The Computational Complexity of
(XOR, AND)-Counting Problems

Andrzej Ehrenfeucht
Dept. of Computer Science
University of Colorado,
Boulder, Colorado 8030L

andrzej@boulder.colorado.edu

Marek Karpinski *

Dept. of Computer Science
University of Bonn, 5300 Bonn 1
and
International Computer Science Institute
Berkeley, California
marek@icsi.berkeley.edu

Abstract

We characterize the computational complexity of counting the exact number of satisfying
assignments in (XOR, AND)-formulas in their RSE-representation (i.e., equivalently, polyno-
mials in GF[2][z1,...,2,]). This problem refrained for some time effords to find a polynomial
time solution and the efforts to prove the problem to be # P-complete. Both main results can
be generalized to the arbitrary finite fields GF[¢]. Because counting the number of solutions
of polynomials over finite fields is generic for many other algebraic counting problems, the
results of this paper settle a border line for the algebraic problems with a polynomial time
counting algorithms and for problems which are #P-complete. In [KL 89] the couting prob-
lem for arbitrary multivariate polynomials over GF[2] has been proved to have randomized
polynomial time approximation algorithms.

*Supported in part by the Leibniz Center for Research in Computer Science, by DFG Grant KA 673/2-1, and by
the SERC Grant GR-E 68297.

1 Introduction

Let us denote by AXOR the class of all formulas f of the form f = @as A Ajeq 24, for a 0-1
vector (a4)acqi,.. .y such that |A| <k (or equivalently, kK XOR-formulas f are Galois polynomials
f € GF[2][xy,...,x,)of degree at most k). XOR = |J, kXOR. For a formula f € XOR with n
variables, denote #f = [{(x1,...,2,)|f(21,...,2,) = 1}|. The counting problem for kXOR is the
problem of computing # f for any given formula f € £XOR.

In this paper we prove that the problem of exact counting the number of satisfying arguments of
3XOR-formulas (polynomials of degree 3 over GF|[2]) is # P-complete. We design also an O(n?)-time
algorithm for the 2XOR-counting problem.

2 Some Auxiliary Lemmas on Polynomials over GF|[2]

Suppose w; € GF[2][x;,...,x,], ©=1,...,m,define a polynomial u = @7, w;z; for new variables
zi € {x1,...,2,}. Define by #s({w;}) the number of solutions of the system {w; = 0},=1 . For

a single polynomial u, #s(u) denotes the number of solutions of w, i.e. #s(u) = #{z|u(z) = 0}.
With this notation we formulate the following

Lemma 1.

fha(u) = fes({wi)2" + (27 = #ts({wi})2" !

Proof:
Suppose & € s({w;}), then all the vectors z € {0,1}™ are solutions of u = @2, w;z;. There are
#s({w;})2™ of them. Suppose now that « & s({w;}). Denote by K, = {iJw;(x) # 0} the set of all
indices of polynomials w; so that w;(x) # 0.

Let us characterize the vectors y € {0,1}™ such that zy is a solution of u. y could be 0 or 1
everywhere besides the coordinates in K. On the coordinates of K, the number of 1’s must add
up to 0 (mod 2). There are therefore

Kal/2 /g
om—| K| Z (|;;|) — om—|Ke|9|Kal-1 _ gm—1
r=0

vectors y such that zy is a solution of u. We note that this number now is independent of the
particular form of K. This gives for different @ ¢ s({w;}) different solutions of wu, and results in
(2" — #s({w; })2™~1) additional solutions of w. 0

We derive some corollaries from Lemma 1.
Lemma 2. The system {w; = 0};=1__,, has a solution iff #s(u) > 27+m~1,

(#s(u) > 2"*t™=1 always holds.)

Lemma 3. 4 —
sy = T2

In the next section we shall make use of the Lemmas above.

3 3XOR-Counting and —Majority Problems are Hard to
Compute

We state now our main hardness result.

Theorem 1. Given an arbitrary 3XOR formula f € GF[2][z4,...,z,], the problem of comput-
ing # [is # P-complete.

Proof:
Let us take a monotone 2DNF formula f = ¢ Vea V...V ¢, where ¢; = (a; A b;) and a;,b; are
variables. The problem of computing # f for any given monotone 2DNF formula is # P-complete
(cf., e.g. [V 79]). We define the system w; of polynomials by w; = a;b;, 1 =1,...,m and construct
the polynomial u = @/~ w;z; as in section 2.

By Lemma 3
L #s(u) — 2ot
f 2 ()Qm—l

Therefore computing # f for monotone 2DNF formulas f is polynomial time reducible to computing

#s(u) for 3XOR formulas.

We characterize also Majority and Solutions’ Equilibrium Problems for 4XOR-formulas. (SAT
for polynomials f is equivalent with checking whether f = 0, trivially doable for explicitely given

[
For the corresponding results for the (A, V, =)-basis see [G 77].

Theorem 2. Given any 4XOR formula f € GF[2][z1,...,z,], the problems of deciding whether
#f>2"1and #f = 2"! are both NP-hard.

Proof:
Let us take 3CNF formula f = AZ,(a; V b; V ¢;) over n variables xq,...,x, where a;,b;,¢; are
literals (nonnegated and negated variables). We shall rewrite f into the system of m equations

{w; =(a; Vb; Ve¢) B 1z, m in (XOR, AND) basis by writing
r=1F=x

and

(a; Vb Ve)=a, @b & ab & aic; @ bic; & abic.

3

Let us construct a polynomial v € GF[2][z1,...,%p, Tpt1,s. -, Tpim| as in Section 2. For k =
n 4+ m, the problem of deciding 3CNF SAT is polynomial time reducible to the problem of checking
whether #s(u) > 2571 or #s(u) = 2571, O

Remark: Using Valiant’s result (cf. [GJ 79], p. 251) on systems of algebraic equations over

GF[2], we can analogously prove that the Majority and Equilibrium Problems are NP-hard already
for 3XOR-formulas.

4 2XOR-Counting Problem

We are going to design an algorithm to count the number #f for arbitrary f € 2XOR (f €
F2][x1,...,2,], [is polynomial of degree 2).

Theorem 3. Given arbitrary 2XOR~formula f, there exists an algorithm working in O(n?) time
for computing #f.

We shall call f € GF[2][x1,...,x,] read-once if every variable z; in f appears in [at most once.
The proof of Theorem 3 will be based on the following sequence of results.

Lemma 4. Given arbitrary 2XOR-formula f, f €GF[2][z1,...,2,], there exists a read-once
2XOR-formula ¢ €GF[2][yo,.--,Ym], m < n, a nonsingular m x n matrix T = (¢;;) and an m
vector C' = (¢;) such that

g(@ tojx; + co,@tljajj +oc,.. .,@tm_mxj + 1) = fl@1, .oy 2).

i=1 i=1 i=1

There exists an algorithm for computing matrix 7' = (¢;;) and vector C' = (¢;) for arbitrary 2XOR-
formulas f working in O(r?) time. The form of g can be chosen to be

G=Yo D UY2DY3Ya D ... D Ym—2Ym—-1 D =z or

9=y DY2Ys ... B Ynm—2ym-19¢ B2
where z € {0,1}.

Proof:
We shall describe an algorithm for computing matrix 7' = (¢;;), vector C' = (¢;) and constant z.
The algorithm will be by recursion on the set of variables Var(f) = {xy,...,z,}.

Recursion Stage z;:

Let 2 := z;
Rewrite f as f = za @ 3 where « is a linear form, and (3 is the rest of f.

Represent (recursively)

B=1yoDYy1ys B Yays B ... D Yr—2yr—1 B 2 type 1
or
B=Yoy1 DYayz B - .- B Ym—2Ym—1 B 2 type 11
where z € GF[2] and corresponding nonsingular k& x (n — 1) matrix T and vector Cs. Note that
E<n—u.

Consider the following cases:

Case 1. a = 1.

— [1is of type L.
Construct new variables
Yo = Yobz
yroi= oy i=1,....k—1
— [1is of type II.
Construct new variables
Yo = @
Yier = Y 1=0,...,k—1

Case 2. « is linear independent of the variables of 3 (a cannot be expressed as a linear combination
of the rows of matrix Tj). Note that in this case, k < n — 1.

Construct new variables

yro= oy 1=0,...,k—1
yp =
y;g+1 = a

Case 3. « is linear dependent on the variables of j.

0
Leta:yil@...@yis@{l

3.a. ys; and y; in o form a term of j.

Dy, QY By = .. (DY) Dy) D

~—
an ‘extra’ x
Construct new variables
"o
ys T yS @ T
o
Y = Y ¢z

3.b. ys is in « but its 'partner’ y; in a term of 3 is not in a.

D rys Dysyr = ---ys(x@yt)
Construct new variables
Y, = Us
Yy, = Yy b

3.c. B is of type I.
— « is independent of yy and the number of 'free’ x is odd.
Construct new variable
Yo == Yodw
— « is dependent of yo and the number of 'free” x is odd.

By By br=... (B Dy dl)H1
Construct new variables
Z = zp1
Yo=Y 1=0,...,k—2
o= g 1=0,...,k—2
92—1 = Yo
¢4 = co+1
Y =
¢, = 1

g is of type II.

— « is dependent of yo and the number of 'free’ x is even.

By Pyo=...(x B)y
Construct new variables
Z =z
Y= Y 1=0,.... k=2
&= i 1=0,.... k=2
92—1 = Yo
¢y = €
Yp =T
o =1

g is of type II.
3.d. 3 is of type Il and the number of 'free’ = is odd.
Construct new variables
Yo = @
Yier = Y 1=0,...,k—1
g is of type L.

It is not difficult to check that the algorithm produces the substitution matrix T = [t;;] as
defined in Lemma 4.

The algorithm works in n recursive steps and each step runs in O(n?) time. O
We complete the proof of Theorem 3.

Lemma 5.

#f=#g2""

Proof: Obvious from linear algebra.
Finally, the direct counting arguments give us the following.

Lemma 6.

1. Given a 2XOR-formula g € GF[2][x1,...,x,],

g =212 D 324D ... D Tp_aln_1 D Ty,
g =2"""

2. Given a 2XOR-formula g € GF[2][z1, ..., 2],

g=21 TP a3rs B ... By,

n—2

#g=2"""1-2"7.

5 Acknowledgements

We are thankful to Avi Wigderson, Dick Karp, Mike Luby and Thorsten Werther for the number

of interesting conversations.

References
[AW 85] Ajtai, M. and Wigderson, A., Deterministic Sirmulation of Probabilistic Constant Depth
Circuits, Proc. 26" IEEE FOCS (1985), pp. 11 - 19

(G 77] Gill, J., Computational Complexity of Probabilistic Turing Machines, STAM J. Comput.
6, pp. 675 - 694

[GJ 7T9] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman and Company, New York (1979)

[KL 83] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for Enumeration and Reliability Prob-
lems, Proc. 24" TEEE FOCS (1983), pp. 56-64

[KL 85] Karp, R.M. and Luby, M., Monte-Carlo Algorithms for the Planar Multiterminal Network
Reliability Problem, J. of Complexity 1 (1985), pp. 45 - 64

[KL 89] Karpinski, M. and Luby, M., Approximating the Number of Solutions of a GF/[2]-

Polynomial, manuscript, 1989

[KLM 89] Karp, R.M., Luby, M. and Madras, N., Monte-Carlo Approximation Algorithms for
Enumeration Problems, J. of Algorithms 10 (1989), pp. 429 - 448

[V 79] Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Com-
put. 8, pp. 410 - 421

[W 87] Wegener, 1., The Complexity of Boolean Functions, John Wiley, New York, 1987

