
The Computational Complexity of(XOR;AND)-Counting ProblemsAndrzej EhrenfeuchtDept. of Computer ScienceUniversity of Colorado,Boulder, Colorado 8030Landrzej@boulder.colorado.eduMarek Karpinski �Dept. of Computer ScienceUniversity of Bonn, 5300 Bonn 1andInternational Computer Science InstituteBerkeley, Californiamarek@icsi.berkeley.eduAbstractWe characterize the computational complexity of counting the exact number of satisfyingassignments in (XOR;AND)-formulas in their RSE-representation (i.e., equivalently, polyno-mials in GF [2][x1; : : : ; xn]). This problem refrained for some time e�ords to �nd a polynomialtime solution and the e�orts to prove the problem to be #P -complete. Both main results canbe generalized to the arbitrary �nite �elds GF[q]. Because counting the number of solutionsof polynomials over �nite �elds is generic for many other algebraic counting problems, theresults of this paper settle a border line for the algebraic problems with a polynomial timecounting algorithms and for problems which are #P -complete. In [KL 89] the couting prob-lem for arbitrary multivariate polynomials over GF[2] has been proved to have randomizedpolynomial time approximation algorithms.�Supported in part by the Leibniz Center for Research in Computer Science, by DFG Grant KA 673/2-1, and bythe SERC Grant GR-E 68297. 1

1 IntroductionLet us denote by kXOR the class of all formulas f of the form f = L aA ^ Vi2A xi, for a 0-1vector (aA)A�f1;:::;ng such that jAj � k (or equivalently, kXOR-formulas f are Galois polynomialsf 2 GF [2][x1; : : : ; xn]of degree at most k). XOR = Sk kXOR. For a formula f 2 XOR with nvariables, denote #f = jf(x1; : : : ; xn)jf(x1; : : : ; xn) = 1gj. The counting problem for kXOR is theproblem of computing #f for any given formula f 2 kXOR.In this paper we prove that the problem of exact counting the number of satisfying arguments of3XOR-formulas (polynomials of degree 3 over GF[2]) is #P -complete.We design also an O(n3)-timealgorithm for the 2XOR-counting problem.2 Some Auxiliary Lemmas on Polynomials over GF[2]Suppose wi 2 GF [2][xi; : : : ; xn]; i = 1; : : : ;m, de�ne a polynomial u = Lmi=1wizi for new variableszi 62 fx1; : : : ; xng. De�ne by #s(fwig) the number of solutions of the system fwi = 0gi=1;:::;m. Fora single polynomial u, #s(u) denotes the number of solutions of u, i.e. #s(u) = #f�xju(�x) = 0g.With this notation we formulate the followingLemma 1. #s(u) = #s(fwig)2m + (2n �#s(fwig))2m�1Proof:Suppose x 2 s(fwig), then all the vectors z 2 f0; 1gm are solutions of u = Lmi=1wizi. There are#s(fwig)2m of them. Suppose now that x 62 s(fwig). Denote by Kx = fijwi(x) 6= 0g the set of allindices of polynomials wi so that wi(x) 6= 0.Let us characterize the vectors y 2 f0; 1gm such that xy is a solution of u. y could be 0 or 1everywhere besides the coordinates in Kx. On the coordinates of Kx, the number of 1's must addup to 0 (mod 2). There are therefore2m�jKxj jKxj=2Xr=0 jKxj2r ! = 2m�jKxj2jKxj�1 = 2m�1vectors y such that xy is a solution of u. We note that this number now is independent of theparticular form of Kx. This gives for di�erent x 62 s(fwig) di�erent solutions of u, and results in(2n �#s(fwig)2m�1) additional solutions of u. 2We derive some corollaries from Lemma 1.Lemma 2. The system fwi = 0gi=1;:::m has a solution i� #s(u) > 2n+m�1:(#s(u) � 2n+m�1 always holds.) 2

Lemma 3. #s(fwig) = #s(u)� 2n+m�12m�1In the next section we shall make use of the Lemmas above.3 3XOR{Counting and {Majority Problems are Hard toComputeWe state now our main hardness result.Theorem 1. Given an arbitrary 3XOR formula f 2 GF [2][x1; : : : ; xn], the problem of comput-ing #f is #P -complete.Proof:Let us take a monotone 2DNF formula f = c1 _ c2 _ : : : _ cm where ci = (ai ^ bi) and ai; bi arevariables. The problem of computing #f for any given monotone 2DNF formula is #P -complete(cf., e.g. [V 79]). We de�ne the system wi of polynomials by wi = aibi; i = 1; : : : ;m and constructthe polynomial u = Lmi=1wizi as in section 2.By Lemma 3 #f = 2n � #s(u)� 2n+m�12m�1 :Therefore computing #f for monotone 2DNF formulas f is polynomial time reducible to computing#s(u) for 3XOR formulas.We characterize also Majority and Solutions' Equilibrium Problems for 4XOR-formulas. (SATfor polynomials f is equivalent with checking whether f � 0, trivially doable for explicitely givenf .) For the corresponding results for the (^;_;:)-basis see [G 77].Theorem 2. Given any 4XOR formula f 2 GF [2][x1; : : : ; xn], the problems of deciding whether#f > 2n�1 and #f = 2n�1 are both NP-hard.Proof:Let us take 3CNF formula f = Vmi=1(ai _ bi _ ci) over n variables x1; : : : ; xn where ai; bi; ci areliterals (nonnegated and negated variables). We shall rewrite f into the system of m equationsfwi = (ai _ bi _ ci)� 1gi=1;:::;m in (XOR, AND) basis by writing:x = 1� xand (ai _ bi _ ci) = ai � bi � ci � aibi � aici � bici � aibici:3

Let us construct a polynomial u 2 GF [2][x1; : : : ; xn; xn+1; : : : ; xn+m] as in Section 2. For k =n+m, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checkingwhether #s(u) > 2k�1 or #s(u) = 2k�1. 2Remark: Using Valiant's result (cf. [GJ 79], p. 251) on systems of algebraic equations overGF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard alreadyfor 3XOR-formulas.4 2XOR{Counting ProblemWe are going to design an algorithm to count the number #f for arbitrary f 2 2XOR (f 2F [2][x1; : : : ; xn]; f is polynomial of degree 2).Theorem 3. Given arbitrary 2XOR-formula f , there exists an algorithm working in O(n3) timefor computing #f .We shall call f 2 GF [2][x1; : : : ; xn] read-once if every variable xi in f appears in f at most once.The proof of Theorem 3 will be based on the following sequence of results.Lemma 4. Given arbitrary 2XOR-formula f , f 2GF[2][x1; : : : ; xn], there exists a read-once2XOR-formula g 2GF[2][y0; : : : ; ym]; m � n, a nonsingular m � n matrix T = (tij) and an mvector C = (ci) such thatg(nMj=1 t0jxj + c0; nMj=1 t1jxj + c1; : : : ; nMj=1 tm�1;jxj + cm�1) = f(x1; : : : ; xn):There exists an algorithm for computing matrix T = (tij) and vector C = (c1) for arbitrary 2XOR-formulas f working in O(n3) time. The form of g can be chosen to beg = y0 � y1y2 � y3y4 � : : :� ym�2ym�1 � z org = y0y1 � y2y3 � : : :� ym�2ym�1q � zwhere z 2 f0; 1g.Proof:We shall describe an algorithm for computing matrix T = (tij), vector C = (ci) and constant z.The algorithm will be by recursion on the set of variables Var(f) = fx1; : : : ; xng.Recursion Stage xi:Let x := xiRewrite f as f = x�� � where � is a linear form, and � is the rest of f .4

Represent (recursively)� = y0 � y1y2 � y3y4 � : : :� yk�2yk�1 � z type Ior � = y0y1 � y2y3 � : : :� ym�2ym�1 � z type IIwhere z 2 GF[2] and corresponding nonsingular k � (n � i) matrix T� and vector C�. Note thatk � n� i.Consider the following cases:Case 1. � = 1.{ � is of type I.Construct new variablesy00 := y0 � xy0i := yi i = 1; : : : ; k � 1{ � is of type II.Construct new variablesy00 := xy0i+1 := yi i = 0; : : : ; k � 1Case 2. � is linear independent of the variables of � (� cannot be expressed as a linear combinationof the rows of matrix T�). Note that in this case, k < n� i.Construct new variablesy0i := yi i = 0; : : : ; k � 1y0k := xy0k+1 := �Case 3. � is linear dependent on the variables of �.Let � = yi1 � : : :� yis � (013.a. ys and yt in � form a term of �.: : :� xys � xyt � ysyt = : : : (x� ys)(x� yt)� x|{z}an 'extra' xConstruct new variablesy0s := ys � xy0t := yt � x3.b. ys is in � but its 'partner' yt in a term of � is not in �.: : :� xys � ysyt = : : : ys(x� yt)Construct new variablesy0s := ysy0t := yt � x 5

3.c. � is of type I.{ � is independent of y0 and the number of 'free' x is odd.Construct new variabley00 := y0 � x{ � is dependent of y0 and the number of 'free' x is odd.: : :� xy0 � y0 � x = : : : (x� 1)(y0 � 1)� 1Construct new variablesz0 := z � 1y0i := yi+1 i = 0; : : : ; k � 2c0i := ci+1 i = 0; : : : ; k � 2y0k�1 := y0c0k�1 := c0 + 1y0k := xc0k := 1g is of type II.{ � is dependent of y0 and the number of 'free' x is even.: : :� xy0 � y0 = : : : (x� 1)y0Construct new variablesz0 := zy0i := yi+1 i = 0; : : : ; k � 2c0i := ci+1 i = 0; : : : ; k � 2y0k�1 := y0c0k�1 := c0y0k := xc0k := 1g is of type II.3.d. � is of type II and the number of 'free' x is odd.Construct new variablesy00 := xy0i+1 := yi i = 0; : : : ; k � 1g is of type I.It is not di�cult to check that the algorithm produces the substitution matrix T = [tij] asde�ned in Lemma 4.The algorithm works in n recursive steps and each step runs in O(n2) time. 2We complete the proof of Theorem 3.Lemma 5. #f = #g2n�m6

Proof: Obvious from linear algebra.Finally, the direct counting arguments give us the following.Lemma 6.1. Given a 2XOR-formula g 2 GF [2][x1; : : : ; xn];g = x1x2 � x3x4 � : : :� xn�2xn�1 � xn; #g = 2n�1:2. Given a 2XOR-formula g 2 GF [2][x1; : : : ; xn],g = x1x2 � x3x4 � : : :� xn�1xn #g = 2n�1 � 2n�22 : 2 25 AcknowledgementsWe are thankful to Avi Wigderson, Dick Karp, Mike Luby and Thorsten Werther for the numberof interesting conversations.References[AW 85] Ajtai, M. and Wigderson, A., Deterministic Simulation of Probabilistic Constant DepthCircuits, Proc. 26th IEEE FOCS (1985), pp. 11 - 19[G 77] Gill, J., Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput.6, pp. 675 - 694[GJ 79] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory ofNP-Completeness, Freeman and Company, New York (1979)[KL 83] Karp, R.M. and Luby, M.,Monte-Carlo Algorithms for Enumeration and Reliability Prob-lems, Proc. 24th IEEE FOCS (1983), pp. 56-64[KL 85] Karp, R.M. and Luby, M.,Monte-Carlo Algorithms for the Planar Multiterminal NetworkReliability Problem, J. of Complexity 1 (1985), pp. 45 - 64[KL 89] Karpinski, M. and Luby, M., Approximating the Number of Solutions of a GF[2]-Polynomial, manuscript, 1989 7

[KLM 89] Karp, R.M., Luby, M. and Madras, N., Monte-Carlo Approximation Algorithms forEnumeration Problems, J. of Algorithms 10 (1989), pp. 429 - 448[V 79] Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Com-put. 8, pp. 410 - 421[W 87] Wegener, I., The Complexity of Boolean Functions, John Wiley, New York, 1987

8

