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1. Introduction

The parallel complexity of the perfect matching problem has become

one of the most intriguing computation problems after [KUW] and

[MVV] that it is in RNC (randomized NC). For a general overview

of NC-classes see [Co]. The problem designing deterministic NC-
algorithms for the perfect matching problem remains wide open.

For special graph classes, the NC -algorithms have been developed [DK1,
GK , HM, KVV, LPV]. For other graph classes we know that their
matching problem is as hard as the general case [DK1, DK2, KL].



For example [LPV] presented an NCz-a1gorithm for the construction
of a perfect matching in bipartite reqular graphs. It is a known
theorem (see for example [Ai]) that each bipartite regular graph
has a perfect matching. More or less we want to base on the following
hypothesis:
1) Degree defined classes, s.t. each graph of them has a perfect
matching, have an NC2~construction algorithm.
2) For degree defined classes, s.t. not every graph of them has
a perfect matching, the perfect matching problem is as hard
as the general matching problem.
We know for example that each graph of minimal degree 1/2 IGI
and an even number of vertices has a perfect matching (see for
example [Bol). We call such graphs high degree graphs or dense.
We know also that each graph which does not contain a bridge
{(an edge whose deletion enlarges the number of connected components)
and which is 3-reqular has a perfect matching {Theorem of Peterson,
see for example [Ai]).
We shall show that we can construct a perfect matching for dense
graphs in NCZ. For all interesting classes properly between dense
graphs and bridgeless 3-regular graphs the perfect matching problem
is matching hard by ACC-reductions. Related results concerning
the k-coloring problem can be found in [Ed]. That was one motivation
of our paper. The construction problem for a perfect matching in
3-reqular graphs remains open.
Section 2 will give some foundations and notations. In section 3
we will present a construction algorithm of a perfect matching
for dense graphs. We will also consider graphs of minimal degree
alGl, s.t. a<12.
Section 3 will present completeness results for low degree graphs.
That includes 2-connected graphs of maximal degree 3, 2-connected
4-regular graphs, and 3-regular graphs.



2. HNotations and Foundations

2.1. General Terminology on Graphs:
A graph G=(V,E) consists of a set V of vertices and a set
E of edges.GI=1VI is the number of vertices of G and IE) is the
number of edges of G. Generally we denote the power of a set S
by 151,

2.2. A matching of a graph G is a subset M of E, s.t. no two edges
of M have a common vertex. A matching M is called perfect, if
each vertex of G is contained in some edge of M.

2.3. The degree of a vertex v is the number of edges containing v
and is denoted by d{v). A graph is k-regular or regular of
the degree k if all vertices have the same degree k.
If G is k-regular for some k then we call G regular.

2.4, An edge coloring of G with k colors is a map c¢: E -> {1...k},
s.t. c(el)#c(ez) if e and e, have a common vertex.

THEOREM 1 ( see for example [Ai] p. 135): Each regular bipartite
graph of degree k has an edge coloring with k colors

2.4. lLet NCk be the class of all functions and predicates, which are

computable or decidable by a uniform sequence (logspace) of
circuits of polynomial size and (log n)k depth. Ac® is the
class of all functions computable by a uniform sequence of
unbounded fan in circuits of polynomial size and constant
depth {(see [Co]). For the notion of completeness we shall
use an extension of Cook's notion. We call a predicate A
ACO(NCX)-2ard for B if there is an AC® (NCX)-mapping
which reduces B to A, that means there is an AC® ( NCk )-
mapping f, s.t. B=f'1[A]. We say that A is ACC-complete for
B if additionally there is a mapping g vice versa reducing
A to B. This notions are similar to the usual notion of
NP-completeness of graphisomorphism completeness. A1l local
replacement reductions are in Ac? {a usual method of NP-complete-
ness proofs (see [GJd]).

2.5. A first known result concerning the complexity of matching
in parallel is the following.



THEOREM 2 [LPV]: An edge coloring of k colors of a k-regular bipartite
graph can be constructed in NCZ.

Now each color forms a perfect matching.
Corollary %: Each regular bipartite graph has a matching which
can be constructed in NCZ.

One problem is, how to construct a perfect matching for regular
but not necessarily bipartite graphs. We know only the following.

THEOREM 4 (Peterson, see [Ai]): Each 2-connected (and therefore
bridgeless) 3-regular graph has a perfect matching.

We call an edge a bridge if its deletion enlarges the number of
connected components.

2.6. For graphs of high degrees (not necessarily regular) we know
the following.

THEOREM 5 (see for example [Bo]): Each graph G of minimal .degree
IG1/2 has a matching of power [1G1/2]. [m] is here the greatest
integer not exceeding m.

That means:

Corollary 6: Each graph G of an even number of vertices and a minimal
degree I1G1/2 has a perfect matching.

Call graphs G with a minimal degree I1G1/2 dense or high degree
graphs.

2.7. In the whole paper we will only consider graphs of an even number
of vertices.

3. Construction of a Perfect Matching for Dense Graphs

In this section we will present an NCZ-algorithm constructing
for each dense graph a perfect matching. The key of the algorithm
is the following result.



Lemma 6 [Lul]: There is an NCz-aIQOrithm constructing for each
graph a nonextendible (also called maximal) independent set.
Remark [Lu): The above algorithm implemented on an EREW P-RAM
(parallel random access machine without concurrent read and
concurrent write) needs {](JVI2 LE1) processors.in the worst case.

An immediate consequence is the following.

Lemma 7{{Lu] see also [Ki]): For each graph a nonextendible matching
can be constructed in NCZ.

Remark: For the construction of a nonextendible matching we need
O(IEiq) processors in the worst case.

Lemma 7 can be derived from Lemma 6 by constructing from a graph
G=(V,E) a graph G'={V',E'), s.t. V'=E and two edges of E are joint

by an edge in G' iff they have a common vertex. Clearly a nonextendible
matching in G is the same as a nonextendible independent set in G'.

The number of processors which are needed for the construction of

a nonextendible matching can be easily derived from the construction

of G'.

Now we can state the main result of this section.

THEOREM 8: For each dense graph of an even number of vertices
a perfect matching can be constructed in NCZ.

For the proof we state a straight line algorithm, s.t. each sinqgle
step can be executed in NCE:

Input: a dense graph G=(V,E).

-

Each edge contains at least one vertex appearing in Ml’ otherwise
M1 would be extendible.

At least l%l vertices belong to an edge of M].Ne may assume that

there is a veértex v not belonging to an edge of Ml. But v is joined
by an edge to at least {G1/2 vertices. They belong all to an edge of
Ml.

End of comments



Second step: Let {xl,...,ka} be the set of vertices of G not belonging
to an edge of M1 and define G'=(V',E') as follows:

The vertex set V' consists of the edges of M1 and of the unordered
pairs {XZi-l’XZi}’i=1""k‘ The edge set is defined as follows:
{XZi-l’XZi} and {y,z}¢ M1 are joined by an edge in E' iff

{x2i_l,y} and {XZi’Z} €t or

{x21“1,z} and {x21,y} € E.

- -

- -

Each vertex of G' of the form {x2i-1'x2i} belongs to an edge of HZ'
We shall prove this claim by the following statement.

Lemma 9: Let k be defined as above as the number of pairs {x2i—1’x2i}'
The degree of each G'-vertex Xos_19%0; is at least k.

Proof of the lemma:

Set M1={{u1,v1}:i=1,..,p}.

For each G-vertex x not belonging to an edge of Ml set

t :={i:exactely one of wu, and v, is joined by an edge with x} and

h :={i:x is joined by an edge with u, and Vi}‘
By the fact that G is dense we get the following inequality:
It 1421h 1zk+p (note that G has 2k+2p vertices).

For simplicity set Xi=Xoe g and Yi=xys - Then at least the {ui’vi}’
s.t. iEJ:=(txnhy)U(hxnhy)u(tynhx) are joined by an edge of G' with
{x,y}. Note that the three components of the union are pairwise
disjoint.
Set j:=|hxnhy|. We will state the following equalities and
inequalities which are eaSily checked:

X Xy
1ii)jtxuhxuhy'='t} +[hxuhyl'ltxn(hx hy)i



Therefore:
ltx[+|hxuhyl~p51txn(hxuhy)I=itxnhyl

But that means

itxnhylmltx]‘i'{hxli-]hy[-a..p and ana]ogeous]y
It Nnh Yttt 1+1h 1+th 1-3-

T oy teity I+, I+Ih, 4=J-p

Therefore
tJI=Itxnhy|+Itynhxl+j: 2(k+p)-2j-2p+j=2k-j.

If j is greater than k then J has trivially a power greater than k.
In the other case by the last inequality IJizk. But that means that
at least k pairs {”1’Vi} are joined by an edge with {x,y}.

End of comments.

is joined by an edga of M,. w.1~o.g,{x21_1,u} ) {x2i,v} € E.
Celete {u,v} from‘Ml'and add {xzi_l,u} and {XZi’V} to Ml‘

Comnent: My 15 changed €64 perfect matching. Enc of coment

Egg;_gggg: Qutput MI.

The correctness of the algorithm follows from the comments.
The algorithm defines an NCE-function because each step is in HCZ.

QED

Remark: 1f we want to check the number of processors we have
to check the number of processors of each step and to take the
maximum. We need a large number of processors in the first and
fn the third step. But.G' has only !GI/2 vertices and at most
1E1/2 edges. Thercfore the number of processors can be bounded
by 0(!E|4) for the whole algorithm.

The next question is the parallel complexity of matching for

1
5 .
THEOREM 10: For a<% the existence problem for a perfect matching

graphs of a minimal degree aiG!,.s.t: ol

restricted to graphs G=(V,E), s.t. minimal degree is alVt, is
AC®-hard for the general matching problem.
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Proof':

Let G=(V,E) be any graph. We construct a graph G'=(XUYOV,E') as
follows: X forms a complete subgraph of G' and Y forms an independent
set in G'. Each vertex of X and each vertex of V are joined by

an edge in E' and each vertex of X and each vertex of Y are joined

by an edge E'. Vertices of V are joined by an edge in G' iff they

are joined by an edge in G. X and Y have the same power.

Claim: G has a perfect matching iff G' has a perfect matching:

Let M' be a perfect matching of G'. Then M' defines a bijection between
X and Y, because Y is independent and all edges of Y go to X.
Therefore no edges between V and X are in M'. That means M' restricted
to V defines a perfect matching on G.

Let M be a perfect matching on G and f be a bijection between X and Y.
Then clearly a perfect matching on G' is defined.

The minimal degree of G' is the power of X and by definition
[G'1=21X1+1GI. Set X as large that

1X1
21X1+1GI

But that means

|X|=ﬁ%)-|ﬁl.
! a
But for a<; we have —im—> 0.

QED



4. Matching on Low Degree Graphs

In this section we will give some results on the parallel
complexity of graphs of maximal degree 3 and 4. We know by

the theorem of Peterson that each bridgeless 3-regular graph

has a perfect matching. We shall prove that the perfect matching
problem on all interesting upper classes is AC®-hard for the
general perfect matching problem.

THEOREM 11: The perfect matching problem restricted to
2-connected graphs of maximal degree 3 is AC®-hard for

the general perfetf matching problem.

Proof':

Given any 2-connected graph G=(V,E). We construct a maximal degree 3
graph G'=V',E') as follows:

For each vertex v of G let e?,....,ei be an enumeration of its
adjacent edges. Replace v by vertices u;,...,u: and wz,...,wkfl

of V'. The edges of G' are defined as follows:

For each 1<k {u Wy Yy, WY ,u]+1}e E', and if e, -eJI is an edge of G
then {u ,u } € E'

C1ear1y the construction of G' from G can be done in AC® and G' is
2-connected. We have to prove that G has a perfect matching if

and only if G' has a perfect matching Let M be a perfect matching

of G. If e=e::e; ,replace e by {u ,uJ } and for k=i and j and v=v"

and v' resp. set {um,wm}EM' for m<k and {wm_l,um}e M' for m>k. This
defines a perfect matching on G'.

On the other hand let M' be a perfect matching on G'. Since V':=

{u f-'—l S KIU(W!:i=1,...,k-1} is odd, at least one V¥ leaving edge
e={u’ ,ek } is in M' But then {uj_l,wj_l}EM‘ {that is the only
rema1n1ng edge of M' containing wJ 1) and so on {u W yeM’ for all
i<d. Anaiogeous]y {w -1°Y5 }eM' for all i>j. That means that exactely
one vV leaving edge, which is represented by an edge e of G leaving v,

is in M'. Set eeM. Then M is a perfect matching on G.



Figure 1:
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Reduction of the perfect matching problem to the
perfect matching problem for grapns of maximal
degree 3 (bold edges are in a perfect matching)



-11-

Now we want to consider regular graph structures of small degree.

Theorem 12: Perfect matching for 2-connected 4-regular graphs
is Ac®-hard for the general perfect matching problem.

Proof: \le construct an AC®-reduction from the matching problem
restricted to 2-connected graphs of maximal degree 3. We give

at first a reduction to graphs of degree 3 or 4,

Consider any 2-connected graph G=(V,E) of maximal degree 3.

Let HS(UI’UZ) be the 5-clique without the edge {ul,uz}.

Let v be a vertex of degree 2 with the neighbors i and Vo

Replace v by Hs(ul,uz) and join the pairs {vl,ul} and {vz,uz} by

an edge. Call the graph constructed in that way G'=(V',E').

G' has only degrees 3 and 4.

Claim: G' has a perfect matching if and only if G has a perfect
matching:

Let M' be a perfect matching of G'. Then exactely one edge leaving
Hé(ul.uz) is in M' and a perfect matching on G is defined. Vice versa
one has only to enlarge the matching M of G by matchings on copies of

He 1,u2) {u } or Hs(ul,uz)—{uz}, which are both 4-cligues.

The next step is to reduce the perfect matching problem for graphs
of degree 3 or 4 which are 2-connected to the perfect matching problem
for 4-regular 2-connected graphs. W.1.0.g. we have to consider only
graphs 6* - of an even number of vertices. But then we have an even
number of vertices of degree 3. lLet (ui:i=1,...,2p) be an enumeration
of the vertices of degree 3. For j=1,...,p let Hj(xl,xz)and Hj(yl,yz)
be copies of Hs(ul,uz) and Sj’tj two additional vertices.

Join the pairs {”2j—1’5j}’ {”2j’tj}’ {s4>ts)s {sj’xl}’ {s5oy1)s

{tj,xz},{tj,yz} by an edge. Call the graph constructed in that way,
together with the edges of G', G". Clearly G" is 2-connected and
4-reqular.

Claim: G" has a perfect matching iff G' has a matching:

For each j the number of vertices of Vj:=Hj(xl,xz)UHj(yl,yz)u{sj,tj}

has an even number of vertices and two leaving edges on sj and tj.

But that means: both leaving edges are in a perfect matching or
none of both is in the perfect matching. But in the first case the
H. (xl,x2 ) and H, (yl,yz) are isolated which is a contradiction.
Therefore each perfect matching on G" defines a perfect matching
on G'.
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v1 v V2

is transformed into:

Figure 2: Reduction of the perfect matching problem for graphs of
riaximal degree 3 to graphs of degree 3 or 4.

'""”"”"”'Hi“1ﬁ’

| T

Fiqure 2: Reduction of the perfect matching problem for graphs
of degree 3 or 4 io 4-reqular graphs by enlarging
the decgree of two vertices of degree 3 at once (bold

ecges belong to a perfect matching)
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On the other way round enlarge any matching M' on G' by
edges {sJ,x S o ,yz}and natural enlargements on H {x l,xz) {x }
and HJ(xl,xz) {x }. Also this construction can be done in ACO

QED.

The other immediate upper class of 3-regular 2-connected graphs
are simply the 3-regular graphs (which are not necessarily 2-connected).

THEOREM 13: The perfect matching problem for 3-regular graphs
is ACo-hard for the general perfect matching problem.

Proof: Consider any graph of maximal degree 3 which is 2-connected.
We know that the number of vertices of odd degree is even. But

that are exactely the vertices of degree 3. But then also the
number of vertices of even degree is even. That are exactely the
vertices of degree 2. Let (u1:1=1...2k) an enumeration of the
vertices of degree 2 in a maximal degree 3 graph G'. Construct

a 3-reqular graph G" as fohlows:

G" contains the vertices and edges of G' and for each j=1, oK
add1t1ona1 ver1ces ql, ..:,q% and add1t10na1 edges

{u2J 1,ql} {“2J’q1} {qlsqz} {qz,q3} {qj.q4} {q4,q5} {qs,qﬁ} {qﬁng}
{q3.q5}t{q4,q6}. The set {qk.332} is odd and has as only leaving
edge {q{.q%}. which is forced to be in any perfect matching of G".
Therefore no {qﬁ : jzl} -leaving edge is in a perfect matching,

and a perfect matching on G' is defined.

On the other way round let M' be a perfect matching on G'. Add

the edges {ql,qz},{q3,q4},{q5,q5}. This defines a perfect matching

on G".
QED.

5. Final Remarks

The construction of a perfect matching for bridgeless 3-regular
graphs in parallel remains an open problem. We claim that this
works in NC2. But we could not prove it. We refer to [KUWZ2].
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Figure 4: Reduction of the perfect matching problem restricted
graphs of maximal degree 3 to the perfect matching
problem for 3-reqular graphs by enlarging the degree

of vertices of degree 2, say uzj_l,.uzjcbo1d edges belong
to a perfect matching)



This paper deals with the question of equivalence of existence
and construction probliems.
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