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1. IntroductionClassical complexity theory deals with uniform computation models as Turing Machines and Ran-dom Access Machines or non-uniform models as Boolean circuits and branching programs. Theusual time complexity measure is de�ned as a function T (n) denoting the worst case runtime takenover all inputs consisting of n bits.On the other hand, the e�ciency of most of the algorithms or data structures considered e.g.in courses on e�cient algorithms is measured di�erently. Here one has in mind a Random AccessMachine with uniform cost measure and arithmetic operation set S � f+;�; �;DIV ;MOD ; : : :g(S-RAM), and one looks at the worst case runtime T (n) taken over all inputs consisting of nintegers, not n bits (genuinely (or strongly) T (n)-time bounded computation). Examples are sorting,searching, weighted matching, knapsack, travelling salesman, etc. Two very interesting problems inthis context are the following:a) Linear programmingThe known polynomial algorithms see e. g. [K 84] are not genuinely polynomial, i.e. theiruniform runtine depends on the binary input length, not just on the number of integer inputs.The best known genuine time bound comes from the simplex algorithm and is exponential. Itis a challenging open problem to �nd a genuinely polynomial algorithm. Steps in this directioncan be found in [M 83] or [T 86].b) Integer programmingIt is shown in [BJM 88] that for this problem no genuine algorithm exists, i.e. every algorithmhas a uniform runtimewhich grows to in�nity with the binary input length, even if the numberof integer input variables is �xed. This is true even for a very powerful operation set: evaluatingany analytic function or applying integer division is allowed.There are a lot more results concerning computability and lower bounds for S-RAMs (see e. g.[M 89]). All these results have in common that they are even true for non-uniform S-RAMs.There are also results that show how the computation power explodes if we allow non-uniformity:{ For operations f+;�g, non-uniform polynomial time = non-uniform parallel polynomial timewhere 2poly(n) processors are allowed ([M 84], [M 88]).{ For operations f+;�; �g, non-uniform polynomial time = non-uniform random polynomialtime [M 85].In this paper we try to lay the foundations of a complexity theory of genuinely polynomialcomputations (for the survey paper on the topic see [M 89]) and prove some basic separationresults. For a given operation set S, we de�ne the complexity classes S-NP, S-P , S-Parallel, S-NC. We introduce also a non-uniform S-RAM which starting with n variables is allowed to perform2



an arbitrarily complex precomputation yielding a program of a S-RAMMn over arbitrary inputs ofn variables. The non-uniform versions of the classes S-NP, S-P and S-Parallel will be denotedby NU-S-NP, NU-S-P and NU-S-Parallel, respectively.We prove the following three separation results:(i) NU-f+;�; �g-P 6= NU -f+;�; �g-Parallel,(ii) f+;�; �g-NC 6= f+;�; �g-P ,(iii) f+;�;DIV cg-P 6= f+;�;DIV cg-NP, where DIV c denotes integer division by values that areonly dependent on the number of input variables, not on their values.Note that for (i) equality holds for the operation set f+;�g (see above). (i) answers a questionposed in [M 88].2. Computation Models and Complexity ClassesA Random Access Machine with the arithmetic operation set S � f+;�; �;DIV ;DIV c;MODgconsists of a �nite program, an input tape, an output tape and in�nitely many registers numbered0, 1, 2 : : :. Each cell of the input or output tape and each register is able to store an integer ofarbitrary size. The program consists of direct or indirect storage accesses, operations from S appliedto contents of two registers, jumps (goto j), and branchings (if Reg(0) > 0 then : : : else : : :),read only (write only) access to the input (output) tape.The execution of one instruction is counted as one step (uniform cost measure). The programstarts with an input (n; x1; : : : ; xn) 2 IN� on the input tape. At the end of the computation, theoutput is on the output tape. This de�nes the computed function f : IN � ! IN�. The runtime ofa RAM M started with input x is TM(x), and T (n) := maxfTM(x); x 2 INng is the complexity ofM . M accepts L � IN�, if it computes its characteristic function. Non-deterministic and parallelRAMs (cf. [KR 88]) are de�ned as usual. We shall consider the following complexity classes: S-P , S-NP, S-Parallel, S-NC. In what follows \polynomially time-bounded" will mean genuinelypolynomially time-bounded.S-P := fL � IN�; there is a polynomially time-bounded S-RAM acceptingLg.S-NP := fL � IN�; there is a polynomially time-bounded non-deterministicS-RAM accepting Lg.S-Parallel := fL � IN�, there is a polynomially time bounded parallel S-RAMthat uses O(2poly(n)) processors for inputs from INng.S-NC := fL � IN �, there is a polylogarithmically time bounded parallelS-RAM that uses poly(n) processors for inputs from INng.3



Non-uniformity of computations means that one allows to use a new program for each new inputlength. The nonuniform versions of the above complexity classes are marked with the pre�x NU,e. g. NU -S-P := fL 2 IN�, there is a polynomial p and S-RAMs M1;M2; : : : suchthat Mn accepts L \ INn in time p(n)g.Such a family M1;M2; : : : of S-RAMs we shall call non-uniform S-RAM for short.In order to prove lower bounds, we shall, as usual, consider a non-uniform, simpli�ed computa-tion model, the S-computation tree (S-CT). It gets inputs from INn, for �xed n. This is a rootedtree with outdegrees 0, 1, 2. A node with outdegree 0 is a leaf. It is labelled accept or reject.A node v with outdegree 1 is a computation node, here a function g = g1 � g2 of the inputx1; : : : ; xn 2 INn is computed, g; g1; g2 : INn ! IN , where � 2 S and g1; g2 are constants fromf0; 1; ng, input variables, or functions computed on the path from the root to v. A node v withoutdegree 2 is a branching node. It tests whether f(x) > 0, where f is computed on the pathto v. An input x 2 INn now follows a �xed path from the root to a leaf, always going right ata branching if its test is ful�lled, and left else. The inputs arriving at accepting leaves form theaccepted language L � INn. The complexity of the CT is its depth.An S-CT that does not contain branchings is called a straight line program over S (S-SLP).(Note that, in contrast to the classical notion of CTs and SLPs, we charge CTs and SLPs forcomputing large constants.)3. Relating CTs and RAMsIn what follows, we shall prove lower bounds only for S-CTs. In this chapter we show that theyalso hold for S-RAMs with a logarithmic time loss at most.Theorem 1: Let f+;�g � S: Each (uniform or non-uniform) S-RAM recognizing L � IN � inT (n) steps can be simulated by a family of S-CTs D1;D2; : : :, where Dn recognizes L \ INn inO(T (n) log T (n)) steps.Proof: Essentially, an S-RAM can be \unrolled" to an S-CT if all indirect addresses used dependonly on the number n of input variables, not on the depth. As n is constant, if we build upthe CT Dn, we only have constant addresses. (If-questions become branching nodes, arithmeticoperations become computation nodes, storage accesses are now implicit by the choices of theoperands at a computation node.) Thus we have to show how to simulate an S-RAM by one thatonly uses addresses computed in special index registers, where only computations dependent on nare performed.For the purpose of this paper, we maintain the memory of the S-RAM in a data structure Dthat supports insertion and lookup. If register ai contains bi; i = 1; : : : ; d; then D has stored thepairs (a1; b1); : : : ; (ad; bd), where ai are the keys. 4



Now reading in register ai is simulated by looking up (ai; bi), writing b to register a is done bysearching for key a. If it is already in D, a = ai, then replace bi by b. If not, insert the pair (a; b).As D never contains more than T (n) entries, each storage access is simulated in O(log(T (n))steps. One easily veri�es that, if one carefully uses a 2-3-tree or AVL-tree for D, one only needsoperations f+;�g to maintain D, and only the restricted version of indirect addressing describedabove is used.2 This result shows that lower bounds for S-CTs translate to lower bounds for S-RAMs with onlylogarithmic time loss.4. Separation Results for S = f+;�; �gWe prove the following two separation results.Theorem 2: f+;�; �g-NC 6= f+;�; �g-PTheorem 3: NU � f+;�; �g-P 6= NU � f+;�; �g-ParallelFor the proofs we consider polynomials from the class R(d;D) := fp : IR2 ! IR, p(x; y) =~p(x)� y; where ~p : IR! IR is a polynomial of degree d, leading coe�cient 1, and coe�cients fromf�D; : : : ;Dgg; for d;D 2 IN: Note that each p 2 R(d;D) is irreducible.To each p 2 R(d;D) we associate the language Lp := f(x; y) 2 IN2; p(x; y) = 0g:First we show that each f+;�; �g-PCT for Lp computes a polynomial which is closely relatedto p.Lemma 1: Let p 2 R(d;D). If a f+;�; �g-PCT T (with arbitrarily many processors) recognizesLp in t steps, then there is a f+;�; �g-SLP of length t that computes a polynomial q : IN2 ! INwith (p+ �)jq (i. e. p+ � is a factor of q over IR) for some � 2 IR. q is computed at some node of T .Proof: Let T be a f+;�; �g-PCT for Lp of depth t. We show that a polynomial q as in thelemma is computed at some node of T . The path to this node can be looked upon as the desiredf+;�; �g-SLP.First we note: For p 2 R(d;D);#Lp = 1; because, for x 2 IN , ~p(x) 2 IN , and thereforeLp = f(x; ~p(x)), x 2 INg:Therefore there is an accepting leaf v of T such that c(v); the set of inputs from IR2 followingthe path to v, is unbounded. For � 2 IR letC� := c(v) \ f(x; y) 2 IR2; jj(x; y)jj > �g:5



c(v) is de�ned by a system of polynomial inequalities, for polynomials de�ning the branchingsnodes on the path to v. Elementary properties of varieties of polynomials show that, for su�cientlylarge �, C� = f(x; y) 2 IR2, jj(x; y)jj > �, q1(x; y) > (or �)0, q2(x; y) <(or �)0g, i. e. C� is thestrip between the varieties of polynomials q1 and q2. q1 and q2 can be chosen as irreducible factorsof polynomials de�ning c(v), i. e. of polynomials computed in T .If q1 � q2, then clearly q1 � q2 � p, and the lemma follows.If q1 6= q2, then q1 (and q2) has to be of the form p+ � for some � 2 IR: Otherwise, the varietiesof q1 and p would have an unbounded distance in the y-coordinate when x tends to in�nity. Thusc(v) would also contain points (x; ~p(x) + 1) or (x; ~p(x) � 1) for su�ciently large integers x. Butthese points do not belong to Lp. 2Proof of Theorem 2:Let Ld := f(x; y) 2 IN 2, xd = yg, L = f(x1; : : : ; xn) 2 IN �, (x1; x2) 2 L2ng:Obviously, L 2 f+;�; �g-P . (Compute x2n by iterated squaring.)But by Lemma 1, a f+;�; �g-PCT T for Ld computes a polynomial q with (xd � y + �)jq forsome �. Thus q has degree at least d. Therefore, as a f+;�; �g-PCT can only compute polynomialswith degree at most 2t in t steps, the depth of T is 
(log(d)). Thus each f+;�; �g-PCT for L needstime 
(n), i. e. L 62 f+;�; �g-NC. 2Proof of Theorem 3:The proof is more involved because we need polynomials from R(d;D) which are much harderto compute than in time O(log(d)): The existence of such polynomials is shown in the followinglemma.Lemma 2: There are polynomials p 2 R(d;D) such that each polynomial q : IR2 ! IR with(p + �)jq for some � 2 IR needs time 
(d log (D + 1)= log(d log(D + 1)) to be evaluated by af+;�; �g-SLP.Proof: Let Qt := fp : IR2 ! IR, p is a factor (with leading coe�cient normalized to 1) of apolynomial computed by some f+;�; �g-SLP of length tg.Claim 1: #Qt � (3(t+ 4)2)t � 2tProof: There are at most (3(t+ 4)2)t f+;�; �g-SLPs of length t, because each of the t steps has3 choices for the operation (+;�; or �) and at most t+ 4 choices for each of the two operands (atmost t� 1 possible previously computed values, 2 input variables (x or y), 3 constants (0; 1; or n)).Further, each polynomial computed by a f+;�; �g-SLP of length t has degree at most 2t, thus atmost 2t factors. Thus, #Qt � (3(t+ 4)2)t � 2t: 2Claim 2: #R(d;D) = (2D + 1)d.Proof: Each of the d coe�cients ad�1; : : : ; a0 of the polynomial ~p de�ning p 2 R(d;D) can bechosen from f�D; : : : ;Dg: (Note that ad = 1 by de�nition.) 26



Thus, as long as (3(t+ 4)2)t � 2t < (2D + 1)d, there is a polynomial p 2 R(d;D) left such that,for no �, p + � 2 Qt: This implies lemma 2. 2Next we note that polynomials from R(d;D) can be computed fast in parallel.Lemma 3: Each p 2 R(d;D) can be computed by a f+;�; �g-PRAM with d+1 processors in timeO(log(d) + log(D)):Proof: The i'th processor, i = 0; : : : d, computes the i'th summand aixi of ~p. As jaij � D, i � d,this needs time O(log(d) + log(D)): Computing ~p(x), i. e. adding up the d + 1 summands, needstime O(log(d)): Constant time is needed to compute p(x; y) from ~p(x) and y. 2Now we can easily conclude Theorem 3. Let pd 2 R(d; 1) be a polynomial with the propertiesfrom lemma 2. Consider L := f(x1; : : : ; xn) 2 IN �, p2n(x1; x2) = 0g:By Lemmas 1 and 2, L has complexity 
(2nn ) on f+;�; �g-CTs, i. e. L 62 NU-f+;�; �g-P. Onthe other hand, by Lemma 3, L 2 NU-f+;�; �g-Parallel. 25. Separation Results for S = f+;�;DIV cgWe prove the following separation result.Theorem 4: f+;�;DIV cg-P 6= f+;�;DIV cg-NP.Proof: Let L = f(x1; : : : ; xn) 2 IN�; n 2 IN; x1 can be divided by all j; 1 � j � 2ng. Thefollowing two lemmas imply the theorem.Lemma 1: L 2 S-NP.Lemma 2: L =2 S-P .Proof of Lemma 1: The following non-deterministic algorithm recognizes L in O(n) steps.1) Guess j; 1 � j � 2n.2) Test whether j divides x1 by testing � j. (x1DIV c j) = x1. If not, accept.Step 1 takes O(n) steps (Guess the binary representation fa0; : : : ; an�1g of j (n bits), andcompute j from it).Step 2 takes O(n) time:{ compute (x1DIV c j) := y. 7



{ compute j � y (without multiplication) with the help of a0; : : : ; an�1 in O(n) steps. 2Proof of Lemma 2: Let Ln := fx; each j; 1 � j � 2n, divides xg. The following claim, togetherwith Theorem 1, implies now Lemma 2.Claim 3: Each f+;�;DIVcg-CT for Ln has depth 
(2 12n):Proof: We show that we can eliminate all DIVc-operations on a given computation path of af+;�;DIVcg-CT if we restrict the input set IN to an arithmetic progression N(l) := fl �y, y 2 INg.Proposition: For each f+;�;DIVcg-SLP M of length t with one input variable there is an integerl � 0, l � nt2t2, such that each function f computed in M ful�lls:For x 2 N(l), f(x) can be written as f(x) = ax+ b with(i) a � l 2 ZZ, b 2 ZZ;(ii) jaj; jbj � n � 2t:Proof: by induction on t.t = 0 :Before the computation starts, only the identity and the constants 0; 1; n are computed. They ful�ll(i) and (ii) with l = 1:t > 0 :Let f be computed in step t. By induction hypothesis, f(x) = (ax+ b) � (cx+ d) for x 2 N(l0) withl0 � nt�1 � 2(t�1)2, where a � l0 2 ZZ, c � l0 2 ZZ, jaj; jbj; jcj; jdj � n � 2t�1, and � 2 f+;�;DIVcg:If � 2 f+;�g, the proposition obviously holds with l = l0:If � = DIVc, we distinguish between two cases.Case 1: a = 0, c = 0:In this case f(x) = bDIV d for x 2 N(l0): As jbDIV dj � jbj � n � 2t�1 � n � 2t by inductionhypothesis, the proposition is ful�lled with l = l0:Case 2: a 6= 0, c = 0:Let l := l0 � d: As, by induction hypothesis, l0 � nt�1 � 2(t�1)2 and d � n � 2t�1; it follows thatl � nt � 2t2 :Now, for x 2 N(l) it holds that adx 2 ZZ: Thus, for x 2 N(l), f(x) = (ax + b)DIVc d =adx+ bDIVc d: As shown above, jbDIVc dj � n � 2t: Further ad � l = a � l0 2 ZZ and jad j � jaj � n � 2t:Thus f ful�lls (i) and (ii).As we have changed l, we have to make sure that (i) and (ii) still hold for the previouslycomputed functions g. Each such g can by induction hypothesis be written as g(x) = a0x+ b0 forx 2 N(l), as N(l) � N(l0). Further, by induction hypothesis, (ii) is ful�lled, and a0 � l0 2 ZZ: As l0jl,also a0 � l 2 ZZ and the property (i) also follows. 8



This �nishes the proof of the proposition. 2Remark: We do not have to consider the two cases with c 6= 0, because we only allow DIVc, notDIV . The case a = 0, c 6= 0 would not cause much trouble, we only would have to restrict N(l) tosu�ciently large numbers. But the case a 6= 0, c 6= 0 would substantially damage the proposition.Our method would only guarantee a doubly-exponential bound for l.It is now easy to conclude Claim 3.Let T be a f+;�;DIVcg-CT for Ln of depth t. T has an accepting leaf v with #c(v) = 1:Consider the path to v. This path can be looked upon as a f+;�;DIVcg-SLP of length t. By theproposition, we may assume that, for inputs from N(l) for some l � nt2t2, all functions computedin this SLP are linear. Thus there is z > 0 suchthat N(l)\fx 2 IN; x > zg � c(v); because branchings with linear functions can only partitionthe set IN of inputs into a �nite and an in�nite interval. As #c(v) = 1; the path to v alwaysbelongs to the in�nite interval.As v is accepting, c(v) � N(s), where s is the smallest common multiple of f1; : : : ; 2ng:Elementary number theory shows that s = 2
(2n). Thus, as T recognizes Ln, nt2t2 � l � s =2
(2n) must be ful�lled. This implies the desired lower bound t = 
(2 12n): 26. Further ResearchIt would be very interesting to shed some light on the question whether our Theorem 2 holds alsouniformly.AcknowledgementWe are thankful to Avi Wigderson for a number of interesting discussions.References[BJM 88] Babai, L., Just, B., and Meyer auf der Heide, F., On the Limits of Computation withthe Floor Function, Information and Computation 78 (1988), pp. 99-107.9
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