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1 Introduction

We present the first polynomial time algorithm that exactly learns the whole class of boolean
read-once formulas using membership and equivalence queries. Previous work has shown that no
polynomial time algorithm can exactly learn all read-once formulas using only membership or only
equivalence queries, so this is a minimal set of types of queries for this problem. Our algorithm
implies the existence of an efficient learning algorithm for read-once formulas in the distribution-
free definition of Valiant, provided membership queries are available. Recent work of Kearns and
Valiant implies that even predicting read-once formulas in the distribution-free setting without
membership queries is as hard as deciding certain eryptographic predicates [11]. Thus, as in the
case of dfas, membership queries appear to be crucial to the learnability of read-once formulas.
Our work contributes new insight to a line of research into the power of queries in computational
learning problems.

The algorithm that we present is a simple and elegant transformation of any polynomial time
algorithm to learn monotone read-once formulas using membership queries into a polynomial time
algorithm to learn (not necessarily monotone) read-once formulas using membership and equiv-
alence queries. The best previous algorithms for learning monotone read-once formulas using
membership queries required time 0(n®) and O(n*) membership queries [4,8]. We give a new sim-
pler algorithm for this problem that runs in the same time bound and uses only O(n?) membership
queries. Using this new algorithm as a subroutine, the transformation learns the whole class of
read-once formulas in time O(n') using O(n®) membership queries and O(r) equivalence queries.
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In addition we generalize the transformation to apply to any polynomial time algorithm that
exactly learns a projection-closed monotone class of boolean formulas using both membership and
equivalence queries. The resulting algorithm exactly learns the unate substitution instances of
the original class of formulas in polynomial time using membership and equivalence queries. One
corollary of this is the existence of a polynomial time algorithm for exact learning of unate DNF
formulas using membership and equivalence queries.

As another application of the analysis of minterms and maxterms of a boolean function, we
present polynomial time algorithms for learning &-DNF/CNF formulas and depth—k decision trees
using membership queries alone. The class of k-DNF/CNF formulas was used in [12].

2 Preliminaries

We consider boolean formulas using a finite set of variables V over the basis (AND, OR, NOT).
Let n = |V|. By a standard transformation, each nonconstant boolean formula over V can be
represented as a rooted tree whose internal nodes are labelled in alternating levels by AND and
OR, and whose leaves are labelled by literals from V. A boolean formula is monotone if it contains
no occurrences of NOT (i.e. no negative literals). A boolean formula is unate if no variable appears
in both positive and negative literals of the formula.

A read-once formula is a boolean formula over V in which each variable occurs at most once.
Read-once formulas are also known as u-formulas and boolean trees. The tree representation of a
read-once formula is unique up to tree isomorphism.

A read-once function is a function that can be expressed by a read-once formula. Let i
{0,1}¥ — {0,1} be a read-once function over the variables V.

A minterm of f is a subset § of literals of V' such that setting all the literals in § to 1 forces
the value of f to 1, and § is minimal with respect to this property. A mazterm of f is a subset
T of literals of V such that setting all the literals in T to 0 forces the value of ftoD,and T is
minimal with respect to this property.

A membership oracle for the read-once function f answers queries of the form “What is the

value of f on A?", where A is an assignment to the variables in V. The oracle answers with the
value of f on A.

An equivalence oracle for a read-once function f answers queries of the form “Is g equivalent
to f77, where g is an explicit read-once formula. If g represents the function f, the oracle answers
“yes”. Otherwise, the oracle answers “no” and gives an assignment B such that f (B) # g(B) as
a counterexample.

We say that an algorithm “exactly learns read-once formulas using membership queries” if
given a membership oracle for a read-once function f, and the set V of inputs to f, the algorithm
eventually halts and outputs a read-once formula expressing f. The definition of what it means

for an algorithm to “exactly learn read-once formulas using membership and equivalence queries”
is analogous.



3 Previous results

The learnability of read-once formulas was first studied by Valiant [15]. He proved that it is possible
to exactly learn read-once formulas in polynomial time using three powerful types of queries, called
relevant possibility queries, necessity queries, and relevant accompaniment queries. Hellerstein and
Karpinski (8] subsequently presented a polynomial time algorithm for learning read-once formulas
using only relevant possibility queries,

Pitt and Valiant [13] proved that if RP # NP, then there is no polynomial time algorithm for
learning read-once formulas from examples in the Valiant’s distribution-free model (also known as
the PAC model). This result depends on the requirement that the output of the learning algorithm
be a read-once formula.

The prediction model permits the formulation of representation-independent hardness results.
The reductions of Kearns, Li, Pitt, and Valiant [10] show that predicting the value of a monotone
read-once formula on randomly chosen examples in the distribution-free model is no easier than
predicting general boolean formulas. Kearns and Valiant [11] have shown that prediction of general
boolean formulas in the distribution-free model is as hard as certain cryptographic problems, for
example, factoring Blum integers.

These results may be interpreted as follows: read-once functions appear to be hard to learn
or predict if our only information about them is examples drawn according to an arbitrary distri-
bution. However, if other information in the form of oracles is available, then there are feasible
learning algorithms. The relevant question then is: how weak an oracle is sufficient for polynomial
time exact learning of the read-once functions?

For the case of monotone read-once functions, membership queries alone suffice for polynomial
time exact learning, as Angluin [4] and, independently, Hellerstein and Karpinski [8] showed. In
this paper, we give an improved algorithm for this problem.

However, for the whole class of read-once functions, a straightforward adversary argument
using the class of 1-term DNF formulas shows that no polynomial time algorithm can exactly learn
unrestricted read-once formulas using only membership queries [3]. Also, with a more complex
adversary argument, Angluin has shown that there is no polynomial time algorithm for exactly
learning read-once formulas using equivalence queries alone [4].

This paper settles the problem of exactly learning unrestricted read-once formulas using both
membership and equivalence queries. We present an algorithm for exactly learning read-once
formulas in this model that runs in time O{n?}, and makes O(n®) membership queries and O(n)
equivalence queries. Other concept classes learnable in polynomial time with both membership and
equivalence gueries, but not with membership or equivalence queries alone, include deterministic
finite state acceptors and monotone DNT formulas [2,3].

A polynomial time algorithm using equivalence and membership queries implies a polynomial
time algorithm in the distribution-free model provided membership queries are also available [2,3].
Equivalence queries can be probabilistically simulated in the PAC model by using random examples
to determine (with high probability) whether the hypothesis is approximately equal to the targel



concept. In this way, a learning algorithm that uses membership and equivalence queries and
achieves exact identification may be transformed into one that uses randomly drawn examples
and membership queries in the distribution-free model, with a moderate increase in computational
cost.

4 An improved algorithm for learning monotone read-once for-
mulas

The results of [4,8] show that there is an algorithm for learning monotone read-once formulas
with membership queries alone that runs in time Q(n?) and makes O(n?) membership queries.
We present a new simpler algorithm that runs within the same time bound and uses only G(n?)
membership queries.

Suppose f is a monotone read-once function over the variables V. Consider the tree represen-
tation of any read-once formula for f. Let V' be the set of variables that actually occur as leaf
labels in this tree representation. The lowest common ancestor in the tree of any pair of distinct
variables in V" is labelled either AND or OR.

Qur algorithm first determines the set of variables V', and, for each pair of distinct variables
in V', the label of the lowest common ancestor of the pair. From this information a monotone
read-once formula representing f can be constructed in time O(n?).

The basic lemma we use is that two distinct variables in V' occur in a common minterm if and
only if the label of their lowest common ancestor is AND, and they occur in a common maxterm
if and only if the label of their lowest common ancestor is OR. Note that this means that the
size of the intersection of a maxterm and a minterm can be at most 1. Since for any boolean
function there must be a nonempty intersection between any maxterm and any minterm of the
function, this shows that every minterm and maxterm of a read-once function intersect in exactly
one literal. (This is the easier direction of an elegant characterization of read-once functions proved
by Karchmer, Linial, Newman, Saks, and Wigderson [9].)

The subprocedures used by the algorithm are as follows. Findmin takes as input a set Q C V
that contains a minterm of f and outputs a minterm of f contained in . The method is a simple
greedy search using membership queries to remove as many variables from @ as possible, while
still maintaining the property that @ contains a minterm. This uses O{n) membership queries.

The procedure Xmin takes as input a variable z and a maxterm T of f containing z, and
ouputs a minterm of f containing z. Xmin consists of one call to Findmin, on the input set
(V—T)u {z}. Since (V — T)U {z} contains a minterm of f, Findmin returns a minterm 5 of
f contained in this set. Since we must have |[SN T| = 1, £ must be in §. The procedure Xmax
dually uses a minterm of f containing = to find a maxterm of f containing z.

The last procedure used by the algorithm, Checkedge, takes as input two variables r and y, a
maxterm T} containing z, and a maxterm 73 containing y. It outputs “yes” or “no” depending
whether or not r and y are contained in a common minterm of f. If T} or T3 contain both z and v,



then z and y are contained in a common maxterm, and cannot be contained in 2 common minterm.
Otherwise, Checkedge queries the membership oracle on the assignment setting the variables in
((V = (Ty UT2))U {z,v} to 1, and the other variables to 0. In this case, z and y are contained in
a common minterm if and only if the value of f on this assignment is 1.

The algorithm works by first checking whether f is a constant function. If it is not, it generates
a minterm of f using Findmin. Using this minterm as a “seed”, it then uses Xmin and Xmax
to generate minterms and maxterms until every variable contained in a generated minterm is
also contained in a generated maxterm, and vice versa. We prove that when this step of the
algorithm is over, every variable in ¥’ is in some minterm or maxterm. The algorithm then uses
the generated maxterms as inputs to the procedure Checkedge to determine the labels of lowest
common ancestors of pairs of elements of V', and finally constructs and outputls a monotone
read-once formula representing f.

5 Learning read-once formulas with membership and equiva-
lence queries

Theorem 1 There erists an algorithm for learning read-once formulas using membership queries
that runs in time O(n*) and makes O(n®) membership queries and O(n) equivalence queries.

Our algorithm for learning read-once formulas with membership and equivalence queries uses
as a subroutine any algorithm for learning monotone read-once formulas using only membership
queries. Using the new algorithm for this problem given above, we achieve the bounds stated.

It is clear that if f is a read-once formula defined on the variable set V, then if we know the
signs of the variables appearing in f (i.e., whether the variables appear in positive or negative
literals of f) then we can use the monotone membership query algorithm to learn f. The difficulty
is to learn the signs of the variables in V.

We do so by learning appropriate projections of f. A projection of f is a formula that is
obtained from f by fixing the value of some of the variables in f to constants. Each projection
of f is associated with a partial assignment to the variables of V, Formally, a partial assignment
P is a mapping from V to the set {0,1,+}. The variables mapped to * are left unassigned. The
variables not mapped to » are said to be in the defined set of P. Let fp denote the projection
of f induced by P. Although fp does not in general depend on all the variables in 1, we will
consider fp to be defined on V. For any assignment A to the variables of V, let A/ P denote
the (total) assignment that sets the variables in the defined set of P according to P, and sets the
other variables according to A. Given P, one can use the membership oracle for f to simulate a
membership oracle for fp, because fp(A) = f(A/P).

Our algorithm makes use of the following lemma.

Lemma 2 Let [ be an unknown read-once formula defined on the variable set V. Let A and B be
two assignments to the variables of V, such that f{A) =0 and f(B) = 1. Then in at most Nog n]



membership gueries, it is possible to learn the sign of a variable z in [ such thal the selting of z
differs in A and B.

The algorithm keeps a set W containing the set of variables in V' whose signs it has learned
so far. Initially, the algorithm does not know the signs of any variables in V', so W is empty. The
algorithm also keeps a set W, containing all the variables in W occurring in negative literals of

S

The algorithm executes the following loop. At the start of the loop, it chooses an arbitrary
partial assignment P whose defined set is ¥V — W. The projected function fp depends only on
variables in W. Therefore, the algorithm knows the signs of all the variables on which fp depends.
The algorithm runs the membership query algorithm for monotone read-once formulas to learn fp,
simulating each query to the membership oracle for fp by an appropriate query to the membership
oracle for f. The algorithm presents fp as input to the equivalence oracle, asking whether fp = f.
If the answer is “yes”, then the algorithm outputs fp and terminates. Otherwise, the answer is
“no" and a counterexample B such that fp(B) # f(B). But fp(B) = f(B/P),so f(B/P} # f(B).
The assignments B and B/ P differ only in variables in the defined set of P, that is, in variables
in ¥V — W. Using at most [logn] membership queries, the algorithm determines the signin fola
variable z in V — W The variable r is added to W, and to Wiy, if f is in a negative literal of f.
The algorithm then iterates the loop.

In at most |V|+ 1 iterations of the loop the algorithm will terminate and output a read-once
formula expressing f. Since |V| = n, the bounds follow.

6 Generalization of the transformation

In the previous section, we showed how to transform an algorithm for learning monotone read-once
formulas using membership queries into an algorithm for learning unrestricted read-once formulas
using membership and equivalence queries. In this section we generalize the transformation. As a
corollary, we will show that the class of unate DNF formulas is learnable in polynomial time using
membership and equivalence queries.

Let M be a class of monotone boolean formulas. M is closed under projection if for every
formula f € M and every partial assignment P to the vaniables of f, there is a formula in M
equivalent to fp.

If fis any monotone boolean formula defined on V, let U( f) denote the class of all formulas
f* obtained from f by selecting a subset V' of V' and replacing every occurrence of z in f by -z
for all z € V'. All the elements of U/{ f) are unate. If M is a class of monotone boolean formulas,
let /(M) denote the union of U{f) for all f € M. Note that if M is the class of monotone read-
once formulas then {/{ M) is the class of unrestricted read-once formulas. We prove the following
thearem.

Theorem 3 Let M be a class of monotone formulas closed under projection such that there is a



polynomial time algorithm for learning M using membership and equivalence queries. Then there
ts also a polynomial time algorithm for learning U/{ M) using membership and equivalence gueries.

Note that this theorem strengthens the transformation in the previous section by allowing
equivalence queries to be used in the learning algorithm for M.

As in the case of read-once functions, the problem is to learn the signs of the variables in
the unknown formula f € U(M). It is clear that if we know the signs of the variables, we can
use the algorithm for learning M with membership and equivalence queries to learn U{M) with
membership and equivalence gueries.

Let A®™™* be an algorithm that learns /{ M) using membership queries provided it is given the
signs of the variables in the unknown formula as input. As in the preceding section, we use this
algorithm to attempt to learn projections of f for which we know the signs; the major difference
is that we must now handle equivalence queries made by A%,

The algorithm to learn U{M ) works as follows. Let f be the unknown formula. Let W be the
set of variables of f whose signs are known, and let W,,., be the set of variables £ € W such that
[ is negative in z. Initially, W and W,,, are empty.

The algorithm executes the following loop at most n 4 1 times. It chooses an arbitrary partial
assignment P whose defined set is V— W, and runs the procedure A*9™ with input W, simulating
an oracle for fp as follows. When A*9"* makes a query to the membership oracle for fp on inpul
A, the algorithm simulates that query using the membership oracle for f. When A*™ makes
an equivalence query “Is fp = ¢?" the algorithm queries the equivalence oracle for f on input
g. If the answer is “yes”, then the algorithm outputs g and terminates. Otherwise, the reply is
a counterexample B such that f{B) # g(B). Using the membership oracle for f, the algorithm
finds out the value of fp(B). The algorithm knows g, so it can compute g(B). If fp(B) # g(85),
then the algorithm returns “no” and the counterexample B to the equivalence query asked by
A% QOtherwise, f(B) does not equal fp(B), and so by Lemma 2 it can use at most [logn]
membership queries to the oracle for f to determine the sign of a variable z not in W. In this case,
the algorithm adds z to W (and to W, if its sign is negative), gives up the current simulation of
A®9n2 404 iterates the loop with the new values of W and W,,,.

If the algorithm succeeds in answering all the queries of A*9™* then A*¥™ returns a formula g
equivalent to fp. The algorithm makes an equivalence query with g. If the reply is “yes”, then it
outputs g and terminates. Otherwise, the reply is a counterexample B such that

f(B) # 9(B) = fp(B) = f(B/P),

50, as before, it uses B and B/P to determine the sign of a variable r not in W, adds = to Wieg
if appropriate, and iterates the loop. This completes the description of the algorithm.

Let M denote the class of monotone DNF formulas. Then there is a polynomial time algorithm
for learning A in polynomial time using membership and equivalence queries [3). M is closed under

projection and /(M ) is the class of unate DNF formulas. Thus, one corollary of the theorem above
is the following.



Corollary 4 There erists a polynomial time algorithm for learning unate DNF formulas using
membership and equivalence queries.

7 Learning k-DNF/CNF formulas and depth—k decision trees
with membership queries

A k-DNF/CNF formula is a DNF formula whose terms all contain at most k literals, that has an
equivalent CNF formula whose clauses all contain at most k literals. The class of k-DN F/CNF
formulas was used in [12].

As a further application of the technique of analyzing the intersections of minterms and max-
terms of boolean functions, we show an O(2%*1r®) algorithm for exactly learning &-DNF/CNF
formulas using only membership queries. This algorithm can also be used to exactly learn depth-k
decision trees by depth-k? decision trees.

Our algorithm relies on the fact that if 5y,...,5; are the terms of a DNF formula f, then the
maxterms of f are precisely the minimal sets of literals containing at least one variable from each
of the terms.

Let f be a k-DNF/CNF formula representing the function F. Then f is a DNF formula with
at maost k literals per term. Also, there exists a formula g in CNF with at most k literals per
clause that is equivalent to f, and therefore also represents F.

Each term of f is a superset of a minterm of F and each clause of g is a superset of a maxterm
of F. Since every minterm of F intersects with every maxterm of F, every term of f intersects
with every clause of g.

Let § be any set of at most k literals, If § does not contain a minterm of F, then & has an
empty intersection with the set of literals T in one of the clauses of g. The value of F' is 0 on any
assignment setting the literals in § to 1 and the literals in T to 0. T contains at most k literals.

Thus, to discover whether S contains a minterm of F', il is sufficient to check, for all possible
sets T of size at most k not intersecting §, whether the value of F is 0 on an arbitrary assignment
setting the literals in S to 1 and the literals in T to 0. A k-DNF/CNF formula for f can be formed
by taking the disjunction of terms made up of all sets of literals of size at most k that contain a
minterm of f. We have the following theorem.

Theorem 5 There ezists an algorithm that exactly learns k-DNF/CNF formulas that runs in time
O(2%*n2%) and makes 0(2**n?*) membership queries.

Every depth-k decision tree computes a function expressible by a &-DNF/CNF formula. Several
authors [6,7,14] have independently shown that any function computed by a k-DNF/CNF formula
can be computed by a depth-k? decision tree. As a consequence we have the following,.

Corollary 6 There is an algorithm that eractly learns depth—k decision trees by depth-k?® decision
trees that runs in time O(22%n?* + 2%} and makes O(2%*n**) membership queries.



8 Open problems

A natural question iz what other nontrivial classes of boolean [ormulas are exactly learnable in
polynomial time with membership and equivalence queries. Previous results have shown that
monotone DNF formulas [3] and k-term DNF formulas [1] are learnable in polynomial time in this
setting. The question is open for general DNF formulas, even if we permit subset and superset
queries in addition to membership and equivalence gueries.

Another important open problem is to learn read-once straight line or branching programs over
finite or characteristic zero flelds. Also, it is an interesting question whether our algorithms for
exact learning can be speeded up via randomization. We are not asking here for algorithms in
the PAC model, but rather for algorithms that achieve exact identification with controllably high
probability (Mente Carlo).

There is a simple counting argument to show that any algorithm that exactly learns all mono-
tone read-once formulas in n variables using only membership queries must use Q{nlogn) mem-
bership queries. The algorithm we give above achieves O(n?®) membership queries - perhaps an
improvement is possible.
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