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Abstract

The c-linear complexity L.(A) of a complex matrix A is the mini-
mal number of additions, subtractions and multiplications by com-
plex constants of absolute value < ¢, ¢ > 2, needed to evaluate A
at a generic input vector. Define L,(A) := limc—oo Lc(A). We show
that if A is a Fourier transform on the finite group G, then {L,(A) —
Ls{(A™")| < |G|. The c-linear complexity of a finite group G is de-
fined by L.(G) := min{L.(A) | A a Fourier transform for G}. We prove
that L,(G) > 1|G|log|G| for any finite group G, and present two in-
finite classes of non-abelian groups G with Lz(G) < 0.6|G|log |G| and
L+(G) < 0.8|G|log |G|, respectively. Thus there are non-abelian groups
with even faster Fourier transforms than elementary abelian 2-groups
(for which L2(G) < |G|log|G]) !
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1 Introduction

The design and analysis of efficient algorithms for Fourier transforms on finite
groups has been the subject of several recent investigations, see the references.
The present paper continues the studies in [6]. Although we assume familiarity
with [6] and its notations, we briefly recall the mathematical background.

By Wedderburn’s theorem, the group algebra CG of a finite group G is iso-
morphic to an algebra of block diagonal matrices: CG ~ @b, C4*%, where
the blocks correspond to the equivalence classes of irreducible representations
of CG. Every algebra isomorphism A : CG — @), C**% is called a (gen-
eralized) Fourier transform for CG. With respect to natural bases, A can be
viewed as a |G|-square complex matrix. (E.g., if G = Cy is the cyclic group of
order n then A = (w*®)ocap<n With w = exp(2ri/n).)

The linear complexity L,(A) of a matrix A € C™* is the minimal number
of C-operations (= additions/subtractions/scalar multiplications) sufficient to
compute Az from a (generic) input vector z € C!. Since a non-abelian group
G has infinitely many Fourier transforms, we define the linear complezity of G
by L,(G) := min L,(A), where the minimum is taken over all possible Fourier
transforms A for CG. Combining [2] and [6], we get

L,(G) < 8/G|log |G|

for all finite metabelian groups G, i.e. groups G whose commutator subgroup
G' is abelian. (Throughout this paper, log = log,.) If G is an abelian 2-group,
the classical FFT-algorithms show that

L,(G) < 5161log|G]

For the class of elementary abelian 2-groups, ie. G~ Cy X - - x Ca, the fast
Hadamard-Walsh transforms prove the even better bound

L,(G) < |Gllog |Gl .

All the algorithms proving the above three upper bounds use (besides addi-.
tions and subtractions) only multiplications with complex constants of abso-
lute value < 2. This motivates, more generally, to study, for fixed real ¢ 2 2,
the c-linear complezity

L.(G) := min{L.(A) | A a Fourier transform for G}

of the finite group G, where L.(A) is the minimal number of C-operations
needed to evaluate the complex matrix A at a generic input vector when
scalar multiplications are restricted to complex constants of absolute value < c.
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‘According to the above remark, L(G) < 8|G|log |G| for all finite metabelian
groups.

In order to get a lower bound for the 2-linear complexity of a finite non-
abelian group G, we are faced with the problem of estimating L(A) for in-
finitely many Fourier transforms A on G. Nevertheless, combining a result of
Morgenstern and the Schur relations we can prove in section 3 that

1 1 1
Lx(G) 2 (1 + 17)IG1 g G > ;G108 [G]

for any finite group G.

How tight is this general lower bound? Up to now, the elementary abelian
2-groups satisfying L2(G) < |G|log|G| seemed to have the fastest Fourier
transforms. But in fact, this is not true: In sections 4 and 5 we present
two infinite classes of non-abelian groups G with L;(G) < 0.6|G|log |G| and
L3(G) < 0.8|G|log |G|, respectively.

For many applications, e.g. fast convolution and dlgltal filtering, the inverse
of a Fourier transform is equally important. In section 2, we show that the
linear complexities of a Fourier transform A and its inverse differ at most by
the order of the group.

2 Schur relations and linear complexity

In this section we will use the classical Schur relations to prove a close con-
nection between a Fourier transform and its inverse, which leads to some new
lower and upper complexity bounds. To begin with, we recall the

Schur Relations. [13,V, Satz 5.7) Let Dy,..., Dy, be a full set of inequivalent
irreducible matriz representations of CG of degrees dy,...,dy, respectively.
Then for all1 < a,b < h and1 <1i,j < d, and 1 < k,1 < d;, the following
holds:

- Gl

E D (g)l.? 'Db( l)kl = 6356116115 d
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Note that the right hand sides of the Schur relations only depend on the
equivalence classes of the irreducible representations of CG.

If A is a Fourier transform matrix for the finite group G, then the inverse
of A is very similar to the transpose AT. More precisely, we have the following

Theorem 1 If A is a Fourier transform matriz for the finite group G, CG ~
h_ C%%4i then there ezist permutation matrices P and Q such that

A-P.AT.Q @'G' Egq,

i=1 ‘



where E; denotes the d-square unit matriz.

PROOF. Let G be a finite group of order n and Dj,..., D a full set of
~ inequivalent irreducible representations of CG, d; := degree(D;). If A € C™*"
is a Fourier transform matrix of CG with respect to Dy,..., Dy, the columns
of A are parametrized by the elements of G whereas the rows of A correspond

to
U {(a,i,5)1 €4,5 < da},

1<a<h

i.e. (a, 4, ) describes the position (i, j) in Do. Now let B:= P-AT-Q € C™*" be
the matrix obtained from A by first transposing A and then performing in AT
the permutation P of the rows corresponding to the inversion (G 3 g — gt
and the permutation @ of the columns corresponding to (a,%,5) — (a,7,%).

According to the Schur relations, A- B is a diagonal matrix with d? occurences
of |G|/ds for 1 €a < h. ; o

The following example will illustrate (the proof of) Theorem 1:

Example. The symmetric group $; has (up to equivalence) three irreducible
C-representations: the trivial representation

t:(S3937— 1),
the alternating representation
se (S3 3 7+ sgn(7)) ,

and a 2-dimensional representation A realizing S3 as the symmetry group of
a regular triangle. If we take its center of gravity as the origin in 2-space and
denote its vertices by e;, €, €3, then {e1,€;} is a basis and e3 = —e; — ez. The
natural Ss-action 7e; := €; yields the following realization of A:

A(l)?(; {1]),&(123)=((1) j) ,A(132)=(j (1;)

A(m):(‘f [1,) ,A(23)='(}, Zi‘) ,A(13)=(j (1’)

Thus

1 1 1 1 1 1]¢
1| 2ovl 1] -1| =-1| —-1]e
1 0 -1 0 1] -1]|An

A=1]0 -1 1 1| -1 0] A
0 1 -1 1 0] -1{An
1 -1 -0 0] -1 1]Ap

(M) [(123) [ (132) | (12) | (23) | (13)



is a Fourier transform on S3. The corresponding matrix B reads as follows:

1 1 0 0 11(1)

1] -1| -1 1 0](132) -
1 0 1] =11 =11](123)

-1 0 1 1 0](12)

-1 1 0 =1 —11(23)

-1| -1} -1 0 11(13)

€| A [An | Az | As

and A - B equals the diagonal matrix diag(6,6,3,3,3, 3).

I
P T ] I B B

We will apply Theorem 1 to obtain bounds on the linear complexity of
inverse Fourier transforms. To this end, we need a result due to Kaminski,
Kirkpatrick and Bshouty [15], which in our terminology reads as follows:

Theorem 2 Let A € CP*9 and ¢ > 2. Then
L(AT) = L(A) - q+p—2z(A) + (A7),

where z(A) denotes the number of all-zero rows of A. In .'particular, L(A) =
L.(AT) for any invertible matriz A.

Combining Theorems 1 and 2, we get
Theorem 3 Let A be a Fourier transform matriz for the finite group G. Then
(1) L(A™") < L.(A) + |G for anyc 2 2.
(@) |L.(A) = L(A™)| < [G].
PROOF. By Theorem 1,
§o
GiFe) -
As A is invertible, we have L,(AT) = L.(A) according to Theorem 2. Since

L.(P) = 0 for permutation matrices P and L.(M; - M3) < L.(My) + L.(M>)
for arbitrary n-square matrices M; and M, our claims follow easily. a

A-1=p.AT.Q.(

=1

3 Lower bounds in the Ls;-model

In this section we are going to prove a general lower bound for the 2-linear
complexity of any Fourier transform on a finite group G.
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Theorem 4 If G is a finite group, CG ~ @}, C**%, then

IG|lev2
: Ly(G) 2 IOSW -

PROOF. Let A be a Fourier transform matrix for G. Then, according to
Morgenstern’s Theorem [18], L;(A) > log|det A|. Define B = P - AT .Q as
in the proof of Theorem 1. By Theorem 1, A- B is a diagonal matrix with d2
occurences of |G|/d, for 1 < a < h. As det B = £det AT = L det A, we get

h d}
|det A? = |detA.B|= H (g)
|G|d§+...+d§, |GI[G|

Hid?? _H;d??'

By Morgenstern’s Theorem, our claim follows. ' o

=1

This result has several interesting consequences.

Corollary 1 For any finite group G,

1 I 1
L:(G) 2z 7(1 + |-G—,|)|G|1051GI > 71Gllog|G] -

Proor. CG ~ @, C4*4% implies |G| = h  d?. As the number of one-

=1 =1

dimensional irreducible representations of G equals [G : G'], see e.g. [13, V,6.5],
‘we get

Y &=IG-[G:C1.

di>1

Hence, by Theorem 4,

- Ly(G) 2 léﬂlogwl— ng—logd?

di>1
> gie- 3 Ll
2 di>1 4
1G| 11
> Pliogial- 101 - r)iGoe 6]
1 1
= Z(l + @)IGI log |G| .

 This proves Corollary 1. :



Corollary 2 If G is abelian then
1
L+(G) 2 31Gllog G .

PROOF. Use Theorem 4 and the fact that all d; = 1 for an abelian group G.
a

As a special case of Corollary 1 we mention

Corollary 3 If |G'| = 2 then

3
L(G) 2 51G|log |G

4 FFT for a class of Frobenius groups

We are going to consider a special class of Frobenius groups G,, constructed
as follows: For n > 2, let F, be the additive group of the finite field GF(2")
and let H, denote the multiplicative group of that field. It is well known that
F,, is an elementary abelian group of order 2" and H,, is cyclic of order 2" — 1.
H, acts faithfully on F, by automorphisms via H, 3 h — (F, 3 f — Af).
As hf # f for every h € H, \ {1} and f € F, \ {0}, H, can be viewed as
a fixed-point-free automorphism group of F,. Hence the semi-direct product
G, := F,H, is a Frobenius group of order 2"(2" — 1), see e.g. [13, V, §8].
- The ordinary representation theory of Frobenius groups is well understood,
see e.g. [13, V, Satz 16.13). In our case, G, has (up to equivalence) exactly
the following irreducible representations:

— 1 one-dimensional representations x; (1 < : < obtalned by com-

1) 2" -1 di ional i 1 <: < 2") obtained b
posing each linear charzcter #; of the cyclic group H, with the natural
projection G, — H, ~ G,/ F,, i.e.

Xi(ﬂi) = ﬂi(h)
forall f€ F,, and all h € H,.

(2) One (2" — 1)-dimensional representation 4 which is induced by any non-
trivial linear character ¢ of F,: :

7=¢TG5-

Note that the restriction of 7y to F,, equals the direct sum of all non-trivial
linear characters of F;:

‘Tan= @ 11{’

1£Y€X(Fn)



Now we can state the main result of this section.

Theorem 5 For the groups G, defined above,
5

2n—l

o
L2(Gﬂ) < (E a3 )IGn“Og lGnl )
In particular, L,(G,) < 0.6|Gy|log |G| for alln > 1.

PROOF. Givena = ¥ ¢, 4,9 € CG,, wehave to compute x1(a),. .., xz=_1(a)
and ~(a).

In order to compute y(a), write a = Fpep, anh with ap := Y ep, apnf €
CF,. Then

1a) = X (71 F)(an) (k)

heHpn

= 2 ( D ¥law)-(#1Ga)h).
h€Hn 1£¥EX(Fa)
According to the last formula we first compute for each h € H, all ¥(ay),
¥ € X(F,), by |H,| evaluations of a DFT(F,). This can be done by fast
Hadamard-Walsh transforms in at most

|Hn| i |Fn| log |Fn|

arithmetic operations. The matrices (¢ T G,)(h) are monomial with nonzero
entries equal to 1. (Observe that ¢(F,) = {£1} because F, is an elementary
abelian 2-group.) The multiplication of the diagonal matrices (4 ¥(as))
by (¢ T Gn)(h) is therefore free in our computational model. Moreover, the
concluding summation is also free since all the summands have their nonzero
entries at pairwise disjoint positions: as 4 is irreducible we have dimy(CG) =
|H,|%. On the other hand, the summand corresponding to k has its < |H,|
nonzero entries at the support of the monomial matrix (¢ T Ga)(k).
To evaluate all x;(a) simultaneously we use the coefficients

bh = Z Ay = lp"(a}.)
JEFn

already computed in the first step. According to (1),
xi(@) =m( Y h),

heHn

and we obtain all xi(a) by a single DFT(H,). Thus we get xy(a),..., x;.._l (a)
with at most L;(H,) operations. Altogether we have

Ly(Ga) < |Hal||Fallog|Fu) + Ly(Hy)
< |Ga|log|Fy| + 9| Hy|log |Ha]

< (n+ )Gl
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As log |G| > 2n — 217" for n 2> 2, we get

1 5
Lz(Gn) < (5 & zﬂ_l)thl log |Gn‘ ’

Compariﬁg upper and lower bounds for the groups Gh:

1

1
=i 4 .

; )Gall0g |Gal < La(Gn) <

- 21+ 525)(Gallog |Gul
we see that they asymptotically differ by a factor of 2. This is quite similar to
the situation for elementary abelian 2-groups G where we have

1
+1Gllog 6] < L4(G) < |G]log G .

In the next section, we will present an infinite class of groups G satisfying

3

- <
2(Gllog1G] < 1a(6) < 1+ =

|)|G|1°S|G|

Again, lower and upper bounds differ by an asymptotic factor of 2.

5 FFT for extra-special 2-groups

In this section, we are going to present another class of finite groups with faster
Fourier transforms than those of elementary abelian 2-groups.

" Let G be an extra-special 2-group of order 2™+, i.e. the center of G is
of order 2 and equals the Frattini subgroup of G. Up to equivalence, G has
exactly the following irreducible representations, see e.g. {13, V, 16.14]:

(1) 2°™ one-dimensional representations xy, .. ., X2

(2) One 2™-dimensional representation y which is induced by a linear char-
acter ¢, of a maximal abelian normal subgroup A 94 G. Note that
|A| = 2™*! and either A ~ Cy x C7*~ ! or A =~ CJ**! (see e.g. [13,
I11, 13.8]). Moreover,y | A = @2, i, where the ¢; are distinct linear
characters of A.

Thus like the groups G, in the previous section, extra-special 2-groups have
only one irreducible representation of large degree (= \/ia), all other irre-
ducible representations are one-dimensional. Again, this situation leads to
very fast Fourier transforms:



Theorem 6 For an estra-special 2-group G,
3 3 3
5/Gllog|Gl < Lo(G) < 71Gllog |Gl + 316Gl -

PROOF. We have to evaluate x;(a), ..., x22n(a) and 7(a) for a given a € CG.
As before, write @ = Yegraanh with ap € CA and evaluate the (unique)
Fourier transform W, of the abelian group A at all . This takes at most
[G : A]Ly(A) linear operations.

Now we can compute 7(a) according to the equa.tlon

va)= Y (r1A(e(h)= 3 (®¢. (an))(¢1 T G)(h) .

heG/A REG/A i=1

The multiplication of the diagonal matrix (B2, ¢i(as)) by the monon:ua.l ma-
trix (¢y T G)(h) takes at most 2™ arithmetic operations. As we can assume
that one of the coset representatives b € G/A equals 1, and as the concluding
summation is free (see the proof of Theorem 2), v(a) can be computed with
at most 2™(2™ — 1) operations. :

It remains to compute x;(a),...,xzn(a). To this end, we observe that
any linear character ¥ of G/A can be viewed as a linear chara.cter of G by
composing it with the natural projection G — G/A. It is well known that
the linear characters of a finite group G form an abelian group X(G) under
pointwise multiplication, the so-called character group of G. Thus, if x is a
linear character of G and ;,...,%;= are all linear characters of G/A, then
X¥1,...,xX¥Psm € X(G) are pairwise distinct and x3¥; | A = x | A. By
Frobenius reciprocity, the x1; are all linear characters of G whose restriction
to A equals x | A. As

xti(a) = 3 xtilen)-xbi(h) = Y wi(hA)(x | A)en)- x(h))

heG/A  heG/A

x¥1(a),. .., x¥am(a) can be computed from the (x | A)(ax) by a DFT of the
elementary abelian 2-group G/A and [G : A] — 1 additional multiplications.
To evaluate all linear characters of G, we repeat this process 2™ times. This
takes at most 2™(Ly(G/A) + [G : A] — 1) operations. Altogether, we have

Ly(G) < [G : AlLy(A) +2"(2™ — 1) + 2™(L(G/A) +[G : A] - 1) .
For A ~ Cy x Cm LQ(A) <9.2m-1 + 4(171 1)2"‘-1, and
Ly(G) < 2™(9-2™'4+4(m—-1)2™1 +2™ —1 + m2™ +2™ — 1)
9 3 '
m+1¢ Y b
< 2 (4 + 2m)
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Gm‘i“g 2
o ST ey 12m+1
ot

3 g
= Z|G|log|G| +§|Gl :
For A ~ CI'*!, we obtain the slightly better bound
' 3 3
L(G) < 31G|log|G1 + 5161 .

The lower bound on Ly(G) follows directly from Corollary 3. m]
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