY \ S = ;g:If there is no Y in T � fXg such that S \ SY is empty, thenfY2 T � fXg j lca(X;Y) = root of fg = fY2 T � fXg j 8Z2 S � (SY \ S); S [SY � fZgcontains a mintermg:Proof: There are two cases.� Case 1: The root of f is an OR.In this case there is at least one variable Y in T � fXg such that lca(X; Y) is the root.SY is a minterm of the subformula that contains Y and is rooted at a child of the root off . It follows that S \ SY = ;.Now let Y be a member of T � fXg such that lca(X; Y) is not the root. Let A be thegate which is the child of the root, on the path from X to the root. The gate A is also onthe path from Y to the root. Since f is a (non-degenerate) ROTB formula, A is not anOR gate. It follows that S must contain minterms of at least two subformulas rooted atchildren of A. Only one of these subformulas contains X . Let h be one of the subformulasnot containing X . Because SY \ T = fY g, SY must contain a minterm of h, and byLemma 2 it will contain the same minterm of h as S. Therefore S \ SY is not empty.� Case 2: Root of f is not an OR.Suppose the root is Thmk (k 6= 1). By the same reasoning as in the second part of Case 1,for all Y in T � fXg, S \ SY is not empty.If lca(X; Y) = root, then for all Z in S \ SY , S [SY � fZg contains a minterm, becausesetting S [SY to 1 forces k+1 of the subformulas rooted at children of the root of f to 1.If lca(X; Y) is not the root, then setting S [SY to 1 forces exactly k of the subformulasrooted at children of the root to be 1. By Lemmas 2 and 3, S\SY must contain a mintermof some subformula h rooted at a child of the root of f , such that h does not contain X(or Y). Let Z be a variable in the minterm of h contained in S\SY . Setting S [SY �fZgto 1 will force only k � 1 of the wires into the root to 1, because S [SY � fZg does notcontain a minterm of h. Therefore S [SY � fZg does not contain a minterm of f . �7

The duals of the above lemmas also hold.We present the basic subroutines LcaRootS and LcaRootT , and then we present the completealgorithm.3.5 LcaRootT and LcaRootSLcaRootT takes as input a minterm S, a maxterm T , and a variable X , such that S \T = fXg.S is the output of Findmin f (V 00), where V 00 is a subset of Vn.The output of LcaRootT is the set of variables Y in T �fXg such that lca(X; Y) is the rootof f . LcaRootT f (S; T;X)1. for all Y in T � fXg SY := Findmin f((Vn � T) [fY g).2. if there exists a Y in T�fXg such that S\SY is empty then return(fY j SY \S = ;g).3. Q := ;for all Y in T � fXg dofor all Z in S \ SY doif f(1S[SY �fZg) = 0 thenQ := Q [fY g.4. Output T � fXg �QA dual subroutine �nds the set of Y in S � fXg such that lca(X; Y) is the root of f .4 The Algorithm ROTBLearnf1. S := Findmin f (Vn)2. Pick an X in S.T := Findmax f((Vn � S) [fXg)3. if S = T = fXg, then return(X) (the formula f is equal to X)4. T 0 := LcaRootT f (S; T;X)5. S0 := LcaRootSf(S; T;X)6. (a) k := 1 (counts number of inputs to root of f set to 1 by a minterm of f)(b) j := 1 (counts number of inputs to root of f set to 0 by a maxterm of f)8

(c) Q := S0(d) R := T 0(e) Let f1 be the projection of f induced by setting the variables in S0 to 1, and thevariables in T 0 to 0. Recursively learn f1 by running ROTBLearnf1 , simulating callsto the membership oracle of f1 with calls to the membership oracle of f .7. while Q 6= ; do(a) Pick an X 0 in Q.(b) TX 0 := Findmax f ((Vn � S) [fX 0g)(c) S0 := LcaRootSf(S; TX 0; X 0)(d) k := k + 1.(e) Q := Q \ S 0.(f) Let fk be the projection of f induced by setting the variables in S 0 to 1, and thevariables in T 0 to 0. Recursively learn fk by running ROTBLearnfk , simulating callsto the membership oracle of fk with calls to the membership oracle of f .8. while R not empty do(a) Pick an X 0 in R.(b) SX 0 := Findmin f((Vn � T) [fX 0g)(c) T 0 := LcaRootT f (S 0X ; T;X 0).(d) j := j + 1.(e) R := R \ T 0.(f) Let fk+j�1 be the projection of f induced by setting the variables in S0X \S to 1, andthe variables in T 0 to 0. Recursively learn fk+j�1 by running ROTBLearnfk+j�1 ,simulating calls to the membership oracle of fk+j�1 with calls to the membershiporacle of f .9. Output the formula Thk+j�1k (f1; f2; f3; � � � ; fk+j�1)5 Correctness and ComplexityTheorem 1 There is a learning algorithm that exactly identi�es any ROTB formula in timeO(n3) using O(n3) membership queries.Proof: Consider the algorithm described in the above sections. The correctness of thealgorithm follows from the �ve lemmas proved in Section 3.4.The routines Findmin and Findmax each take time O(n) and makeO(n) queries. The routineLcaRootT makes O(n2) queries and can be implemented to run in time O(n2) (this includes thecalls to Findmin). 9

The complexity of the main algorithm can be calculated by \charging" the costs of the stepsto the edges and nodes of the target formula f . In each execution of ROTBf , we charge someof the steps to f , and some of the steps to the edges joining the root to its children. Recursivecalls to ROTBfk are charged recursively to the subformula fk .More speci�cally, we charge steps 1 - 6(d), step 9, and the checking of the loop conditionsin steps 7 and 8, to the root of f . We recursively charge calls to ROTBLearnfk in steps 6(e),7(f), and 8(f) to the subformulas fk . For each iteration of step 7, we charge steps 7(a) through7(e) to the edge leading from the root of f to the root of the subformula fk de�ned in step 7(f).Similarly, for each iteration of step 8, we charge steps 8(a) through 8(e) to the edge leading fromthe root of f to the root of the subformula fk+j�1 de�ned in step 8(f). Thus at each executionof ROTBf , we charge time O(n2) to the root of f and O(n2) membership queries to the root off . We also charge time O(n2) and O(n2) membership queries to each of the edges joining theroot of f to its children.The total number of nodes in f is O(n), and the total number of edges is O(n). Thereforethe algorithm takes time O(n3) and makes O(n3) queries. �Corollary 1.1 There is a learning algorithm that exactly identi�es any read-once formula overthe basis consisting of the threshold formulas and NOT (ROTB with negations) in time O(n4)using O(n4) membership queries and O(n) equivalence queries.Proof: The class of formulas mentioned in this theorem is the unate extension of the classof ROTB formulas. The theorem follows directly from the results of Angluin, Hellerstein andKarpinski [AHK 89], who showed that if a class M can be learned in time O(nk) with O(nj)membership queries, then the corresponding unate class can be learned in time O(nk+1) withO(nj+1) membership queries, and O(n) equivalence queries. �6 The uniqueness of read-once formulas6.1 De�nitionsA boolean formula over a symmetric basis B is degenerate if it contains two gates Cand D appearing on adjacent levels, D's output is an input to C, such that C computesthe function f(x1; x2; � � � ; xk), D computes the function g(y1; y2; � � � ; ym), and the functionh(z1; z2; � � � ; zm+k�1) = f(g(z1; z2; � � � ; zm); zm+1; zm+2; � � � ; zm+k�1) is computed by a gate inB.
10

�� ��D �� ��C���'& % $%''%hz1z2z3z4 z5z6z7z8Figure 0In a degenerate formula, the gates C and D could be replaced by a gate Q computing thefunction h.De�nition: A boolean function f is monotonically-decreasing if the function �f is monotone.6.2 Conditions for degeneracyTheorem 2 A boolean formula over a symmetric basis of non-constant, non-monotonically-decreasing functions, not containing the function XOR, is degenerate if and only if it containsat least one of the following pairs of gates on adjacent levels:1. OR, OR2. XOR, XOR3. AND, ANDProof: It is clear that if a formula contains any one of the pairs of gates in the above list onadjacent levels, then it is degenerate.We now prove that the absence of these pairs of gates implies that the formula is not degen-erate.Let f(x1; � � � ; xk) and g(y1; � � � ; ym) be two symmetric functions in a basis B satisfy-ing the conditions of the theorem, and not appearing as a pair in the above list. Leth(z1; z2; � � � ; zm; zm+1; � � � ; zm+k�1) = f(g(z1; z2; � � � ; zm); zm+1; zm+2; � � � ; zm+k�1). We provethat h is not a symmetric function, and therefore h is not computed by a gate in B.Because f and g are symmetric functions, their outputs depend only upon the number ofinput variables that are set to 1. By an abuse of notation, let f(q)(0 � q � k) be the value of fon an input assignment with exactly q input variables set to 1. De�ne g(q) similarly.� Case 1: f is not AND or OR, and g is not XOR.The functions f and g are symmetric and so their values depend only on the number ofinput variables that are set to 1. g is not XOR (and by assumption it's not XOR), so there11

exists an r such that 0 � r � m� 1, and g(r) = g(r+ 1).Suppose g(r) = g(r + 1) = 1. f is not monotonically-decreasing and not OR, sothere is some q0 such that 1 � q0 � k � 1, f(q0) = 0, and f(q0 + 1) = 1. Thenf(g(1r; 0m�r; 1q0); 0k�(q0+1)) = f(q0 + 1) and f(g(1r+1; 0m�r); 1q0�1; 0k�q0) = f(q0) = 0(where 0i denotes i 0's separated by commas, and 1r denotes r 1's separated by commas),so h is not symmetric.Conversely, suppose g(r) = g(r + 1) = 0. We �rst claim that there exists a q such that0 � q � k � 2 and f(q) 6= f(q + 1).Suppose not. Then f(0) = f(1) = � � � = f(k � 1). f is not a constant function, sof(k) 6= f(k � 1). It follows that either f(0) = � � � = f(k � 1) = 0 and f(k) = 1,or f(0) = � � � = f(k � 1) = 1 and f(k) = 0. In the �rst case f is AND, and inthe second case f is NAND, which is a monotonically-decreasing function. Contradic-tion. Therefore, there exists a q such that 0 � q � k � 2 and f(q) 6= f(q + 1). Thenf(g(1r; 0m�r); 1q+1; 0k�(q+2)) = f(q + 1). But f(g(1r+1; 0m�(r+1)); 1q; 0k�(q+1)) = f(q),and so h is not symmetric.� Case 2: f is AND.By assumption, in this case g cannot be AND.If there exists an r 2 [0::m � 1] such that g(r) = 1 and g(r + 1) = 0, thenf(g(1r; 0m�r); 1k�1) = f(k) = 1, but f(g(1r+1; 0m�(r+1)); 1k�2; 0) = f(k � 2) = 0, soh is not symmetric.If there is no r 2 [0::m � 1] such that g(r) = 1 and g(r + 1) = 0, then g is mono-tone. Because g is non-constant but not AND, g(m � 1) = g(m) = 1. Thereforef(g(1m); 1k�2; 0) = f(k � 1) = 0, but f(g(1m�1; 0); 1k�1) = f(k) = 1, and h is notsymmetric.� Case 3: f is OR.By assumption, in this case g cannot be OR.If there exists an r 2 [0::m � 1] such that g(r) = 1 and g(r + 1) = 0, thenf(g(1r; 0m�r); 1; 0k�2) = f(2) = 1, but f(g(1r+1; 0m�(r+1)); 0k�1) = f(0) = 0, so h isnot symmetric.If there is no r 2 [0::m�1] such that g(r) = 1 and g(r+1) = 0, then g is monotone. Becauseg is non-constant but not OR, g(0) = g(1) = 0. Therefore f(g(1; 0m�1); 0k�1) = f(0) = 0,but f(g(0m); 1; 0k�2) = f(1) = 1, and h is not symmetric.� Case 4: g is XOR.In this case f cannot be XOR (and by assumption, it's not XOR). Because f cannot beconstant either, there must exist a q 2 [0::k � 2] such that f(q) 6= f(q + 2). g is XOR,so f(g(1; 0m�1); 1q+1; 0k�(q+2)) = f(q+2) and f(g(1; 1; 0m�2); 1q; 0k�(q+1)) = f(q), so h is12

not symmetric. �Theorem 3 Let B be a symmetric basis of non-constant, non-monotonically-decreasing func-tions, not containing the function XOR. Then every non-degenerate read-once formula over Bexpresses a distinct function.Proof: Let f be a non-degenerate read-once formula over a symmetric basis B of non-constant, non-monotonically-decreasing functions not containing the function XOR. Let f bede�ned on the variable set X = fx1; x2; � � � ; xng. The proof is by induction on the number ofgates and input wires in f . When f consists of just one input wire, the theorem clearly holds.We now prove the inductive step.Because each gate in f is non-monotonically-decreasing, an easy induction argument onthe number of gates in f proves that for any xi 2 fx1; � � � ; xkg, there exist two assignmentsA : X �! f0; 1gk and A0 : X �! f0; 1gk such that f(A) = 0, f(A0) = 1, A(xi) = 0, A0(xi) = 1,and for all j 6= i, A(xj) = A0(xj).We say that two variables xi and xj in X are symmetric with respect to f if chang-ing the positions of the variables xi and xj in the formula f does not a�ect the functioncomputed by the formula. That is, xi and xj are symmetric with respect to f if for ev-ery assignment A to X , the values of f(x1; x2; � � � ; xi�1; xi; xi+1; � � � ; xj�1; xj ; xj+1; � � � ; xk) andf(x1; x2; � � � ; xi�1; xj; xi+1; � � � ; xj�1; xi; xj+1; � � � ; xk) are equal on assignment A.We now prove Claim 1.Claim 1: xi and xj are symmetric with respect to f i� xi and xj are children of a common nodein f . If xi and xj are children of a common node in f , then they are clearly symmetricwith respect to f . Conversely, suppose that xi and xj are not children of a common node.Then the lowest common ancestor is a gate computing a function g(w1; w2; � � � ; ws). Oneof the inputs to the gate (say w1) is a formula p that depends on xi, and another (say w2)is a formula q that depends on xj . (Figure 1)�� ��g��� @@@����� AAAAA ����� AAAAAp qxi xjFigure 1Because xi and xj are not children of a common node, at least one of p and q containsat least one gate. Without loss of generality, assume p contains at least one gate. Letg1(y1; � � � ; yr) be the function computed by the gate at the root of p. Let p0 be the subfor-mula of p that is rooted at a child of the root of p, and contains the variable xi. (Figure 2)13

�� ��g��� AAAAA�� ��g1

 JJJJ ����� AAAAAp0 qxi xjFigure 2Let h(z1; � � � ; zr+s�1) = g(g1(z1; � � � ; zr); zr+1; � � � ; zr+s�1). The formula f is not de-generate, so h(z1; � � � ; zr+s�1) is not symmetric. Therefore, there exists an assignmentA : fz1; � � � ; zr+s�1g �! f0; 1g such that A(z1) = 0, A(zr+1) = 1, and the value ofg(g1(z1; z2; � � � ; zr); zr+1; zr+2; � � � ; zr+s�1) under the assignment A is not equal to the valueof g(g1(zr+1; z2; � � � ; zr); z1; zr+2; � � � ; zr+s�1) under the assignment A. We have already ar-gued that there must exist two assignments B and B0 to the variables in p0 such thatB(xi) = 0 and B0(xi) = 1, B and B0 di�er only in their assignment to xi, and p0(B) = 0while p0(B0) = 1. Similarly, there are two assignments C and C 0 to the variables in qsuch that C(xi) = 0 and C0(xi) = 1, C and C0 di�er only in their assignment to xi, andf(C) = 0 while f(C 0) = 1.The assignment B sets xi to 0, and the output of p0 (which is the input z1 to the formulah) to 0. The assignment C0 sets xj to 1, and the output of q (which is the input zr+1 tothe formula h) to 1. The assignment B and C0 can be extended to the other variables off in such a way that all inputs z1 � � �zr+s�1 to h are set according to the assignment A.Call this new assignment D. De�ne a new assignment D0 which is the same as D exceptthat the value of xi is 1, and the value of xj is 0. The assignment D0 sets the inputsz1 � � �zr+s�1 to h according to the assignment A. Therefore, xi and xj are not symmetricwith respect to the subformula of f rooted at g. Because f depends on the output of g, itfollows that xi and xj are not symmetric with respect to f . This completes the proof ofClaim 1.It follows from the claim that given the truth table of f it is possible to determine whichvariables of f are children of the same node (i.e. siblings).Consider a set of variables Y that are siblings, and whose parent has no other childrenbesides these variables. Let g be the parent gate. The value of f depends on the outputof g. Consider any assignment to the variables in X � Y . The induced function on Y iseither g; �g, or a constant. Furthermore, there exists some assignment to the variables inX � Y such that the induced function is not constant. (Figure 3)14

 AAAAAA @@@@@@@@@@����� ��y1 y2 y3 y4 y5Figure 3Now consider a set of (at least 2) variables Y that are siblings, and whose parent gate ghas children other than Y . Consider the induced functions formed by assigning values tothe variables in X � Y . It follows directly from Claim 2 (proved below) that if g is notXOR, AND, XOR or OR, then the induced functions include two distinct functions f1 andf2 such that f1 and f2 are not constant, and f1 6= f2. Thus if the parent of the variablesin Y is not one of the above gates, then the truth table of f will reveal that g has childrenother than the variables in Y . (Figure 4) ���� AAAAAAAAAA eeeeeeeeeeeee����� ��y1 y2 y3 y4 y5 AAA��� @@@Figure 4The uniqueness of the read-once formula f can be proved by the following argument. fmust have some gate g such that all of g's inputs are input wires (variables). By examiningthe truth table of f , we determine which variables are siblings. For every set Y that isa maximal set of siblings, we examine the induced functions formed by assigning valuesto X � Y . If the induced functions include two distinct nonconstant functions f1 and f2such that f1 6= f2, then we know that g has children that are not input wires (variables).Otherwise we know that either g is AND, OR, or XOR, or g has no children other thanthe variables in Y .Ther must exist some set of siblings Y whose parent g has no children other than thevariables in Y . Given the truth table of f , we can �nd one such set of variables Y , andexamine the induced functions formed by assigning values to X and Y . The induced15

functions include only g, g, and constants. The basis from which f is formed does notcontain one gate computing a function, and another computing its complement. Thus byexamining the induced functions on Y we can uniquely determine g. If g is not AND, OR,or XOR, (by assumption it is not XOR) then consider the read-once formula f 0 obtainedfrom f by replacing the gate g by a new input variable (wire) v. The truth table of f 0 isdetermined by f and g. By induction, f 0 is unique. f can be reconstructed from f 0 byreplacing v with g and its children. Therefore f is unique. If g is AND, OR, or XOR,then consider the read-once formula f 0 obtained from f by replacing the input wires forthe variables in Y with a single input wire for a new variable v (and eliminating g if thiscauses g to have just one input). The truth table of f 0 is also determined by f and g inthis case. Given f 0, we can reconstruct f as follows. If the parent of v is not g, we replacev with g and its children (the variables in Y were the only children of g). Otherwise, wereplace v with the input wires for the variables in Y (the parent of v is the parent of thevariables in Y).We now prove Claim 2.Claim 2: Let g be a non-constant, non-monotonically-decreasing, symmetric, boolean functionnot computing OR, AND, XOR, or XOR. Let g be de�ned on the variable set X =fx1; � � � ; xng, where n � 3. Let Y � X such that jY j � 2. Then there exist two assignmentP and P 0 to the variables of X � Y such that the functions gP and gP 0 induced on g by Pand P 0 are not constant, and gP 6= gP 0 .Proof: We �rst argue that it su�ces to prove the above theorem for the case jY j = 2.Suppose the theorem holds for jY j = 2. If jY j > 2, then let Y 0 be a subset of Y such thatjY 0j = 2. Thus there exist assignments P and P 0 to the variables in X � Y 0 such thatgP and gP 0 are not constant, and gP 6= gP 0 . Let Q be the assignment to the variables inX � Y that sets the variables in X � Y precisely according to P (but leaves the variablesin Y � Y 0 unassigned). gP and gP 0 are projections of gQ and gQ0 induced by assigningvalues to the variables in Y � Y 0. Since gP and gP 0 are not constant, and gP 6= gP 0 , itfollows that gQ and gQ0 are not constant, and gQ 6= gQ0.By the above argument, we can assume jY j = 2. g is a symmetric function. With everysymmetric function on n variables, we can associate a binary string a0a1a2 � � �an in whichbit ai is the output of the function when exactly i of the variables of the n variables areset to 1, and the others are set to 0. If g1 and g2 are two symmetric functions on nvariables, then g1 = g2 if and only if the two strings are complementary (i.e. each bitin the binary string associated with g1 is the complement of the corresponding bit in thestring associated with g2).Let K = k0k1 � � �kn be the string associated with the function g. Consider the assignmentP setting exactly i of the variables in X � Y to 1, and setting the other variables inX � Y to 0. Let gP be the function induced by P . The binary string associated with gPis kiki+1ki+2. It follows that Claim 2 holds i� there exist 2 distinct substrings kiki+1ki+2and kjkj+1kj+2 of K such that neither of the substrings is all 0's or all 1's, and the twostrings are not complementary. We now prove this is indeed true. The proof is by caseanalysis. 16

Case 1: k0 = 1 and k1 = 1g is not constant or monotonically-decreasing, so K is a member of the language ex-pressed by the regular expression 11+00�1f0; 1g�. Therefore K contains the substring110, and one of the two substrings 100 and 101. 110 is not the complement of either100 or 101.Case 2: k0 = 1 and k1 = 0g is not XOR, and it is non-monotonically-decreasing. K is therefore a member ofone of the following languages:� 1000*1 f0,1g: K contains 100 and 001� 1011f0,1g*: K contains 101 and 011� 1010f10g*0f0,1g*: K contains 101 and 100� 1010f10g*11f0,1g*: K contains 101 and 011Case 3: k0 = 0 and k1 = 0g is not constant or AND, so K is in one of the following two languages:� 000*11f0,1g*: K contains 001 and 011� 000*10f0,1g*: K contains 001 and 010Case 4: k0 = 0 and k1 = 1g is not XOR or OR, so K is in one of the following four languages:� 0111*0f0,1g*: K contains 011 and 110� 0100f0,1g*: K contains 010 and 100� 0101f01g*1f0,1g*: K contains 010 and 011� 0101f0,1g*00f0,1g*: K contains 010 and 100This complete the proof of Claim 2, and of the theorem. �We have restricted our discussion to bases not including monotonically-decreasing functions.Non-degenerate read-once formulas over bases containing monotonically-decreasing functionsare not necessarily unique. For instance, OR(NAND(x; y), NAND(w; z)) is non-degenerate andequal to NAND(x; y; w; z). Non-degenerate read-once formulas over the basis (AND, OR, NOT)are not unique unless you add the restriction that the negations must be at the leaves.The function XOR presents a related problem. Note that over the basis (XOR, AND),for example, the formula XOR(a; (XOR(b(XOR(c; d))))) is not degenerate, and it is equal toXOR(a; b; c; d). An additional problem with the function XOR is that two XOR's on adjacentlevels of a formula compute the XOR of all their inputs. Thus if XOR is included in a basis, itscomplement XOR is also, in e�ect, included in the basis. It is very easy to come up with examplesin which having both a function and its complement in a basis leads to distinct non-degenerateread-once formulas that compute the same function.In general, then, in order to prove uniqueness for bases which don't have the propertieslisted in the theorem, it would be necessary to introduce other conditions in addition to non-degeneracy. It is trivial to prove uniqueness if enough conditions are introduced (e.g. that theformula is the lexicographically smallest of all read-once formulas over the basis that compute17

the same function). We believe that the kinds of conditions that are interesting are those thathave the following property: Any read-once formula over the given basis that does not satisfythe conditions can be transformed in polynomial time into a read-once formula over the samebasis that satis�es the conditions.7 Uniqueness and learnabilityThe proof of Theorem 3 in the previous section gives an algoritm for learning read-once for-mulas over non-monotonically-decreasing, non-constant, symmetric bases not containing XOR,given the truth table of the formula. Unfortunately, the algorithm takes time exponential in n.The algorithm we give for learning ROTB formulas di�ers substantially from this truth tablealgorithm. One di�erence is that it learns the formula top-down, rather than bottom-up.Our algorithm for learning ROTB formulas in polynomial time with membership queriesexploits the structure of the target formula. The fact that the formula is unique allows us to dothis. However, as we prove in the next theorem, not all classes of read-once formulas over basesof the type treated in Theorem 3 can be learned in polynomial time using membership queriesalone.Theorem 4 The class of non-degenerate read-once formulas over the basis (AND, XOR) cannotbe learned in polynomial time using membership queries alone.Proof: Let X = fx1; x2; � � � ; xng be a set of variables such that n is even.Consider the class of read-once formulas over the basis (AND, XOR) that have the formAND((xi1XORxi2); (xi3XORxi4); (xi5XORxi6); � � � ; (xin�1XORxin)). There are n!=((n=2)! 2n=2)distinct formulas in this class. The satisfying assignments of a formula in this class set exactlyn=2 of the variables of X to 1. Consider an arbitrary assignment that sets exactly n=2 of thevariables of X to 1. This assignment will be a satisfying assignment for exactly (n=2)! of theformulas in the above class.Assume there is a polynomial time algorithm for learning the set of read-once formulas overthe basis (XOR, AND) using membership queries.Consider the following adversary strategy. Each time the algorithm queries the membershiporacle on an input that does not have exactly n=2 1's, give the answer 0. Each time the algorithmqueries the membership oracle on an input that has exactly n=2 1's, give the answer 0, also.Since the algorithm runs in polynomial time, it makes at most nk queries for some constantk. After nk queries, the total number of formulas in the above class that do not agree with theanswers given by the adversary is at most nk(n=2)!. The total number of formulas in the aboveclass that agree with the answers is at least n!=((n=2)! 2n=2) � nk(n=2)! > 1 for large enoughn. Therefore, the algorithm cannot distinguish between all formulas in the above class using nkqueries. Contradiction. � 18

8 Open ProblemsIt is an open question whether for every basis B of the type treated in Theorem 3, there existsa polynomial time algorithm for learning the read-once formulas over B using both membershipand equivalence queries.Another problem is to improve the complexity bounds of Theorem 1, and Corollary 1.1 onlearning read-once threshold formulas.References[A 87a] D. Angluin, Learning k-term DNF Formulas Using Queries andCounterexamples, Technical Report, Yale University, YALE/DCS/RR-559, 1987.[A 87b] D. Angluin, Learning Regular Sets from Queries and Counterexamples, Informa-tion and Computation, 75:87-106, 1987.[A 88] D. Angluin, Queries and Concept Learning, Machine Learning, 2:319-342, 1988.[A 89] D. Angluin, Using Queries to Identify �-Formulas, Technical Report, Yale Uni-versity, YALE/DCS/RR-694, 1989.[AHK 89] D. Angluin, L. Hellerstein, and M. Karpinski, Learning Read-Once Formulas withQueries, U. C. Berkeley Technical Report UCB CSD 89-258 and InternationalComputer Science Institute Technical Report TR 89-021, 1989, to appear inJ. ACM (1991).[BI 87] M. Blum and R. Impagliazzo, Generic Oracles and Oracle Classes, in Proc. 28thIEEE Symposium on Foundations of Computer Science, pages 118-126. IEEE,1987.[H 90] T. R. Hancock, Identifying �-Formula Decision Trees with Queries, TechnicalReport TR-16-90, Aiken Computation Laboratory, Harvard University, 1990.[HK 89] L. Hellerstein and M. Karpinski, Learning Read-Once Formulas Using Member-ship Queries, in Proc. of the Second Annual Workshop on Computational Learn-ing Theory, pages 146-161. Morgan Kaufmann Publishers, 1989.[HNW 90] R. Heiman, I. Newman, A. Wigderson, On Read Once Threshold Formulas andtheir Randomized Decision Tree Complexity, IEEE Symp. on Structures in Com-plexity 1990, pp. 78-87.[KLNSW 88] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson, CombinatorialCharacterization of Read Once Formulae, Presented at the Joint French-IsraeliBinational Symposium on Combinatorics and Algorithms, 1988. To appear inDiscrete Math. 19

[KLPV 87] M. Kearns, M. Li, L. Pitt, and L. Valiant, On the Learnability of Boolean For-mulae, in Proc. 19th ACM Symposium on Theory of Computing, pages 285-295.ACM, 1987.[KV 89] M. Kearns and L. Valiant, Cryptographic Limitations on Learning Boolean For-mulae and Finite Automata, in Proc 21st ACM Symposium on Theory of Com-puting, pages 433-444. ACM, 1989.[LMN 89] N. Linial, Y. Mansour, and N. Nisan, Constant Depth Circuits, Fourier Trans-form, and Learnability, in Proc 30th IEEE Symposium on Foundations of Com-puter Science, pages 574-579. IEEE, 1989.[PV 89] L. Pitt and L. Valiant, Computational Limitations on Learning from Examples,J. ACM, 35:965-984, 1988.[V 84] L. G. Valiant, A Theory of the Learnable, C. ACM, 27:1134-1142, 1984.

20

