The Computational Complexity of (XOR, AND)-Counting Problems

Andrzej Ehrenfeucht
Dept. of Computer Science
University of Colorado, Boulder, Colorado 8030L andrzej@boulder.colorado.edu
Marek Karpinski *
Dept. of Computer Science
University of Bonn, 5300 Bonn 1
and
International Computer Science Institute
Berkeley, California
marek@icsi.berkeley.edu

Abstract

We characterize the computational complexity of counting the exact number of satisfying assignments in (XOR, AND)-formulas in their RSE-representation (i.e., equivalently, polynomials in $G F[2]\left[x_{1}, \ldots, x_{n}\right]$). This problem refrained for some time effords to find a polynomial time solution and the efforts to prove the problem to be $\# P$-complete. Both main results can be generalized to the arbitrary finite fields $\mathrm{GF}[q]$. Because counting the number of solutions of polynomials over finite fields is generic for many other algebraic counting problems, the results of this paper settle a border line for the algebraic problems with a polynomial time counting algorithms and for problems which are \#P-complete. In [KL 89] the couting problem for arbitrary multivariate polynomials over GF[2] has been proved to have randomized polynomial time approximation algorithms.

[^0]
1 Introduction

Let us denote by $k X O R$ the class of all formulas f of the form $f=\oplus a_{A} \wedge \wedge_{i \in A} x_{i}$, for a $0-1$ vector $\left(a_{A}\right)_{A \subset\{1, \ldots, n\}}$ such that $|A| \leq k$ (or equivalently, $k X O R$-formulas f are Galois polynomials $f \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$ of degree at most $\left.k\right)$. XOR $=\bigcup_{k} k X O R$. For a formula $f \in \mathrm{XOR}$ with n variables, denote $\# f=\left|\left\{\left(x_{1}, \ldots, x_{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=1\right\}\right|$. The counting problem for $k X O R$ is the problem of computing $\# f$ for any given formula $f \in k$ XOR.

In this paper we prove that the problem of exact counting the number of satisfying arguments of 3 XOR -formulas (polynomials of degree 3 over GF[2]) is \# P-complete. We design also an $O\left(n^{3}\right)$-time algorithm for the 2XOR-counting problem.

2 Some Auxiliary Lemmas on Polynomials over GF[2]

Suppose $w_{i} \in G F[2]\left[x_{i}, \ldots, x_{n}\right], \quad i=1, \ldots, m$, define a polynomial $u=\bigoplus_{i=1}^{m} w_{i} z_{i}$ for new variables $z_{i} \notin\left\{x_{1}, \ldots, x_{n}\right\}$. Define by $\# s\left(\left\{w_{i}\right\}\right)$ the number of solutions of the system $\left\{w_{i}=0\right\}_{i=1, \ldots, m}$. For a single polynomial $u, \# s(u)$ denotes the number of solutions of u, i.e. $\# s(u)=\#\{\bar{x} \mid u(\bar{x})=0\}$. With this notation we formulate the following

Lemma 1.

$$
\# s(u)=\# s\left(\left\{w_{i}\right\}\right) 2^{m}+\left(2^{n}-\# s\left(\left\{w_{i}\right\}\right)\right) 2^{m-1}
$$

Proof:

Suppose $x \in s\left(\left\{w_{i}\right\}\right)$, then all the vectors $z \in\{0,1\}^{m}$ are solutions of $u=\bigoplus_{i=1}^{m} w_{i} z_{i}$. There are $\# s\left(\left\{w_{i}\right\}\right) 2^{m}$ of them. Suppose now that $x \notin s\left(\left\{w_{i}\right\}\right)$. Denote by $K_{x}=\left\{i \mid w_{i}(x) \neq 0\right\}$ the set of all indices of polynomials w_{i} so that $w_{i}(x) \neq 0$.

Let us characterize the vectors $y \in\{0,1\}^{m}$ such that $x y$ is a solution of $u . y$ could be 0 or 1 everywhere besides the coordinates in K_{x}. On the coordinates of K_{x}, the number of 1's must add up to $0(\bmod 2)$. There are therefore

$$
2^{m-\left|K_{x}\right|} \sum_{r=0}^{\left|K_{x}\right| / 2}\binom{\left|K_{x}\right|}{2 r}=2^{m-\left|K_{x}\right| 2^{\left|K_{x}\right|-1}}=2^{m-1}
$$

vectors y such that $x y$ is a solution of u. We note that this number now is independent of the particular form of K_{x}. This gives for different $x \notin s\left(\left\{w_{i}\right\}\right)$ different solutions of u, and results in $\left(2^{n}-\# s\left(\left\{w_{i}\right\}\right) 2^{m-1}\right)$ additional solutions of u.

We derive some corollaries from Lemma 1.
Lemma 2. The system $\left\{w_{i}=0\right\}_{i=1, \ldots m}$ has a solution iff $\# s(u)>2^{n+m-1}$.

$$
\text { (\#s(u) } \geq 2^{n+m-1} \text { always holds.) }
$$

Lemma 3.

$$
\# s\left(\left\{w_{i}\right\}\right)=\frac{\# s(u)-2^{n+m-1}}{2^{m-1}}
$$

In the next section we shall make use of the Lemmas above.

3 3XOR-Counting and -Majority Problems are Hard to Compute

We state now our main hardness result.
Theorem 1. Given an arbitrary 3 XOR formula $f \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$, the problem of computing $\# f$ is $\# P$-complete.

Proof:

Let us take a monotone 2DNF formula $f=c_{1} \vee c_{2} \vee \ldots \vee c_{m}$ where $c_{i}=\left(a_{i} \wedge b_{i}\right)$ and a_{i}, b_{i} are variables. The problem of computing $\# f$ for any given monotone 2DNF formula is \#P-complete (cf., e.g. [V 79]). We define the system w_{i} of polynomials by $w_{i}=a_{i} b_{i}, \quad i=1, \ldots, m$ and construct the polynomial $u=\bigoplus_{i=1}^{m} w_{i} z_{i}$ as in section 2 .

By Lemma 3

$$
\# f=2^{n}-\frac{\# s(u)-2^{n+m-1}}{2^{m-1}}
$$

Therefore computing \#f for monotone 2DNF formulas f is polynomial time reducible to computing \#s(u) for 3XOR formulas.

We characterize also Majority and Solutions' Equilibrium Problems for 4XOR-formulas. (SAT for polynomials f is equivalent with checking whether $f \equiv 0$, trivially doable for explicitely given f.)

For the corresponding results for the (\wedge, \vee, \neg)-basis see $[G 77]$.
Theorem 2. Given any 4XOR formula $f \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$, the problems of deciding whether $\# f>2^{n-1}$ and $\# f=2^{n-1}$ are both NP-hard.

Proof:

Let us take 3CNF formula $f=\bigwedge_{i=1}^{m}\left(a_{i} \vee b_{i} \vee c_{i}\right)$ over n variables x_{1}, \ldots, x_{n} where a_{i}, b_{i}, c_{i} are literals (nonnegated and negated variables). We shall rewrite f into the system of m equations $\left\{w_{i}=\left(a_{i} \vee b_{i} \vee c_{i}\right) \oplus 1\right\}_{i=1, \ldots, m}$ in (XOR, AND) basis by writing

$$
\neg x=1 \oplus x
$$

and

$$
\left(a_{i} \vee b_{i} \vee c_{i}\right)=a_{i} \oplus b_{i} \oplus c_{i} \oplus a_{i} b_{i} \oplus a_{i} c_{i} \oplus b_{i} c_{i} \oplus a_{i} b_{i} c_{i}
$$

Let us construct a polynomial $u \in G F[2]\left[x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right]$ as in Section 2. For $k=$ $n+m$, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checking whether $\# s(u)>2^{k-1}$ or $\# s(u)=2^{k-1}$.

Remark: Using Valiant's result (cf. [GJ 79], p. 251) on systems of algebraic equations over GF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard already for 3XOR-formulas.

4 2XOR-Counting Problem

We are going to design an algorithm to count the number $\# f$ for arbitrary $f \in 2 \mathrm{XOR} \quad(f \in$ $F[2]\left[x_{1}, \ldots, x_{n}\right], f$ is polynomial of degree 2).

Theorem 3. Given arbitrary 2XOR-formula f, there exists an algorithm working in $O\left(n^{3}\right)$ time for computing $\# f$.

We shall call $f \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$ read-once if every variable x_{i} in f appears in f at most once.
The proof of Theorem 3 will be based on the following sequence of results.
Lemma 4. Given arbitrary 2XOR-formula $f, f \in \mathrm{GF}[2]\left[x_{1}, \ldots, x_{n}\right]$, there exists a read-once 2XOR-formula $g \in \mathrm{GF}[2]\left[y_{0}, \ldots, y_{m}\right], \quad m \leq n$, a nonsingular $m \times n$ matrix $T=\left(t_{i j}\right)$ and an m vector $C=\left(c_{i}\right)$ such that

$$
g\left(\bigoplus_{j=1}^{n} t_{0 j} x_{j}+c_{0}, \bigoplus_{j=1}^{n} t_{1 j} x_{j}+c_{1}, \ldots, \bigoplus_{j=1}^{n} t_{m-1, j} x_{j}+c_{m-1}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

There exists an algorithm for computing matrix $T=\left(t_{i j}\right)$ and vector $C=\left(c_{1}\right)$ for arbitrary 2XORformulas f working in $O\left(n^{3}\right)$ time. The form of g can be chosen to be

$$
\begin{aligned}
g=y_{0} \oplus y_{1} y_{2} \oplus y_{3} y_{4} \oplus \ldots \oplus y_{m-2} y_{m-1} \oplus z & \text { or } \\
g=y_{0} y_{1} \oplus y_{2} y_{3} \oplus \ldots \oplus y_{m-2} y_{m-1} q \oplus z &
\end{aligned}
$$

where $z \in\{0,1\}$.

Proof:

We shall describe an algorithm for computing matrix $T=\left(t_{i j}\right)$, vector $C=\left(c_{i}\right)$ and constant z. The algorithm will be by recursion on the set of variables $\operatorname{Var}(f)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Recursion Stage x_{i} :

Let $x:=x_{i}$
Rewrite f as $f=x \alpha \oplus \beta$ where α is a linear form, and β is the rest of f.

Represent (recursively)

$$
\beta=y_{0} \oplus y_{1} y_{2} \oplus y_{3} y_{4} \oplus \ldots \oplus y_{k-2} y_{k-1} \oplus z \quad \text { type I }
$$

or

$$
\beta=y_{0} y_{1} \oplus y_{2} y_{3} \oplus \ldots \oplus y_{m-2} y_{m-1} \oplus z \quad \text { type II }
$$

where $z \in \mathrm{GF}[2]$ and corresponding nonsingular $k \times(n-i)$ matrix T_{β} and vector C_{β}. Note that $k \leq n-i$.

Consider the following cases:
Case 1. $\alpha=1$.
$-\beta$ is of type I .
Construct new variables

$$
\begin{aligned}
y_{0}^{\prime} & :=y_{0} \oplus x \\
y_{i}^{\prime} & :=y_{i} \quad i=1, \ldots, k-1
\end{aligned}
$$

$-\beta$ is of type II.
Construct new variables

$$
\begin{aligned}
y_{0}^{\prime} & :=x \\
y_{i+1}^{\prime} & :=y_{i} \quad i=0, \ldots, k-1
\end{aligned}
$$

Case 2. α is linear independent of the variables of β (α cannot be expressed as a linear combination of the rows of matrix T_{β}). Note that in this case, $k<n-i$.
Construct new variables

$$
\begin{aligned}
y_{i}^{\prime} & :=y_{i} \quad i=0, \ldots, k-1 \\
y_{k}^{\prime} & :=x \\
y_{k+1}^{\prime} & :=\alpha
\end{aligned}
$$

Case 3. α is linear dependent on the variables of β.
Let $\alpha=y_{i_{1}} \oplus \ldots \oplus y_{i_{s}} \oplus\left\{\begin{array}{l}0 \\ 1\end{array}\right.$
3.a. y_{s} and y_{t} in α form a term of β.

$$
\ldots \oplus x y_{s} \oplus x y_{t} \oplus y_{s} y_{t}=\ldots\left(x \oplus y_{s}\right)\left(x \oplus y_{t}\right) \oplus \underbrace{x}_{\text {an 'extra' } x}
$$

Construct new variables

$$
\begin{aligned}
y_{s}^{\prime} & :=y_{s} \oplus x \\
y_{t}^{\prime} & :=y_{t} \oplus x
\end{aligned}
$$

3.b. y_{s} is in α but its 'partner' y_{t} in a term of β is not in α.

$$
\ldots \oplus x y_{s} \oplus y_{s} y_{t}=\ldots y_{s}\left(x \oplus y_{t}\right)
$$

Construct new variables

$$
\begin{aligned}
y_{s}^{\prime} & :=y_{s} \\
y_{t}^{\prime} & :=y_{t} \oplus x
\end{aligned}
$$

3.c. β is of type I.

- α is independent of y_{0} and the number of 'free' x is odd.

Construct new variable

$$
y_{0}^{\prime}:=y_{0} \oplus x
$$

- α is dependent of y_{0} and the number of 'free' x is odd.

$$
\ldots \oplus x y_{0} \oplus y_{0} \oplus x=\ldots(x \oplus 1)\left(y_{0} \oplus 1\right) \oplus 1
$$

Construct new variables

$$
\begin{array}{rlrl}
z^{\prime} & :=z \oplus 1 & \\
y_{i}^{\prime} & :=y_{i+1} & i=0, \ldots, k-2 \\
c_{i}^{\prime} & :=c_{i+1} & i=0, \ldots, k-2 \\
y_{k-1}^{\prime} & :=y_{0} & \\
c_{k-1}^{\prime} & :=c_{0}+1 & \\
y_{k}^{\prime} & :=x & \\
c_{k}^{\prime} & :=1 &
\end{array}
$$

g is of type II.
$-\alpha$ is dependent of y_{0} and the number of 'free' x is even.

$$
\ldots \oplus x y_{0} \oplus y_{0}=\ldots(x \oplus 1) y_{0}
$$

Construct new variables

$$
\begin{array}{rlrl}
z^{\prime} & :=z & \\
y_{i}^{\prime} & :=y_{i+1} & i=0, \ldots, k-2 \\
c_{i}^{\prime} & :=c_{i+1} & i=0, \ldots, k-2 \\
y_{k-1}^{\prime} & :=y_{0} & \\
c_{k-1}^{\prime} & :=c_{0} & \\
y_{k}^{\prime} & :=x & \\
c_{k}^{\prime} & :=1 &
\end{array}
$$

g is of type II.
3.d. β is of type II and the number of 'free' x is odd.

Construct new variables

$$
\begin{aligned}
y_{0}^{\prime} & :=x \\
y_{i+1}^{\prime} & :=y_{i} \quad i=0, \ldots, k-1
\end{aligned}
$$

g is of type I.

It is not difficult to check that the algorithm produces the substitution matrix $T=\left[t_{i j}\right]$ as defined in Lemma 4.

The algorithm works in n recursive steps and each step runs in $O\left(n^{2}\right)$ time.
We complete the proof of Theorem 3.

Lemma 5.

$$
\# f=\# g 2^{n-m}
$$

Proof: Obvious from linear algebra.
Finally, the direct counting arguments give us the following.

Lemma 6.

1. Given a 2 XOR-formula $g \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$, $g=x_{1} x_{2} \oplus x_{3} x_{4} \oplus \ldots \oplus x_{n-2} x_{n-1} \oplus x_{n}$,

$$
\# g=2^{n-1}
$$

2. Given a 2 XOR-formula $g \in G F[2]\left[x_{1}, \ldots, x_{n}\right]$, $g=x_{1} x_{2} \oplus x_{3} x_{4} \oplus \ldots \oplus x_{n-1} x_{n}$

$$
\# g=2^{n-1}-2^{\frac{n-2}{2}}
$$

5 Acknowledgements

We are thankful to Avi Wigderson, Dick Karp, Mike Luby and Thorsten Werther for the number of interesting conversations.

References

[AW 85] Ajtai, M. and Wigderson, A., Deterministic Simulation of Probabilistic Constant Depth Circuits, Proc. $26^{\text {th }}$ IEEE FOCS (1985), pp. 11-19
[G 77] Gill, J., Computational Complexity of Probabilistic Turing Machines, SIAM J. Comput. 6, pp. 675-694
[GJ 79] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman and Company, New York (1979)
[KL 83] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for Enumeration and Reliability Problems, Proc. $24^{\text {th }}$ IEEE FOCS (1983), pp. 56-64
[KL 85] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for the Planar Multiterminal Network Reliability Problem, J. of Complexity 1 (1985), pp. 45-64
[KL 89] Karpinski, M. and Luby, M., Approximating the Number of Solutions of a GF[2]Polynomial, manuscript, 1989
[KLM 89] Karp, R.M., Luby, M. and Madras, N., Monte-Carlo Approximation Algorithms for Enumeration Problems, J. of Algorithms 10 (1989), pp. 429-448
[V 79] Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Comput. 8, pp. 410-421
[W 87] Wegener, I., The Complexity of Boolean Functions, John Wiley, New York, 1987

[^0]: *Supported in part by the Leibniz Center for Research in Computer Science, by DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

