The Computational Complexity of (XOR, AND)-Counting Problems

Andrzej Ehrenfeucht Dept. of Computer Science University of Colorado, Boulder, Colorado 8030L andrzej@boulder.colorado.edu

Marek Karpinski * Dept. of Computer Science University of Bonn, 5300 Bonn 1 and International Computer Science Institute Berkeley, California marek@icsi.berkeley.edu

Abstract

We characterize the computational complexity of counting the exact number of satisfying assignments in (XOR, AND)-formulas in their RSE-representation (i.e., equivalently, polynomials in $GF[2][x_1, \ldots, x_n]$). This problem refrained for some time effords to find a polynomial time solution and the efforts to prove the problem to be #P-complete. Both main results can be generalized to the arbitrary finite fields GF[q]. Because counting the number of solutions of polynomials over finite fields is generic for many other algebraic counting problems, the results of this paper settle a border line for the algebraic problems with a polynomial time counting algorithms and for problems which are #P-complete. In [KL 89] the couting problem for arbitrary multivariate polynomials over GF[2] has been proved to have randomized polynomial time approximation algorithms.

^{*}Supported in part by the Leibniz Center for Research in Computer Science, by DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

1 Introduction

Let us denote by kXOR the class of all formulas f of the form $f = \bigoplus a_A \land \bigwedge_{i \in A} x_i$, for a 0-1 vector $(a_A)_{A \subseteq \{1, \dots, n\}}$ such that $|A| \leq k$ (or equivalently, kXOR-formulas f are Galois polynomials $f \in GF[2][x_1, \dots, x_n]$ of degree at most k). XOR $= \bigcup_k k$ XOR. For a formula $f \in XOR$ with nvariables, denote $\#f = |\{(x_1, \dots, x_n) | f(x_1, \dots, x_n) = 1\}|$. The counting problem for kXOR is the problem of computing #f for any given formula $f \in k$ XOR.

In this paper we prove that the problem of exact counting the number of satisfying arguments of 3XOR-formulas (polynomials of degree 3 over GF[2]) is #P-complete. We design also an $O(n^3)$ -time algorithm for the 2XOR-counting problem.

2 Some Auxiliary Lemmas on Polynomials over GF[2]

Suppose $w_i \in GF[2][x_i, \ldots, x_n]$, $i = 1, \ldots, m$, define a polynomial $u = \bigoplus_{i=1}^m w_i z_i$ for new variables $z_i \notin \{x_1, \ldots, x_n\}$. Define by $\#s(\{w_i\})$ the number of solutions of the system $\{w_i = 0\}_{i=1,\ldots,m}$. For a single polynomial u, #s(u) denotes the number of solutions of u, i.e. $\#s(u) = \#\{\bar{x}|u(\bar{x}) = 0\}$. With this notation we formulate the following

Lemma 1.

$$#s(u) = #s(\{w_i\})2^m + (2^n - #s(\{w_i\}))2^{m-1}$$

Proof:

Suppose $x \in s(\{w_i\})$, then all the vectors $z \in \{0,1\}^m$ are solutions of $u = \bigoplus_{i=1}^m w_i z_i$. There are $\#s(\{w_i\})2^m$ of them. Suppose now that $x \notin s(\{w_i\})$. Denote by $K_x = \{i|w_i(x) \neq 0\}$ the set of all indices of polynomials w_i so that $w_i(x) \neq 0$.

Let us characterize the vectors $y \in \{0,1\}^m$ such that xy is a solution of u. y could be 0 or 1 everywhere besides the coordinates in K_x . On the coordinates of K_x , the number of 1's must add up to 0 (mod 2). There are therefore

$$2^{m-|K_x|} \sum_{r=0}^{|K_x|/2} \binom{|K_x|}{2r} = 2^{m-|K_x|} 2^{|K_x|-1} = 2^{m-1}$$

vectors y such that xy is a solution of u. We note that this number now is independent of the particular form of K_x . This gives for different $x \notin s(\{w_i\})$ different solutions of u, and results in $(2^n - \#s(\{w_i\})2^{m-1})$ additional solutions of u. \Box

We derive some corollaries from Lemma 1.

Lemma 2. The system $\{w_i = 0\}_{i=1,...m}$ has a solution iff $\#s(u) > 2^{n+m-1}$.

 $(\#s(u) \ge 2^{n+m-1} \text{ always holds.})$

Lemma 3.

$$\#s(\{w_i\}) = \frac{\#s(u) - 2^{n+m-1}}{2^{m-1}}$$

In the next section we shall make use of the Lemmas above.

3 3XOR–Counting and –Majority Problems are Hard to Compute

We state now our main hardness result.

Theorem 1. Given an arbitrary 3XOR formula $f \in GF[2][x_1, \ldots, x_n]$, the problem of computing #f is #P-complete.

Proof:

Let us take a monotone 2DNF formula $f = c_1 \vee c_2 \vee \ldots \vee c_m$ where $c_i = (a_i \wedge b_i)$ and a_i, b_i are variables. The problem of computing #f for any given monotone 2DNF formula is #P-complete (cf., e.g. [V 79]). We define the system w_i of polynomials by $w_i = a_i b_i$, $i = 1, \ldots, m$ and construct the polynomial $u = \bigoplus_{i=1}^m w_i z_i$ as in section 2.

By Lemma 3

$$\#f = 2^{n} - \frac{\#s(u) - 2^{n+m-1}}{2^{m-1}}$$

Therefore computing # f for monotone 2DNF formulas f is polynomial time reducible to computing #s(u) for 3XOR formulas.

We characterize also Majority and Solutions' Equilibrium Problems for 4XOR-formulas. (SAT for polynomials f is equivalent with checking whether $f \equiv 0$, trivially doable for explicitly given f.)

For the corresponding results for the (\wedge, \vee, \neg) -basis see [G 77].

Theorem 2. Given any 4XOR formula $f \in GF[2][x_1, \ldots, x_n]$, the problems of deciding whether $\#f > 2^{n-1}$ and $\#f = 2^{n-1}$ are both NP-hard.

Proof:

Let us take 3CNF formula $f = \bigwedge_{i=1}^{m} (a_i \lor b_i \lor c_i)$ over *n* variables x_1, \ldots, x_n where a_i, b_i, c_i are literals (nonnegated and negated variables). We shall rewrite *f* into the system of *m* equations $\{w_i = (a_i \lor b_i \lor c_i) \oplus 1\}_{i=1,\ldots,m}$ in (XOR, AND) basis by writing

$$\neg x = 1 \oplus x$$

and

$$(a_i \lor b_i \lor c_i) = a_i \oplus b_i \oplus c_i \oplus a_i b_i \oplus a_i c_i \oplus b_i c_i \oplus a_i b_i c_i$$

Let us construct a polynomial $u \in GF[2][x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}]$ as in Section 2. For k = n + m, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checking whether $\#s(u) > 2^{k-1}$ or $\#s(u) = 2^{k-1}$.

Remark: Using Valiant's result (cf. [GJ 79], p. 251) on systems of algebraic equations over GF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard already for 3XOR-formulas.

4 2XOR–Counting Problem

We are going to design an algorithm to count the number #f for arbitrary $f \in 2XOR$ $(f \in F[2][x_1, \ldots, x_n], f$ is polynomial of degree 2).

Theorem 3. Given arbitrary 2XOR-formula f, there exists an algorithm working in $O(n^3)$ time for computing #f.

We shall call $f \in GF[2][x_1, \ldots, x_n]$ read-once if every variable x_i in f appears in f at most once.

The proof of Theorem 3 will be based on the following sequence of results.

Lemma 4. Given arbitrary 2XOR-formula $f, f \in GF[2][x_1, \ldots, x_n]$, there exists a *read-once* 2XOR-formula $g \in GF[2][y_0, \ldots, y_m]$, $m \leq n$, a nonsingular $m \times n$ matrix $T = (t_{ij})$ and an m vector $C = (c_i)$ such that

$$g(\bigoplus_{j=1}^{n} t_{0j}x_j + c_0, \bigoplus_{j=1}^{n} t_{1j}x_j + c_1, \dots, \bigoplus_{j=1}^{n} t_{m-1,j}x_j + c_{m-1}) = f(x_1, \dots, x_n).$$

There exists an algorithm for computing matrix $T = (t_{ij})$ and vector $C = (c_1)$ for arbitrary 2XORformulas f working in $O(n^3)$ time. The form of g can be chosen to be

$$g = y_0 \oplus y_1 y_2 \oplus y_3 y_4 \oplus \ldots \oplus y_{m-2} y_{m-1} \oplus z$$
 or
 $g = y_0 y_1 \oplus y_2 y_3 \oplus \ldots \oplus y_{m-2} y_{m-1} q \oplus z$

where $z \in \{0, 1\}$.

Proof:

We shall describe an algorithm for computing matrix $T = (t_{ij})$, vector $C = (c_i)$ and constant z. The algorithm will be by recursion on the set of variables $Var(f) = \{x_1, \ldots, x_n\}$.

Recursion Stage x_i :

Let $x := x_i$ Rewrite f as $f = x\alpha \oplus \beta$ where α is a linear form, and β is the rest of f. **Represent** (recursively)

 $\beta = y_0 \oplus y_1 y_2 \oplus y_3 y_4 \oplus \ldots \oplus y_{k-2} y_{k-1} \oplus z \qquad \text{type I}$

or

$$\beta = y_0 y_1 \oplus y_2 y_3 \oplus \ldots \oplus y_{m-2} y_{m-1} \oplus z \qquad \text{type II}$$

where $z \in GF[2]$ and corresponding nonsingular $k \times (n-i)$ matrix T_{β} and vector C_{β} . Note that $k \leq n-i$.

Consider the following cases:

Case 1. $\alpha = 1$.

- β is of type I. Construct new variables $y'_0 := y_0 \oplus x$ $y'_i := y_i \quad i = 1, \dots, k-1$ - β is of type II. Construct new variables $y'_0 := x$ $y'_{i+1} := y_i \quad i = 0, \dots, k-1$

Case 2. α is linear *independent* of the variables of β (α cannot be expressed as a linear combination of the rows of matrix T_{β}). Note that in this case, k < n - i.

Construct new variables

$$y'_i := y_i \qquad i = 0, \dots, k-1$$

 $y'_k := x$
 $y'_{k+1} := \alpha$

Case 3. α is linear dependent on the variables of β .

Let
$$\alpha = y_{i_1} \oplus \ldots \oplus y_{i_s} \oplus \begin{cases} 0\\ 1 \end{cases}$$

3.a. y_s and y_t in α form a term of β .

$$\ldots \oplus xy_s \oplus xy_t \oplus y_sy_t = \ldots (x \oplus y_s)(x \oplus y_t) \oplus \underbrace{x}_{\text{an 'extra' } x}$$

Construct new variables

$$y'_s := y_s \oplus x$$

 $y'_t := y_t \oplus x$

3.b. y_s is in α but its 'partner' y_t in a term of β is not in α .

$$\ldots \oplus xy_s \oplus y_sy_t = \ldots y_s(x \oplus y_t)$$

Construct new variables

$$egin{array}{rcl} y'_s & := & y_s \ y'_t & := & y_t \oplus x \end{array}$$

3.c. β is of type I.

- α is independent of y_0 and the number of 'free' x is odd. Construct new variable

$$y'_0 := y_0 \oplus x$$

- α is dependent of y_0 and the number of 'free' x is odd.

$$\ldots \oplus xy_0 \oplus y_0 \oplus x = \ldots (x \oplus 1)(y_0 \oplus 1) \oplus 1$$

Construct new variables

 $z' := z \oplus 1$ $y'_{i} := y_{i+1} \quad i = 0, \dots, k-2$ $c'_{i} := c_{i+1} \quad i = 0, \dots, k-2$ $y'_{k-1} := y_{0}$ $c'_{k-1} := c_{0} + 1$ $y'_{k} := x$ $c'_{k} := 1$ g is of type II.

 $-\alpha$ is dependent of y_0 and the number of 'free' x is even.

$$\ldots \oplus xy_0 \oplus y_0 = \ldots (x \oplus 1)y_0$$

Construct new variables

z' := z $y'_{i} := y_{i+1} \qquad i = 0, \dots, k-2$ $c'_{i} := c_{i+1} \qquad i = 0, \dots, k-2$ $y'_{k-1} := y_{0}$ $c'_{k-1} := c_{0}$ $y'_{k} := x$ $c'_{k} := 1$ g is of type II.

3.d. β is of type II and the number of 'free' x is odd.

Construct new variables

 $y'_0 := x$ $y'_{i+1} := y_i \qquad i = 0, \dots, k-1$ g is of type I.

It is not difficult to check that the algorithm produces the *substitution* matrix $T = [t_{ij}]$ as defined in Lemma 4.

The algorithm works in n recursive steps and each step runs in $O(n^2)$ time.

We complete the proof of Theorem 3.

Lemma 5.

$$\#f = \#g2^{n-m}$$

Proof: Obvious from linear algebra.

Finally, the direct counting arguments give us the following.

Lemma 6.

1. Given a 2XOR-formula $g \in GF[2][x_1, \ldots, x_n],$ $g = x_1 x_2 \oplus x_3 x_4 \oplus \ldots \oplus x_{n-2} x_{n-1} \oplus x_n,$

$$\#g = 2^{n-1}.$$

- 2. Given a 2XOR-formula $g \in GF[2][x_1, \ldots, x_n],$ $g = x_1 x_2 \oplus x_3 x_4 \oplus \ldots \oplus x_{n-1} x_n$ $\#g = 2^{n-1} - 2^{\frac{n-2}{2}}.$
- 5 Acknowledgements

We are thankful to Avi Wigderson, Dick Karp, Mike Luby and Thorsten Werther for the number of interesting conversations.

References

- [AW 85] Ajtai, M. and Wigderson, A., Deterministic Simulation of Probabilistic Constant Depth Circuits, Proc. 26th IEEE FOCS (1985), pp. 11 - 19
- [G 77] Gill, J., Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput.
 6, pp. 675 694
- [GJ 79] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman and Company, New York (1979)
- [KL 83] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for Enumeration and Reliability Problems, Proc. 24th IEEE FOCS (1983), pp. 56-64
- [KL 85] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for the Planar Multiterminal Network Reliability Problem, J. of Complexity 1 (1985), pp. 45 - 64
- [KL 89] Karpinski, M. and Luby, M., Approximating the Number of Solutions of a GF[2]-Polynomial, manuscript, 1989

- [KLM 89] Karp, R.M., Luby, M. and Madras, N., Monte-Carlo Approximation Algorithms for Enumeration Problems, J. of Algorithms 10 (1989), pp. 429 - 448
- [V 79] Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Comput. 8, pp. 410 - 421
- [W 87] Wegener, I., The Complexity of Boolean Functions, John Wiley, New York, 1987