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Abstract

We present separation results on genuinely (or strongly) time bounded sequential, parallel
and non-deterministic complexity classes defined by RAMs with fixed set of arithmetic op-
erations. In particular, we separate non-uniform polynomial time from non-uniform parallel
polynomial time for the set of operations {+, —, *} (answering a question of [M 88]), and uni-
form deterministic polynomial time from uniform non-deterministic polynomial time for the
set of operations {4, —, DIV .}, where DIV, denotes a restricted integer division operation.
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1. Introduction

Classical complexity theory deals with uniform computation models as Turing Machines and Ran-
dom Access Machines or non-uniform models as Boolean circuits and branching programs. The
usual time complexity measure is defined as a function T'(n) denoting the worst case runtime taken
over all inputs consisting of n bits.

On the other hand, the efficiency of most of the algorithms or data structures considered e.g.
in courses on efficient algorithms is measured differently. Here one has in mind a Random Access
Machine with uniform cost measure and arithmetic operation set S C {4+, —,*, DIV, MOD, ...}
(S-RAM), and one looks at the worst case runtime T'(n) taken over all inputs consisting of n
integers, not n bits (genuinely (or strongly) T'(n)-time bounded computation). Examples are sorting,
searching, weighted matching, knapsack, travelling salesman, etc. Two very interesting problems in
this context are the following:

a) Linear programming

The known polynomial algorithms see e.g. [K 84] are not genuinely polynomial, i.e. their
uniform runtine depends on the binary input length, not just on the number of integer inputs.
The best known genuine time bound comes from the simplex algorithm and is exponential. It
is a challenging open problem to find a genuinely polynomial algorithm. Steps in this direction

can be found in [M 83] or [T 86].

b) Integer programming

It is shown in [BJM 88] that for this problem no genuine algorithm exists, i.e. every algorithm
has a uniform runtime which grows to infinity with the binary input length, even if the number
of integer input variables is fixed. This is true even for a very powerful operation set: evaluating
any analytic function or applying integer division is allowed.

There are a lot more results concerning computability and lower bounds for S-RAMs (see e. g.
[M 89]). All these results have in common that they are even true for non-uniform S-RAMs.

There are also results that show how the computation power explodes if we allow non-uniformity:

— For operations {4, —}, non-uniform polynomial time = non-uniform parallel polynomial time
where 27°W(") processors are allowed ([M 84], [M 88]).

— For operations {4+, —, %}, non-uniform polynomial time = non-uniform random polynomial

time [M 85].

In this paper we try to lay the foundations of a complexity theory of genuinely polynomial
computations (for the survey paper on the topic see [M 89]) and prove some basic separation
results. For a given operation set .S, we define the complexity classes S-NP, S-P., S-PARALLEL, 5-
NC. We introduce also a non-uniform S-RAM which starting with n variables is allowed to perform



an arbitrarily complex precomputation yielding a program of a S-RAM M,, over arbitrary inputs of
n variables. The non-uniform versions of the classes S-NP, S-P and S-PARALLEL will be denoted
by NU-S-NP, NU-S-P and NU-S-PARALLEL, respectively.

We prove the following three separation results:

(i) NUA{+,—,*}-P # NU-{+, —, *}-PARALLEL,
(H) {—I_v ) *}“NO 7£ {—I_v ) *}_Pv
(iii) {+,—, DIV }-P # {4+, —, DIV_.}-NP, where DIV . denotes integer division by values that are

only dependent on the number of input variables, not on their values.

Note that for (i) equality holds for the operation set {4, —} (see above). (i) answers a question
posed in [M 88].

2. Computation Models and Complexity Classes

A Random Access Machine with the arithmetic operation set S C {+,—,*, DIV, DIV . MOD}
consists of a finite program, an input tape, an output tape and infinitely many registers numbered
0, 1, 2 .... Each cell of the input or output tape and each register is able to store an integer of
arbitrary size. The program consists of direct or indirect storage accesses, operations from S applied
to contents of two registers, jumps (goto j), and branchings (if Reg(0) > 0 then ... else ...),
read only (write only) access to the input (output) tape.

The execution of one instruction is counted as one step (uniform cost measure). The program
starts with an input (n,2q,...,2,) € IN* on the input tape. At the end of the computation, the
output is on the output tape. This defines the computed function f : IN* — IN*. The runtime of
a RAM M started with input x is Ty (@), and T'(n) := max{Ty(x),x € IN"} is the complexity of
M. M accepts L C IN™, if it computes its characteristic function. Non-deterministic and parallel
RAMs (cf. [KR 88]) are defined as usual. We shall consider the following complexity classes: S-
P, S-NP, S-PARALLEL, S-NC. In what follows “polynomially time-bounded” will mean genuinely
polynomially time-bounded.

S-P := {L C IN", there is a polynomially time-bounded S-RAM accepting
L}.
S-NP := {L C IN~", there is a polynomially time-bounded non-deterministic
S-RAM accepting L}.
S-PARALLEL := {L C IN~", there is a polynomially time bounded parallel S-RAM
that uses O(2P(") processors for inputs from IN"}.
S-NC := {L C IN7, there is a polylogarithmically time bounded parallel

S-RAM that uses poly(n) processors for inputs from IN"}.



Non-uniformity of computations means that one allows to use a new program for each new input
length. The nonuniform versions of the above complexity classes are marked with the prefix NU,

e.g.

NU-S-P := {L € IN", there is a polynomial p and S-RAMs My, M,, ... such
that M, accepts L N IN™ in time p(n)}.

Such a family M;, M, ... of S-RAMs we shall call non-uniform S-RAM for short.

In order to prove lower bounds, we shall, as usual, consider a non-uniform, simplified computa-
tion model, the S-computation tree (S-CT). It gets inputs from IN", for fixed n. This is a rooted
tree with outdegrees 0, 1, 2. A node with outdegree 0 is a leaf. It is labelled accept or reject.

A node v with outdegree 1 is a computation node, here a function ¢ = ¢; 0 g2 of the input
X1y..., T, € IN" is computed, ¢,¢g1,92 : IN" — IN, where o € S and ¢y, g, are constants from
{0,1,n}, input variables, or functions computed on the path from the root to v. A node v with
outdegree 2 is a branching node. It tests whether f(z) > 0, where f is computed on the path
to v. An input x € IN" now follows a fixed path from the root to a leaf, always going right at
a branching if its test is fulfilled, and left else. The inputs arriving at accepting leaves form the
accepted language L C IN". The complexity of the CT is its depth.

An S-CT that does not contain branchings is called a straight line program over S (S-SLP).

(Note that, in contrast to the classical notion of CTs and SLPs, we charge CTs and SLPs for
computing large constants.)

3. Relating CTs and RAMs

In what follows, we shall prove lower bounds only for S-CTs. In this chapter we show that they
also hold for S-RAMs with a logarithmic time loss at most.

Theorem 1: Let {+,—} C S. Fach (uniform or non-uniform) S-RAM recognizing . C IN™ in

T(n) steps can be simulated by a family of S-CTs Dy, Ds, ..., where D, recognizes L N IN" in
O(T(n)logT(n)) steps.

PRrROOF: Essentially, an S-RAM can be “unrolled” to an S-CT if all indirect addresses used depend
only on the number n of input variables, not on the depth. As n is constant, if we build up
the CT D,, we only have constant addresses. (If-questions become branching nodes, arithmetic
operations become computation nodes, storage accesses are now implicit by the choices of the
operands at a computation node.) Thus we have to show how to simulate an S-RAM by one that
only uses addresses computed in special index registers, where only computations dependent on n
are performed.

For the purpose of this paper, we maintain the memory of the S-RAM in a data structure D
that supports insertion and lookup. If register a; contains b;, 7 = 1,...,d, then D has stored the
pairs (ay,b1),...,(aq4,b4), where a; are the keys.



Now reading in register a; is simulated by looking up (a;,b;), writing b to register a is done by
searching for key a. If it is already in D, a = a;, then replace b; by b. If not, insert the pair (a,b).

As D never contains more than T'(n) entries, each storage access is simulated in O(log(7T'(n))
steps. One easily verifies that, if one carefully uses a 2-3-tree or AVI-tree for D, one only needs
operations {4+, —} to maintain D, and only the restricted version of indirect addressing described
above is used.

O

This result shows that lower bounds for S-CTs translate to lower bounds for S-RAMs with only
logarithmic time loss.

4. Separation Results for S = {+, — *}

We prove the following two separation results.
Theorem 2: {+, — «}-NC # {+, —, x}-P
Theorem 3: NU — {+, —,*}-P # NU — {+, —, #}-PARALLEL

For the proofs we consider polynomials from the class R(d, D) := {p : IR> — IR, p(z,y) =
p(x) —y, where p: IR — IR is a polynomial of degree d, leading coefficient 1, and coefficients from
{=D,...,D}}, for d,D € IN. Note that each p € R(d, D) is irreducible.

To each p € R(d, D) we associate the language L, := {(x,y) € IN* p(z,y) = 0}.

First we show that each {4, —, *}-PCT for L, computes a polynomial which is closely related
to p.

Lemma 1: Let p € R(d, D). If a {4+, —,*}-PCT T (with arbitrarily many processors) recognizes
L, in t steps, then there is a {+, —, }-SLP of length t that computes a polynomial q : IN> — IN
with (p+0)|q (i. e. p+ ¢ is a factor of q over IR) for some § € IR. q is computed at some node of T

PROOF: Let T be a {+,—,*}-PCT for L, of depth t. We show that a polynomial ¢ as in the
lemma is computed at some node of T'. The path to this node can be looked upon as the desired

{+, —, *}-SLP.

First we note: For p € R(d,D),#L, = oo; because, for @ € IN, p(x) € IN, and therefore
Ly = {(z,p(x)), x € IN}.

Therefore there is an accepting leaf v of T' such that ¢(v), the set of inputs from IR?* following
the path to v, is unbounded. For a € IR let

Co = c(v) N {(2,y) € IR, [|(x,y)]| > o}.



¢(v) is defined by a system of polynomial inequalities, for polynomials defining the branchings
nodes on the path to v. Elementary properties of varieties of polynomials show that, for sufficiently
large o, C,, = {(x,y) € IR%, ||(z,y)|| > a, qi(z,y) > (or >)0, q(z,y) <(or >)0}, i. e. C,, is the
strip between the varieties of polynomials ¢; and ¢2. ¢; and ¢, can be chosen as irreducible factors
of polynomials defining ¢(v), i. e. of polynomials computed in 7.

If g1 = ¢, then clearly g1 = ¢2 = p, and the lemma follows.

If ¢1 # 2, then g1 (and ¢3) has to be of the form p+ ¢ for some § € IR. Otherwise, the varieties
of ¢; and p would have an unbounded distance in the y-coordinate when = tends to infinity. Thus
¢(v) would also contain points (z,p(x) + 1) or (x,p(x) — 1) for sufficiently large integers x. But
these points do not belong to L,. O

PROOF OF THEOREM 2:
Let Ly :={(z,y) € IN*, 2t =y}, L = {(z1,...,2,) € IN*, (21, 22) € Lon}.

Obviously, L € {+, —, *}-P. (Compute z*" by iterated squaring.)

But by Lemma 1, a {+, —,*}-PCT T for L,; computes a polynomial ¢ with (z? — y + J)|q for
some 8. Thus ¢ has degree at least d. Therefore, as a {4+, —, *}-PCT can only compute polynomials
with degree at most 2! in ¢ steps, the depth of T"is Q(log(d)). Thus each {4, —, *}-PCT for L needs
time Q(n), i.e. L & {4+, —,*}-NC. O

ProoF oF THEOREM 3:

The proof is more involved because we need polynomials from R(d, D) which are much harder
to compute than in time O(log(d)). The existence of such polynomials is shown in the following
lemma.

Lemma 2: There are polynomials p € R(d,D) such that each polynomial q : IR* — IR with
(p+ d)|q for some § € IR needs time Q(dlog (D + 1)/log(d log(D + 1)) to be evaluated by a
{+,—,*}-SLP.

PROOF: Let Q; := {p : IR* — IR, p is a factor (with leading coefficient normalized to 1) of a
polynomial computed by some {4+, —, % }-SLP of length ¢}.

Claim 1: #Q, < (3(t +4)*)" - 2

PROOF: There are at most (3(¢ + 4)*)" {+, —, #}-SLPs of length ¢, because each of the ¢ steps has
3 choices for the operation (+, —, or %) and at most ¢ + 4 choices for each of the two operands (at
most ¢ — 1 possible previously computed values, 2 input variables (x or y), 3 constants (0,1, or n)).

Further, each polynomial computed by a {+, —, *}-SLP of length ¢ has degree at most 2!, thus at
most 2! factors. Thus, #Q, < (3(¢ +4)*)" - 2. O

Claim 2: #R(d, D) = (2D + 1)°.

PROOF: Each of the d coefficients aq4_1,...,ao of the polynomial p defining p € R(d, D) can be
chosen from {—D,..., D}. (Note that ag = 1 by definition.) O
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Thus, as long as (3(t +4)%)" - 2" < (2D 4+ 1)%, there is a polynomial p € R(d, D) left such that,
for no 8, p+d € ();. This implies lemma 2. O

Next we note that polynomials from R(d, D) can be computed fast in parallel.

Lemma 3: Fach p € R(d, D) can be computed by a {4, —,*}-PRAM with d+ 1 processors in time
O(log(d) + log(D)).

PROOF: The 7’th processor, 1 = 0,...d, computes the :'th summand a;z* of p. As |a;| < D, 1 < d,
this needs time O(log(d) + log(D)). Computing p(z), i. e. adding up the d + 1 summands, needs
time O(log(d)). Constant time is needed to compute p(z,y) from p(x) and y. O

Now we can easily conclude Theorem 3. Let p; € R(d, 1) be a polynomial with the properties
from lemma 2. Consider L := {(xy,...,2,) € IN", pan(xy,22) = 0}.

By Lemmas 1 and 2, L has complexity Q(%) on {+,—,*}-CTs, i. e. L &€ NU-{+,—,*}-P. On
the other hand, by Lemma 3, L. € NU-{+, —, x}-PARALLEL. O

5. Separation Results for S = {+,—, DIV .}

We prove the following separation result.
Theorem 4: {+,—, DIV .}-P # {+,—, DIV .}-NP.

PrROOF: Let L = {(x1,...,2,) € IN",;n € IN, x; can be divided by all 5,1 < 5 < 2"}. The

following two lemmas imply the theorem.
Lemma 1: L € S-NP.
Lemma 2: [ ¢ S-P.

PROOF OF LEMMA 1: The following non-deterministic algorithm recognizes L in O(n) steps.

1) Guess j, 1 < g5 <27

2) Test whether j divides xy by testing - j. (1 DIV .j) = 1. If not, accept.

Step 1 takes O(n) steps (Guess the binary representation {ag,...,a,—1} of j (n bits), and
compute j from it).

Step 2 takes O(n) time:

— compute (21 DIV . 7) :=y.



— compute j - y (without multiplication) with the help of aq, ..., a,—1 in O(n) steps. O

PROOF OF LEMMA 2: Let L, := {x, each j,1 < j < 2" divides z}. The following claim, together
with Theorem 1, implies now Lemma 2.

Claim 3: Fach {+,—, DIV.}-CT for L, has depth Q(Z%”)

ProOOF: We show that we can eliminate all D/V.-operations on a given computation path of a
{+,—, DIV_}-CT if we restrict the input set IN to an arithmetic progression N(l) :={l-y,y € IN}.

Proposition: For each {+,—, DIV.}-SLP M of length t with one input variable there is an integer
[>0,1<n'2", such that each function f computed in M fulfills:

For v € N(I), f(x) can be written as f(x) = ax + b with
(iJa-leZ,be Z,
(i) al o] < n 2"

PROOF: by induction on ¢.

t=20:
Before the computation starts, only the identity and the constants 0,1, n are computed. They fulfill
(i) and (ii) with [ = 1.

t>0:
Let f be computed in step t. By induction hypothesis, f(x)

= (ax 4+ b)o(cx +d) for x € N(I') with
' <nt=t 200 where a - I' € Z, ¢-I' € Z, |al, |b],|c|,]d] < n

22071 and o € {+,—, DIV.}.
If o € {4, —}, the proposition obviously holds with [ =['.
If o = DIV,, we distinguish between two cases.

CASE 1: a =0, ¢=0.
In this case f(z) = b DIV d for x € N(I'). As |bDIV d| < |b] < n-271 < n-2' by induction
hypothesis, the proposition is fulfilled with [ = /.

CASE 2:a #0, ¢ =0.
Let [ := {"-d. As, by induction hypothesis, I/ < n!=' . 20=D" and d < n - 271
[ <nt. 2t

it follows that

Y

Now, for € N(Il) it holds that %z € Z. Thus, for x € N(l), f(z) = (ax + b)DIV.d =
Sx +bDIV,d. As shown above, |bDIV.d| < n-2'. Further §-l=a-l' € ZZ and |§| < |a| < n - 2"

Thus f fulfills (i) and (ii).

As we have changed [, we have to make sure that (i) and (ii) still hold for the previously
computed functions g. Each such ¢g can by induction hypothesis be written as g(x) = a’x + ¥’ for
x € N(l), as N(I) C N(I'). Further, by induction hypothesis, (ii) is fulfilled, and o« - I" € ZZ. As l'|l,
also a' - [ € ZZ and the property (i) also follows.



This finishes the proof of the proposition. a

REMARK: We do not have to consider the two cases with ¢ # 0, because we only allow DIV., not
DIV. The case a =0, ¢ # 0 would not cause much trouble, we only would have to restrict N(I) to
sufficiently large numbers. But the case a # 0, ¢ # 0 would substantially damage the proposition.
Our method would only guarantee a doubly-exponential bound for [.

It is now easy to conclude Claim 3.

Let T be a {+,—, DIV.}-CT for L, of depth t. T has an accepting leaf v with #c¢(v) = oc.
Consider the path to v. This path can be looked upon as a {4+, —, DIV_.}-SLP of length ¢. By the
proposition, we may assume that, for inputs from N([) for some [ < n'2”  all functions computed
in this SLP are linear. Thus there is z > 0 such

that N(I)N{x € IN,x > z} C ¢(v), because branchings with linear functions can only partition
the set IN of inputs into a finite and an infinite interval. As #c¢(v) = oo, the path to v always
belongs to the infinite interval.

As v is accepting, ¢(v) C N(s), where s is the smallest common multiple of {1,...,2"}.

Elementary number theory shows that s = 22" Thus, as T recognizes L., ni2t® > 1> g =
292") must be fulfilled. This implies the desired lower bound ¢ = Q(Z%”) O

6. Further Research

It would be very interesting to shed some light on the question whether our Theorem 2 holds also
uniformly.
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