Computational Complexity of Learning Read-Once Formulas over
Different Bases

Lisa Hellerstein *
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Marek Karpinski T
Dept. of Computer Science
University of Bonn
5300 Bonn 1

and
International Computer Science Institute
Berkeley, California

Abstract

We study computational complexity of learning read-once formulas over different boolean
bases. In particular we design a polynomial time algorithm for learning read-once formulas
over a threshold basis. The algorithm works in time O(n?®) using O(n®) membership queries.
By the result of [Angluin, Hellerstein, Karpinski, 1989] on the corresponding unate class of
boolean functions, this gives a polynomial time learning algorithm for arbitrary read-once
formulas over a threshold basis with negation using membership and equivalence queries.
Furthermore we study the structural notion of nondegeneracy in the threshold formulas
generalizing the result of [Heiman, Newman, Wigderson, 1990] on the uniqueness of read-
once formulas over different boolean bases and derive a negative result on learnability of
nondegenerate read-once formulas over the basis (AND, XOR).

*Supported by a Grant from the Siemens Corporation and an ONR Grant N00014-85-K-0445. The portion of
this research was done while the author was visiting the Dept. of Computer Science, University of Bonn.

'Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1
and by the SERC Grant GR-E 68297

1 Introduction

Read-once formulas are boolean formulas over the basis (AND, OR, NOT) in which each vari-
able in the formula appears exactly once. Various papers in learning theory have considered
the learnability of read-once formulas in different learning models [A 89], [AHK 89], [HK 89].
Functions expressible by read-once formulas have been shown to have many interesting combi-

natorial properties [KLNSW 88]. In this paper, we prove some results about classes of read-once
formulas over bases other than (AND, OR, NOT).

Angluin, Hellerstein, and Karpinski [AHK 89] showed that read-once formulas over the basis
(AND, OR) can be exactly learned in polynomial time using membership queries. In this paper,
we extend the result by showing that read-once formulas over a threshold basis (which we call
ROTB formulas) can be learned exactly in polynomial time using membership queries. By the
results of Angluin, Hellerstein, and Karpinski [AHK 89], it follows that the corresponding unate
class (which includes the class of read-once formulas) can be learned exactly in polynomial time

using membership and equivalence queries. !

Heiman, Newman, and Wigderson proved in [HNW 90] that each distinct, non-degenerate,
ROTB formula expresses a unique function. Two formulas are distinct if they are not tree-
isomorphic. The definition of Heiman, Newman, and Wigderson is that a ROTB formula is
non-degenerate if it does not contain either two adjacent AND gates on a root-leaf path, or two

adjacent OR gates on root-leaf path.

We generalize this uniqueness result to apply to classes of read-once formulas over boolean

bases B satisfying the following four properties:

1. B is a symmetric basis (i.e. each gate of B computes a symmetric function).

2. if fis a function computed by a gate in B, then f (the complement of f) is not a monotone

function.
3. if f is a function computed by a gate in B, then B does not contain a gate computing f.

4. f does not contain a gate computing the function XOR.

We begin by generalizing the condition of degeneracy to apply to read-once formulas over
bases having the above four properties. We say that a read-once formula over such a basis is
degenerate if it contains two adjacent gates along a root leaf path that can be “collapsed”, i.e.
replaced by a single gate from B. We prove that a formula over such a basis is degenerate iff
it contains either two ORs, two ANDs, two XORs in adjacent positions along a root-leaf path.
(Therefore, our definition of degeneracy includes the definition of Heiman, Newman, and Wigder-
son [HNW 90].) We end by proving that if B is a basis satisfying the above four properties,

then each distinct non-degenerate read-once formula over B expresses a unique function.

YA similar result has been also obtained independently by T. R. Hancock, cf. [H 90].

2 Preliminaries

The variable set V,, is defined to be { Xy, Xo,..., X,,}. If V is any subset of V,,, 1y denotes the
vector that assigns 1 to every element of V' and 0 to every element of V,, — V. Similarly, Oy is

the complement of 1y — it assigns 0 to every element of V' and 1 to every element of V — V..

Let f be a monotone boolean function of n arguments. A set of variables V C V), is a
minterm of f if for every vector X that assigns 1 to every variable in S we have f(X) =1, and
this property does not hold for any proper subset S’ of S. A set T of variables is a mazterm
of f if for any assignment y that assigns 0 to all the variables in 17" we have f(y) = 0, and this
property does not hold for any proper subset T/ of T.

A boolean formula is unate if all negations in the formula occur next to the variables, all
(other) gates in the formula compute monotone functions, and for every variable z in the formula,

either z always occurs with a negation, or it always occurs without a negation.

If f is a read-once formula over any basis B, and X and Y are two variables in f, then we
define lca(X,Y) to be the lowest common ancestor of X and Y in f.

3 Learning Read-Once Formulas over the Threshold Basis

Let T'h}* denote the boolean function on m variables which has the value 1 if at least k of the
m variables are set to 1, and which has the value 0 otherwise. The boolean threshold basis is the
basis containing all gates computing functions of the form Th7*. Note that an AND gate with

m inputs computes T'h7, and an OR gate with m inputs computes T'h]".

m?

We present an algorithm for exactly learning ROTB formulas in polynomial time using

membership queries.

3.1 Findmin

Every ROTB formula expresses a monotone function. Our algorithm for learning ROTB func-
tions makes repeated use of the standard greedy procedure for finding minterms of a monotone
function f defined on V,,, using a membership oracle for f. This procedure takes as input a
subset V' of V,, known to contain a minterm of f, and outputs a minterm contained in V. The
method is a greedy search, removing as many variables from V as possible while preserving the
condition that f(1y) = 1. We change the standard procedure slightly by forcing it to test the

variables in) in increasing order of their indices (e.g. X is tested before X3).

We present the procedure, Findmin/, below for the benefit of the reader. The superscript

indicates that the procedure uses a membership oracle for f.

Suppose the variables of V are {X; ,..., X; }, and ¢y < i3 < ... < .

Findminf (V)

1. 8" :=V.
2. For j =1 to k do:

(a) Use a membership query to test whether f(lg_yx, y) = 1.
J
If so, then S := 5" — { X, }.

3. Output S’

A dual procedure Findmaz! takes as input a subset () containing a maxterm of f, and

outputs a maxterm contained in Q).

3.2 The basic subroutine

Our algorithm for learning ROTB formulas using membership queries relies on a basic subroutine
calles LeaRootT?. LeaRootT/ takes as input a variable X, a minterm S, and a maxterm 7, (of
the target formula f) such that SNT = {X}. It outputs the set of variables Y in T'— {X } such
that lca(X,Y) is the root of f. A dual subroutine, LeaRootS”, finds the set of variables Y in
S — {X} such that lca(X,Y) is the root of f.

We defer the presentation of theses subroutines to section 3.5.

3.3 Outline of the Algorithm

In this Section we present an outline of the algorithm. We present the full algorithm in Section

4. The algorithm is recursive, and it learns the target formula f depth first.

To begin, the algorithm generates a minterm S and a maxterm 7" such that SNT = {X}.
Suppose the root of f computes T'h]* and that the inputs to the root are the outputs of the
subformulas fy, fo, ..., fm. Without loss of generality, assume X is a variable of f;. Because f
is read-once, S is composed of minterms of exactly k of fi, fa,..., f. (including f1). Without
loss of generality, assume it is composed of the minterms of fi, fo, ..., frx. T is composed of the
maxterms of m — k + 1 of fi, fo,..., fm. It is well known that every minterm and maxterm of
a formula have a non-empty intersection. Because SNT = {X}, T does not contain maxterms

of fo, f3,..., fx. It follows that T contains maxterms of fry1, fr+2,-..; fm, and of fi.

The algorithm calls LecaRootT! to find the set T’ of variables Y in T — {X} such that
leca(X,Y) is the root of f. This set is the union of the maxterms of fri1, fit2, ..., fm appearing
in T. The algorithm then calls LeaRootS’ to find the set S’ which is the union of the minterms

of f2, f3,..., fr appearing in S. The projection of f induced by setting the variables in S’ to
1, and the variables in T” to 0, is equal to f;. The algorithm finds f; recursively by simulating

calls to the membership oracle for f; using the oracle for f.

The algorithm then finds the subformulas f5, fs,..., fr as follows. Until all variables in
S — {X} have appeared in some recursively generated subformula, the algorithm executes the
following loop. First it picks some arbitrary ¥ in S —{X}, such that Y has not yet appeared in
a recursively generated subformula of f. Let f' € {fs,..., fn} be the subformula containing Y.
The algorithm uses the greedy procedure to generate a maxterm Ty such that SNTy = {Y}. It
then uses LeaRootT! and LeaRootSY on S and Ty (as it did with S and T') to find a projection
of f that is equal to f’. As the final step of the loop, the algorithm finds f’ recursively. By

counting the number of iterations of this loop, the algorithm learns the value of k.
In a dual way, the algorithm recursively generates fry1,..., fin and learns the value of m —k.

The algorithm ends by outputing the formula Th7"(fi, fo,. .., fm)-

3.4 Lemmas
The algorithm is based on five lemmas.

Lemma 1 For any monotone function g, if S is a minterm of g, and X is a variable in S, then
there exists a maxterm T of g such that T NS = {X}. Dually, if T is a maxzterm, and X is in
T, then there exists a minterm S of g such that TNS = {X}.

Proof: A maxterm of ¢ is a minimal set which has a non-empty intersection with each
minterm of ¢g. Consider the set (V,, —5) U X. This set intersects S because it contains X.
Every other minterm S’ of S must contain an element not in S — {X}, because otherwise S’
is a subset of S. Hence S’ contains a variable in (V,, — 5) U {X}. Therefore (V,, —S)U{X}
intersects every minterm, implying that (V,, — 5) U {X} must contain a maxterm. The dual is

proved analogously. [

Lemma 2 Let f be a ROTB formula defined on the variable set V,,. Let g be a subformula of f,
and let 7 be the set of variables appearing in g. Let V' be a subset of V,, such that 7 C V', and
f(ly) = 1. Let S be the minterm of f output by Findminf(V'). We prove that if S N7 # 0,
then SN Z is the minterm of g output by Findmin? (7).

Proof: Consider the execution of Findmin/(V').

At each iteration of the loop, a variable X; is tested (using a membership query) to see

whether it should be eliminated from S’.
Assume SN Z = 0.

In order to show the lemma, it suffices to show the following two facts.

1. Findmin/ (V') tests the variables of Z in the same order as Findmin?(Z)

2. For every X; in Z, the output of the membership query in Findminf(V’) that tests X is
the same as the output of the membership query in Findmin?(Z) that tests X,.

Fact 1 follows immediately from the definition of Findmin, which specifies that the variables

in the input set are tested in increasing order of their indices.

Fact 2 follows from an observation and a claim. The jth iteration of the loop in
Findmin/ (V'), tests whether X;; should be included in the output minterm S’. The obser-
vation is that if X; ¢ 7, then the value of S''N Z at the start of the jth iteration of the loop is
the same as the value of SN Z after the iteration. Thus the value of SN Z remains unchanged

while Findmin tests variables not in 7.

The claim is that if X; € Z, then f(1y_(x,) (i.e. the value returned by the membership
J
query in the jth iteration of the loop) is equal to g(lgnz_(x, })- A simple inductive argument
J

combining the observation and the claim proves Fact 2.

We now prove the claim. By assumption S N Z = (). Because g is a subformula of f, f
is read-once, and S is a minterm of f, S must contain exactly one minterm of g. After every
iteration of the loop in Findmin/(V'), S’ contains a set which is a superset of S. S contains
a minterm of ¢, and therefore g(1y/) = 1. By monotonicity, g(1s/) = 1 after every iteration of
the loop. If f(ls'—{Xij}) =1, then X;, is removed from S’. Therefore, f(lS/_{Xl.]}) = 1 implies
that g(1s—ix, 1) = 9(Lynz—1x, 1) = 1.

Conversely, suppose g(lgnz—(x, ;) = 1. Then g(1gi_gx, 1) = 1. The assignment 1g_(x, 3
J J J
is obtained from the assignment 1s/ by changing the setting of the variable X;, from 1 to 0. Since
g(1s) = g(lsi_rx, y) = 1, changing the assignment of X; in 15 from 1 to 0 does not affect the
J
output of g. The formula f is read-once, and g is a subformula of f, so changing the assignment
of X;, in 1g from 1 to 0 does not affect the output of f either. Therefore f(ls'—{X,-J}) =1. 0O

Lemma 3 Let [be a ROTB formula defined on the variable set V,,. Let S be the minterm
of [output by Findminf(Vn), and let X be a variable in S. Let T be the mazterm output by
Findmin! ((V,, — S)U{X}). IfY is a variable of T — {X}, and Sy is the minterm output by
Findminf ((V,, = T)U{Y}), then

1) Sy — (Sy NS) is a minterm of the subformula rooted at the child of lca(X,Y) containing Y .

2) S — (Sy NS) is a minterm of the subformula rooted at the child of lca(X,Y) containing X .

Proof: Consider a gate on the path from X to the root. Suppose the gate computes Thy*. T
contains maxterms of exactly m — k 4+ 1 of the m subformulas whose outputs are inputs to this
gate, including the subformula containing X . S contains a minterm of the subformula containing

X, and of the remaining £ — 1 subformulas of which T does not contain a maxterm.

Similarly, if we consider a gate on the path from Y to the root computing Th7", T' will contain

maxterms of exactly m —k+1 of the m subformulas, including the subformula containing Y. Sy

will contain a minterm of the subformula containing Y, and of the remaining £ — 1 subformulas

of which T does not contain a maxterm.

Let A be a gate which is on the path from lca(X,Y’) to the root such that A is not equal
to lea(X,Y). S and Sy contain minterms of the same subformulas (rooted at children of A),
and by Lemma 2, they will contain the same minterms of these subformulas. Similarly, .5 and
Sy will contain the same minterms of the subformulas rooted at children of lca(X,Y) that do
not contain X or Y, and for which T does not contain a maxterm. The two parts of the lemma

follow easily from these facts. [

Lemma 4 Let [be a ROTB formula defined on the variable set V,,. Let S be the output of
Findmin! (V') for some V' C V,, and let T be the output of Findmaz ! (V") for some V" C V,,.
Let SNT = {X}. ForallY inT —{X}, let Sy be the minterm output by Findminf((V, —T)U
{Y}). If there exists a Y inT — {X} such that S N Sy is empty, then

{YeT —{X}|lca(X,Y)=root of f} ={Y € T —{X}| Sy nS =10}
If there is no Y in T — {X} such that S NSy is empty, then

{YeT —{X}|lca(X,Y)=root of ff ={Ye T —{X}|VZe S— (Sy NS), SUSy —{Z}contains a minterm}.

Proof: There are two cases.

e Case 1: The root of f is an OR.

In this case there is at least one variable Y in 7' — {X} such that lca(X,Y) is the root.
Sy is a minterm of the subformula that contains Y and is rooted at a child of the root of

f. It follows that S N Sy = 0.

Now let Y be a member of T — {X} such that lca(X,Y) is not the root. Let A be the
gate which is the child of the root, on the path from X to the root. The gate A is also on
the path from Y to the root. Since f is a (non-degenerate) ROTB formula, A is not an
OR gate. It follows that S must contain minterms of at least two subformulas rooted at
children of A. Only one of these subformulas contains X. Let h be one of the subformulas
not containing X. Because Sy NT = {Y}, Sy must contain a minterm of A, and by

Lemma 2 it will contain the same minterm of & as S. Therefore S N Sy is not empty.

e Case 2: Root of f is not an OR.

Suppose the root is Th]" (k # 1). By the same reasoning as in the second part of Case 1,
for all Y in T'— {X}, SN Sy is not empty.

If lea(X,Y) = root, then for all Z in SN Sy, SUSy — {7} contains a minterm, because
setting S U .Sy to 1 forces k+ 1 of the subformulas rooted at children of the root of f to 1.

If lca(X,Y) is not the root, then setting S U Sy to 1 forces exactly k of the subformulas
rooted at children of the root to be 1. By Lemmas 2 and 3, SN.Sy must contain a minterm
of some subformula & rooted at a child of the root of f, such that A does not contain X
(orY'). Let Z be a variable in the minterm of & contained in SN Sy. Setting SUSy —{Z}
to 1 will force only k& — 1 of the wires into the root to 1, because S U Sy — {Z} does not

contain a minterm of h. Therefore S U Sy —{Z} does not contain a minterm of f. OJ

The duals of the above lemmas also hold.

We present the basic subroutines LeaRootS and LeaRoot T, and then we present the complete

algorithm.

3.5 LcaRootT and LcaRootS

LeaRootT takes as input a minterm S, a maxterm 7, and a variable X, such that SNT = {X}.
S is the output of Findmin/(V"), where V" is a subset of V.

The output of LeaRootT is the set of variables Y in T'— { X} such that lca(X,Y) is the root

of f.
LeaRootT (S, T, X)

1. forall Yin T — {X} Sy := Findmin/ ((V,, — T) U {Y'}).
2. if there exists a Y in 7'—{ X } such that SNSy is empty then return({Y| Sy NS =0}).
3. Q=10

forall Y in T — {X} do
for all Zin S NSy do

if f(15USy—{Z}) =0 then
Q=QU{Y}.

4. Output T —{X} - Q

A dual subroutine finds the set of ¥ in S — {X} such that lca(X,Y) is the root of f.

4 The Algorithm

ROTBLearn’

L. S := Findmin/ (V,,)

2. Pick an X in S.
T == Findmaz/((V,, — S)uU {X})

3. if S =T = {X}, then return(X) (the formula f is equal to X)
4. T" := LeaRootT! (S, T, X)
5. 8" := LeaRootS (S, T, X)

6. (a) k:=1 (counts number of inputs to root of f set to 1 by a minterm of f)

(b) j:=1 (counts number of inputs to root of f set to 0 by a maxterm of f)

(c) Q=5
(d) R:=T"
(e) Let fi be the projection of f induced by setting the variables in S’ to 1, and the

variables in 77 to 0. Recursively learn f; by running ROT BLearn/t, simulating calls

to the membership oracle of f; with calls to the membership oracle of f.

7. while Q # 0 do

(c) S":= LeaRootS’ (S, Tx, X')
(d) ki=k+ 1.
e) Q:=QnNYS

variables in 77 to 0. Recursively learn f; by running ROT BLearn/s | simulating calls

to the membership oracle of f; with calls to the membership oracle of f.
8. while R not empty do

(a) Pick an X' in R.

(b) Sx/ = Findmin/ ((V,, — T) U {X'})

(c) T" := LeaRootT/ (S%, T, X').

d) j=Jj+1
) R==RNT.
)

(e
(f) Let fry;—1 be the projection of f induced by setting the variables in S% NS to 1, and
the variables in T to 0. Recursively learn f4;_1 by running ROTBLearnf+i-1,
simulating calls to the membership oracle of fiy4;_1 with calls to the membership

oracle of f.

9. Output the formula Thz—l_j_l(]ﬁ7 J2y fav ooy Fraj-1)

5 Correctness and Complexity

Theorem 1 There is a learning algorithm that exactly identifies any ROTB formula in time
O(n?) using O(n®) membership queries.

Proof: Consider the algorithm described in the above sections. The correctness of the

algorithm follows from the five lemmas proved in Section 3.4.

The routines Findmin and Findmaz each take time O(n) and make O(n) queries. The routine
LeaRootT makes O(n?) queries and can be implemented to run in time O(n?) (this includes the

calls to Findmin).

The complexity of the main algorithm can be calculated by “charging” the costs of the steps
to the edges and nodes of the target formula f. In each execution of ROT B/, we charge some
of the steps to f, and some of the steps to the edges joining the root to its children. Recursive

calls to ROT B* are charged recursively to the subformula f;.

More specifically, we charge steps 1 - 6(d), step 9, and the checking of the loop conditions
in steps 7 and 8, to the root of f. We recursively charge calls to ROT BLearn/* in steps 6(e),
7(f), and 8(f) to the subformulas f;. For each iteration of step 7, we charge steps 7(a) through
7(e) to the edge leading from the root of f to the root of the subformula fi defined in step 7(f).
Similarly, for each iteration of step 8, we charge steps 8(a) through 8(e) to the edge leading from
the root of f to the root of the subformula fi1;_1 defined in step 8(f). Thus at each execution
of ROT B/, we charge time O(n?) to the root of f and O(n?) membership queries to the root of
f. We also charge time O(n?) and O(n?) membership queries to each of the edges joining the
root of f to its children.

The total number of nodes in f is O(n), and the total number of edges is O(n). Therefore
the algorithm takes time O(n?) and makes O(n?) queries. O

Corollary 1.1 There is a learning algorithm that exactly identifies any read-once formula over
the basis consisting of the threshold formulas and NOT (ROTB with negations) in time O(n*)
using O(n*) membership queries and O(n) equivalence queries.

Proof: The class of formulas mentioned in this theorem is the unate extension of the class
of ROTB formulas. The theorem follows directly from the results of Angluin, Hellerstein and
Karpinski [AHK 89], who showed that if a class M can be learned in time O(n*) with O(n/)
membership queries, then the corresponding unate class can be learned in time O(n**!) with

O(n’*1) membership queries, and O(n) equivalence queries. [J

6 The uniqueness of read-once formulas

6.1 Definitions

A boolean formula over a symmetric basis B is degenerate if it contains two gates C
and D appearing on adjacent levels, D’s output is an input to C, such that C' computes
the function f(x1,22,--,2k), D computes the function ¢(y1,¥y2, -, ¥m), and the function
h(z1, 22,y Zmak—1) = f(9(21, 22, *, Zm)s Zmt1, Zmt2s s Zmtk—1) 1S computed by a gate in
B.

10

C ¢)

25262728

2172223724

Figure 0

In a degenerate formula, the gates C' and D could be replaced by a gate) computing the

function h.

Definition: A boolean function f is monotonically-decreasing if the function f is monotone.

6.2 Conditions for degeneracy

Theorem 2 A boolean formula over a symmetric basis of non-constant, non-monotonically-
decreasing functions, not containing the function XOR, is degenerate if and only if it contains

at least one of the following pairs of gates on adjacent levels:

1. OR, OR
2. XOR, XOR

3. AND, AND

Proof: 1t is clear that if a formula contains any one of the pairs of gates in the above list on

adjacent levels, then it is degenerate.

We now prove that the absence of these pairs of gates implies that the formula is not degen-

erate.

Let f(z1,---,2zx) and g(y1,---,¥m) be two symmetric functions in a basis B satisfy-

ing the conditions of the theorem, and not appearing as a pair in the above list. Let

h(Zlv'Z?v"'7vazm+17"'7zm+k—1) = f(g(217227"'7Zm)7zm+lvzm+27"'7Zm+k—1)‘ We prove

that h is not a symmetric function, and therefore h is not computed by a gate in B.

Because f and g are symmetric functions, their outputs depend only upon the number of
input variables that are set to 1. By an abuse of notation, let f(¢)(0 < ¢ < k) be the value of f
on an input assignment with exactly ¢ input variables set to 1. Define g(g) similarly.

e Case 1: fis not AND or OR, and ¢ is not XOR.

The functions f and ¢ are symmetric and so their values depend only on the number of

input variables that are set to 1. ¢ is not XOR (and by assumption it’s not XOR), so there

11

exists an r such that 0 <r <m —1, and g(r) = g(r 4+ 1).

Suppose ¢(r) = ¢g(r+ 1) = 1. f is not monotonically-decreasing and not OR, so
there is some ¢’ such that 1 < ¢ < k-1, f(¢') = 0, and f(¢’ + 1) = 1. Then
Flg(r, 07, 17), 056 D) = f(gf 1) and f(g(I™,077), 177105 = f(¢) = 0
(where 0% denotes i 0’s separated by commas, and 17 denotes r 1’s separated by commas),

so h is not symmetric.

Conversely, suppose ¢(r) = ¢g(r + 1) = 0. We first claim that there exists a ¢ such that
0<q<k—2and f(g) # flg+1).

Suppose not. Then f(0) = f(1) = fk —) is not a constant function, so
f(k) # f(k—1). It follows that either f(O) = f(k—1) = 0 and f(k) = 1,
or f(0) = --- = f(k—1) =1 and f(k) = 0. In the first case f is AND, and in

the second case f is NAND, which is a monotonically-decreasing function. Contradic-
tion. Therefore, there exists a ¢ such that 0 < ¢ < k£ — 2 and f(¢) # f(¢+1). Then
Flg(rr,0m=7), 1H Ry = f(g 4 1), But f(g(17+,0mm D) 19, 08 () = £ (g),

and so h is not symmetric.
Case 2: [is AND.

By assumption, in this case g cannot be AND.

If there exists an r € [0..m — 1] such that g(r) = 1 and g(r + 1) = 0, then
flg(1m,0m=7), 15=Y) = f(k) = 1, but f(g(17t,0m=0+D) 15-20) = f(k —2) = 0, so

h is not symmetric.

If there is no r € [0..m — 1] such that ¢(r) = 1 and ¢g(r + 1) =
tone. Because ¢ is non-constant but not AND, g(m — 1) = g(m
flg(Im), 172,0) = f(k —1) = 0, but f(g(1™~1,0), 1Y) = f(k)

symmetric.

then ¢ is mono-

0,
) = 1. Therefore
= 1, and % is not

Case 3: [is OR.
By assumption, in this case g cannot be OR.

If there exists an r € [0..m — 1] such that g(r) = 1 and g(r + 1) = 0, then
flg(17,0m=7),1,0872) = f(2) = 1, but f(g(17t,0m=+D) 051 = £(0) = 0, s0 h is

not symmetric.

If there is no r € [0..m—1] such that ¢(r) = 1 and g(r+1) = 0, then g is monotone. Because
g is non-constant but not OR, g(0) = g(1) = 0. Therefore f(g(1,0™1),0*~1) = £(0) = 0,
but f(g(0™),1,0%7%) = f(1) = 1, and h is not symmetric.

Case 4: ¢ is XOR.

In this case f cannot be XOR (and by assumption, it’s not XOR). Because f cannot be
constant either, there must exist a ¢ € [0..k — 2] such that f(q) # f(¢+ 2). ¢ is XOR,
so f(g(1,0m71), 1771 0802y = f(g+2) and f(g(1,1,0m7%), 19,04 HD) = f(g), s0 h is

12

not symmetric. [

Theorem 3 Let B be a symmetric basis of non-constant, non-monotonically-decreasing func-
tions, not containing the function XOR. Then every non-degenerate read-once formula over B

expresses a distinct function.

Proof: Let [be a non-degenerate read-once formula over a symmetric basis B of non-
constant, non-monotonically-decreasing functions not containing the function XOR. Let f be
defined on the variable set X = {xy,29,---,2,}. The proof is by induction on the number of
gates and input wires in f. When f consists of just one input wire, the theorem clearly holds.

We now prove the inductive step.

Because each gate in f is non-monotonically-decreasing, an easy induction argument on
the number of gates in f proves that for any z; € {xy,---, 23}, there exist two assignments
A: X —{0,1}* and A’ : X — {0, 1} such that f(A) =0, f(A") =1, A(z;) =0, A'(z;) = 1,
and for all j # ¢, A(z;) = A'(x;).

We say that two variables z; and z; in X are symmetric with respect to f if chang-
ing the positions of the variables z; and z; in the formula f does not affect the function
computed by the formula. That is, z; and z; are symmetric with respect to f if for ev-
ery assignment A to X, the values of f(zy, 2o, -, %1, T4, i1, -+, Tjo1, T4, Lj41, - -+,) and

flz, 2o, - 21,25, @1, -, Tj—1, &4, Tj41, - - -, Tk) are equal on assignment A.

We now prove Claim 1.

Claim 1: 2; and z; are symmetric with respect to f iff 2; and z; are children of a common node
in f. If z; and 2; are children of a common node in f, then they are clearly symmetric
with respect to f. Conversely, suppose that z; and z; are not children of a common node.
Then the lowest common ancestor is a gate computing a function g(wy, wz, -+, ws). One
of the inputs to the gate (say wy) is a formula p that depends on z;, and another (say ws)

is a formula ¢ that depends on z;. (Figure 1)

p q
LT T
T Lj

Figure 1

Because z; and z; are not children of a common node, at least one of p and ¢ contains
at least one gate. Without loss of generality, assume p contains at least one gate. Let
g1(y1, -+, y,) be the function computed by the gate at the root of p. Let p’ be the subfor-

mula of p that is rooted at a child of the root of p, and contains the variable z;. (Figure 2)

13

g1
Y q
T T
T z;
Figure 2
Let h(z1,- -, zr4s—1) = g(91(21,- 1 20), Zrq1s s Zrgs—1). The formula f is not de-
generate, so h(z1, -+, z.45—1) is not symmetric. Therefore, there exists an assignment
A A{z, o Ze4s—1) — {0,1} such that A(z1) = 0, A(z,41) = 1, and the value of
9(g1(=1, 22, -+, 2r)s Zra1, Zrq2y - 7y Zr4s—1) under the assignment A is not equal to the value
of g(g1(zr41, 22, +, %), 21, Zr42, -+ Zr4s—1) under the assignment A. We have already ar-

gued that there must exist two assignments B and B’ to the variables in p’ such that
B(z;) = 0 and B'(2;) = 1, B and B’ differ only in their assignment to 2;, and p’(B) =0
while p’(B’) = 1. Similarly, there are two assignments C' and C” to the variables in ¢
such that C'(z;) = 0 and C’(z;) = 1, C' and C” differ only in their assignment to z;, and
f(C) =0 while f(C")=1.

The assignment B sets z; to 0, and the output of p’ (which is the input z; to the formula
h) to 0. The assignment C” sets x; to 1, and the output of ¢ (which is the input z,4; to
the formula h) to 1. The assignment B and C” can be extended to the other variables of
f in such a way that all inputs 2y ---2,45-1 to h are set according to the assignment A.
Call this new assignment D. Define a new assignment D’ which is the same as D except
that the value of #; is 1, and the value of z; is 0. The assignment D’ sets the inputs
21+ Zr4s—1 to I according to the assignment A. Therefore, z; and z; are not symmetric
with respect to the subformula of f rooted at g. Because f depends on the output of g, it
follows that x; and z; are not symmetric with respect to f. This completes the proof of
Claim 1.

It follows from the claim that given the truth table of f it is possible to determine which

variables of f are children of the same node (i.e. siblings).

Consider a set of variables Y that are siblings, and whose parent has no other children
besides these variables. Let g be the parent gate. The value of f depends on the output
of g. Consider any assignment to the variables in X — Y. The induced function on Y is
either g, g, or a constant. Furthermore, there exists some assignment to the variables in
X — Y such that the induced function is not constant. (Figure 3)

14

Y1 Y2 Y3 Ya Ys

Figure 3

Now consider a set of (at least 2) variables Y that are siblings, and whose parent gate ¢
has children other than Y. Consider the induced functions formed by assigning values to
the variables in X — Y. It follows directly from Claim 2 (proved below) that if ¢ is not
XOR, AND, XOR or OR, then the induced functions include two distinct functions f; and
fa such that f; and f, are not constant, and f; # f;. Thus if the parent of the variables
in Y is not one of the above gates, then the truth table of f will reveal that g has children
other than the variables in Y. (Figure 4)

Y1Y2Y3Yays

Figure 4

The uniqueness of the read-once formula f can be proved by the following argument. f
must have some gate g such that all of ¢’s inputs are input wires (variables). By examining
the truth table of f, we determine which variables are siblings. For every set Y that is
a maximal set of siblings, we examine the induced functions formed by assigning values
to X — Y. If the induced functions include two distinct nonconstant functions f; and f,
such that f; # f,, then we know that g has children that are not input wires (variables).
Otherwise we know that either ¢ is AND, OR, or XOR, or g has no children other than

the variables in Y.

Ther must exist some set of siblings Y whose parent ¢ has no children other than the
variables in Y. Given the truth table of f, we can find one such set of variables Y, and

examine the induced functions formed by assigning values to X and Y. The induced

15

functions include only ¢, g, and constants. The basis from which f is formed does not
contain one gate computing a function, and another computing its complement. Thus by
examining the induced functions on Y we can uniquely determine g. If g is not AND, OR,
or XOR, (by assumption it is not XOR) then consider the read-once formula f’ obtained
from f by replacing the gate g by a new input variable (wire) v. The truth table of f’is
determined by f and ¢g. By induction, f’ is unique. f can be reconstructed from f’ by
replacing v with ¢ and its children. Therefore f is unique. If g is AND, OR, or XOR,
then consider the read-once formula f’ obtained from f by replacing the input wires for
the variables in Y with a single input wire for a new variable v (and eliminating ¢ if this
causes ¢ to have just one input). The truth table of f’ is also determined by f and ¢ in
this case. Given f’, we can reconstruct f as follows. If the parent of v is not g, we replace
v with g and its children (the variables in Y were the only children of g). Otherwise, we
replace v with the input wires for the variables in Y (the parent of v is the parent of the

variables in Y).

We now prove Claim 2.

Claim 2: Let g be a non-constant, non-monotonically-decreasing, symmetric, boolean function
not computing OR, AND, XOR, or XOR. Let ¢ be defined on the variable set X =
{x1, -+, 2,}, where n > 3. Let Y C X such that |Y| > 2. Then there exist two assignment
P and P’ to the variables of X —Y such that the functions gp and gps induced on g by P
and P" are not constant, and gp # gpr.

Proof: We first argue that it suffices to prove the above theorem for the case |Y| = 2.
Suppose the theorem holds for |Y| = 2. If |Y| > 2, then let Y’ be a subset of ¥ such that
|Y'| = 2. Thus there exist assignments P and P’ to the variables in X — Y’ such that
gp and gps are not constant, and gp # gpr. Let @@ be the assignment to the variables in
X —Y that sets the variables in X — Y precisely according to P (but leaves the variables
in Y — Y’ unassigned). gp and gpr are projections of gg and g¢: induced by assigning
values to the variables in Y — Y’. Since gp and gpr are not constant, and gp # gpr, it
follows that gg and gg/ are not constant, and gg # go.

By the above argument, we can assume |Y| = 2. g is a symmetric function. With every
symmetric function on n variables, we can associate a binary string apaias - - -a, in which
bit a; is the output of the function when exactly 7 of the variables of the n variables are
set to 1, and the others are set to 0. If g; and g, are two symmetric functions on n
variables, then g; = g, if and only if the two strings are complementary (i.e. each bit
in the binary string associated with g; is the complement of the corresponding bit in the

string associated with gz).

Let K = koky - - -k, be the string associated with the function g. Consider the assignment
P setting exactly ¢ of the variables in X — Y to 1, and setting the other variables in
X —Y to 0. Let gp be the function induced by P. The binary string associated with gp
is kikiy1k;4o. It follows that Claim 2 holds iff there exist 2 distinct substrings kikir1k;42
and k;k;y1k;j42 of K such that neither of the substrings is all 0’s or all 1’s, and the two
strings are not complementary. We now prove this is indeed true. The proof is by case

analysis.

16

Case 1: kg =1and k; =1
g is not constant or monotonically-decreasing, so K is a member of the language ex-
pressed by the regular expression 11700*1{0, 1}*. Therefore K contains the substring
110, and one of the two substrings 100 and 101. 110 is not the complement of either
100 or 101.
Case 2: kp=1and k1 =0
g is not XOR, and it is non-monotonically-decreasing. K is therefore a member of
one of the following languages:
e 1000*1 {0,1}: K contains 100 and 001
e 1011{0,1}*: K contains 101 and 011
e 1010{10}*0{0,1}*: K contains 101 and 100
e 1010{10}*11{0,1}*: K contains 101 and 011
Case 3: kp=0and k1 =0
g is not constant or AND, so K is in one of the following two languages:
e 000%11{0,1}*: K contains 001 and 011
e 000%10{0,1}*: K contains 001 and 010
Case 4: kg=0and &k =1
g is not XOR or OR, so K is in one of the following four languages:
e 0111*0{0,1}*: K contains 011 and 110
e 0100{0,1}*: K contains 010 and 100
e 0101{01}*1{0,1}*: K contains 010 and 011
e 0101{0,1}*00{0,1}*: K contains 010 and 100

This complete the proof of Claim 2, and of the theorem. [

We have restricted our discussion to bases not including monotonically-decreasing functions.
Non-degenerate read-once formulas over bases containing monotonically-decreasing functions
are not necessarily unique. For instance, OR(NAND(z,y), NAND(w, z)) is non-degenerate and
equal to NAND(z, y, w, z). Non-degenerate read-once formulas over the basis (AND, OR, NOT)

are not unique unless you add the restriction that the negations must be at the leaves.

The function XOR presents a related problem. Note that over the basis (XOR, AND),
for example, the formula XOR(a, (XOR(b(XOR(c,d))))) is not degenerate, and it is equal to
XOR(a, b, c,d). An additional problem with the function XOR is that two XOR’s on adjacent
levels of a formula compute the XOR of all their inputs. Thus if XOR is included in a basis, its

complement XOR is also, in effect, included in the basis. It is very easy to come up with examples

in which having both a function and its complement in a basis leads to distinct non-degenerate

read-once formulas that compute the same function.

In general, then, in order to prove uniqueness for bases which don’t have the properties
listed in the theorem, it would be necessary to introduce other conditions in addition to non-
degeneracy. It is trivial to prove uniqueness if enough conditions are introduced (e.g. that the

formula is the lexicographically smallest of all read-once formulas over the basis that compute

17

the same function). We believe that the kinds of conditions that are interesting are those that
have the following property: Any read-once formula over the given basis that does not satisfy
the conditions can be transformed in polynomial time into a read-once formula over the same

basis that satisfies the conditions.

7 TUniqueness and learnability

The proof of Theorem 3 in the previous section gives an algoritm for learning read-once for-
mulas over non-monotonically-decreasing, non-constant, symmetric bases not containing XOR,
given the truth table of the formula. Unfortunately, the algorithm takes time exponential in n.
The algorithm we give for learning ROTB formulas differs substantially from this truth table

algorithm. One difference is that it learns the formula top-down, rather than bottom-up.

Our algorithm for learning ROTB formulas in polynomial time with membership queries
exploits the structure of the target formula. The fact that the formula is unique allows us to do
this. However, as we prove in the next theorem, not all classes of read-once formulas over bases
of the type treated in Theorem 3 can be learned in polynomial time using membership queries

alone.

Theorem 4 The class of non-degenerate read-once formulas over the basis (AND, XOR) cannot
be learned in polynomial time using membership queries alone.

Proof: Let X = {xy,29,--+,2,} be a set of variables such that n is even.

Consider the class of read-once formulas over the basis (AND, XOR) that have the form
AND((z;,XORz;,), (2;,XORz;,), (2, XORa;,), - - -, (;,_,XORa;,)). There are n!/((n/2)!2"/?)
distinct formulas in this class. The satisfying assignments of a formula in this class set exactly
n/2 of the variables of X to 1. Consider an arbitrary assignment that sets exactly n/2 of the
variables of X to 1. This assignment will be a satisfying assignment for exactly (n/2)! of the

formulas in the above class.

Assume there is a polynomial time algorithm for learning the set of read-once formulas over
the basis (XOR, AND) using membership queries.

Consider the following adversary strategy. Each time the algorithm queries the membership
oracle on an input that does not have exactly n/2 1’s, give the answer 0. Each time the algorithm

queries the membership oracle on an input that has exactly n/2 1’s, give the answer 0, also.

Since the algorithm runs in polynomial time, it makes at most n* queries for some constant
k. After n* queries, the total number of formulas in the above class that do not agree with the
answers given by the adversary is at most n*(n/2)!. The total number of formulas in the above
class that agree with the answers is at least n!/((n/2)!2%/?) — n*(n/2)! > 1 for large enough
n. Therefore, the algorithm cannot distinguish between all formulas in the above class using n*

queries. Contradiction. [J

18

8 Open Problems

It is an open question whether for every basis B of the type treated in Theorem 3, there exists
a polynomial time algorithm for learning the read-once formulas over B using both membership

and equivalence queries.

Another problem is to improve the complexity bounds of Theorem 1, and Corollary 1.1 on

learning read-once threshold formulas.

References

[A 87a] D. Angluin, Learning k-term DNF Formulas Using Queries and
Counterexamples, Technical Report, Yale University, YALE/DCS/RR-559, 1987.

[A 87Db] D. Angluin, Learning Regular Sets from Queries and Counterexamples, Informa-
tion and Computation, 75:87-106, 1987.

[A 88] D. Angluin, Queries and Concept Learning, Machine Learning, 2:319-342, 1988.

[A 89] D. Angluin, Using Queries to Identify pi-Formulas, Technical Report, Yale Uni-
versity, YALE/DCS/RR-694, 1989.

[AHK 89] D. Angluin, L. Hellerstein, and M. Karpinski, Learning Read-Once Formulas with
Queries, U. C. Berkeley Technical Report UCB CSD 89-258 and International
Computer Science Institute Technical Report TR 89-021, 1989, to appear in
J. ACM (1991).

[BI 87] M. Blum and R. Impagliazzo, Generic Oracles and Oracle Classes, in Proc. 28"
IEEE Symposium on Foundations of Computer Science, pages 118-126. I[EEE,
1987.

[H 90] T. R. Hancock, Identifying pu-Formula Decision Trees with Queries, Technical

Report TR-16-90, Aiken Computation Laboratory, Harvard University, 1990.

[HK 89] L. Hellerstein and M. Karpinski, Learning Read-Once Formulas Using Member-
ship Queries, in Proc. of the Second Annual Workshop on Computational Learn-

ing Theory, pages 146-161. Morgan Kaufmann Publishers, 1989.

[HNW 90] R. Heiman, I. Newman, A. Wigderson, On Read Once Threshold Formulas and
their Randomized Decision Tree Complexity, IEEE Symp. on Structures in Com-
plexity 1990, pp. 78-87.

[KLNSW 88] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson, Combinatorial
Characterization of Read Once Formulae, Presented at the Joint French-Israeli
Binational Symposium on Combinatorics and Algorithms, 1988. To appear in
Discrete Math.

19

[KLPV 87] M. Kearns, M. Li, L. Pitt, and L. Valiant, On the Learnability of Boolean For-
mulae, in Proc. 19" ACM Symposium on Theory of Computing, pages 285-295.
ACM, 1987.

[KV 89] M. Kearns and L. Valiant, Cryptographic Limitations on Learning Boolean For-
mulae and Finite Automata, in Proc 2158 ACM Symposium on Theory of Com-
puting, pages 433-444. ACM, 1989.

[LMN 89] N. Linial, Y. Mansour, and N. Nisan, Constant Depth Circuits, Fourier Trans-
form, and Learnability, in Proc 30" IEEE Symposium on Foundations of Com-
puter Science, pages 574-579. IEEE, 1989.

[PV 89] L. Pitt and L. Valiant, Computational Limitations on Learning from Framples,
J. ACM, 35:965-984, 1988.

[V 84] L. G. Valiant, A Theory of the Learnable, C. ACM, 27:1134-1142, 1984.

20

