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set of edges from E which cover all vertices, so that no two edges of M havea common vertex. Randomized NC-algorithms are known [KUW 1], [MVV].Also for special graph subclasses we know NC2-algorithms for constructinga perfect matching. Examples are strongly chordal graphs [DK], bipartitegraphs with a bounded permanent [GK], complements of transitive orientablegraphs [HM], and bipartite regular graphs [LPV]. The last class motivatedthe question of the parallel complexity of the perfect matching problem forregular (not necessarily bipartite) graphs. The arguments of [LPV] fail fornon-bipartite regular graphs. We know that each regular bipartite graph hasa perfect matching and that we can color the edges with as many colors asthe degree of every vertex [LPV]. This is not true for non-bipartite regulargraphs. There is only one known additional result of Peterson (cf., e.g., [Ai]or [Bo 1]).Proposition. (Peterson's Theorem) Every 2-connected 3-regular graphhas a perfect matching.The above result is existential and does not give a method for constructinga matching.In this paper we prove that, whenever we relax one of the two conditions(being \2-connected " or \3-regular") in Peterson's Theorem, the problems ofdeciding the existence and the construction of a perfect matching in resultingclasses of graphs are both AC0-equivalent to the respective perfect matchingproblems in general graphs. It is an open question in parallel computationwhether the decision and the construction problems in perfect matching aremutuallyNC-equivalent (cf. [KUW 2]). In the sequel we shall use the expres-sion \perfect matching problem" to apply (separately) to both the decisionand the construction problem.We shall prove the following surprising result:Main Theorem. The perfect matching problem restricted to 3-regulargraphs and 4-regular 2-connected graphs is AC0-equivalent with the generalperfect matching problem. The reduction uses O(n2) boolean processors.In particular: There exists a uniform sequence of unbounded fan in circuitsof polynomial size and constant depth which constructs for every graph G2



a 3-regular graph G0 or a 4-regular 2-connected graph G0, respectively, suchthat G has a perfect matching if and only if G0 has a perfect matching.Moreover, from a perfect matching in G0 we can compute a perfect matchingin G by an AC0-algorithm.Being AC0 means computable by uniform unbounded fan in circuits of poly-nomial size and constant depth (see [Co], [KR]). An overview of parallelcomplexity classes can be found in [Co].Therefore an NC-algorithm for the perfect matching problem restricted tothese graph classes would induce an NC-algorithm for the general perfectmatching problem. For the proof of the main theorem we need two auxiliaryhardness results:1) The AC0-hardness of the perfect matching problem restricted to 2-connected graphs for the general matching problem;2) The AC0-hardness of the perfect matching problem restricted to graphsof maximal degree 3.Section 2 will present some basic de�nitions which will be used for the wholepaper.Section 3 will present the auxiliary hardness results mentioned above.In Section 4 we shall prove the main theorem.2 Basic De�nitions and Results.A graph G = (V;E) consists of a set V of vertices and a set E of edges.jGj = jV j is the number of vertices of G and jEj is the number of edges ofG. Generally, we also denote the cardinality of a set S by jSj.G is bipartite, if there is a pair (U1; U2) of complementary subsets of V , suchthat each edge of G has one end in U1 and one end in U2.3



A matching of a graph G is a subset M of E, so that no two edges of Mhave a common vertex. A matching M is called perfect if each vertex of G iscontained in some edge of M .The degree of a vertex v is the number of edges containing v and is denotedby d(v). A graph is k � regular or regular of the degree k, if all the verticeshave the same degree k. If G is k-regular for some k, then we call G regular.An edge coloring of G with k colors is a map c : E ! f1 � � � kg, so thatc(e1) 6= c(e2) if e1 and e2 have a common vertex. The class of all edges of thesame color forms a perfect matching of G. The following is true for regularbipartite graphs:Theorem 1. (cf., e.g., [Ai], p.135): Each regular bipartite graph of de-gree k has an edge coloring with k colors.LetNCk be the class of all functions and predicates which are computable ordecidable by a uniform (logspace) sequence (cf. [Co]) of circuits of polynomialsize and O(logk n) depth. AC0 is the class of all functions computable by auniform sequence of unbounded fan in circuits of polynomial size and constantdepth. We call a predicate B, AC0-reducible to A, B �AC0 A, if there is anAC0-computable function f , such that B = f�1(A). We say that A and Bare AC0-equivalent, A �AC0 B, i� B �AC0 A and A �AC0 B. (We also say,that A is AC0-hard for B if B �AC0 A; and that A is AC0-complete for Bi� A �AC0 B. These notions are similar to the notion of graph isomorphismcompleteness (cf. [BC])).There is a well known open problem of self-reducibility of general searchand decision problems in parallel computation (cf. [KUW 2]).It is not known whether the problems of deciding the existence of a perfectmatching and constructing a perfect matching are NC-equivalent. A con-struction (search) problem is de�ned as follows. For a given predicate P andx, construct y such that P (x; y) or output 'no' if no such y exists. As an ex-ample, a perfect matching problem is a predicate M(x; y)() y is a perfectmatching in a graph x.We say that the construction problem A(x; y) is AC0(NCk)-reducible to4



B(x0; y0) if there exist AC0(NCk)-computable mappings f(x) and g(x; y),such that for all x(1) 9y A(x; y) () 9y0 [B(f(x); y0)] (the existence problem relatedto A is reduced to the existence problem related to B by mapping f)(2) B(f(x); y0) =) A(x; g(x; y0)) (if the construction problem for B is inAC0(NCk)).The notions of equivalence, hardness and completeness for the constructionproblems are de�ned analogously as for decision problems. A �rst knownresult concerning the complexity of matching in parallel was the followingTheorem 2. [LPV]: An edge coloring of k colors of a k-regular bipartitegraph can be constructed in NC2.Since every color forms a perfect matching, we haveCorollary 1. Each regular bipartite graph has a perfect matching whichcan be constructed in NC2.One problem is, however, how to construct a perfect matching for regularbut not necessarily bipartite graphs. We know only the following existentialresult on 2-connected regular graphs.Theorem 3. (Peterson, see [Ai]): Each 2-connected (and therefore bridge-less) 3-regular graph has a perfect matching.We call an edge a bridge if its deletion enlarges the number of connectedcomponents.In the whole paper we shall consider only graphs with an even number ofvertices.3 Auxiliary Hardness Results.At �rst we prove the following 5



Lemma 1. The existence and the construction problem for a perfectmatching restricted to 2-connected graphs is AC0-equivalent with the ex-istence and the construction problem for a general perfect matching problemrespectively.Proof. We shall use the method of \super
uous" edge systems. Thatmeans we add subgraphs H with two leaving edges e1; e2, both adjacent toexactly one vertex v1 or v2, respectively, of the old graph, so that the edgese1 and e2 are not in any perfect matching. We say also that v1 and v2 arejoined by H. Consider for example the graph H (see Figure 1).v1 h e1 v���@@@u3 vu4v���u2v@@@u1 e2 hv2Figure 1: Graph HNow all vertices v1 6= v2 of G are joined by H. Then the resulting graphG0 is 2-connected. Also inside H there are only two possibilities of perfectmatching:f[u1; u3]; [u2; u4] and [u1; u4]; [u2; u3]g. Therefore G has a perfectmatching if and only if G0 has a perfect matching. It is easily seen thatwe can construct a perfect matching in G from a perfect matching in G0 inAC0. �The next result we prove is the followingTheorem 4. The existence and the construction problem for a perfectmatching restricted to 2-connected graphs of maximal degree 3 is AC0-equivalent with the existence and construction problem for a general perfectmatching problem respectively.Proof. Given any 2-connected graph G = (V;E). We construct a maxi-mal degree 3 graph G0 = (V 0; E0) as follows:6



For each vertex v of G let ev1; � � � ; evk be an enumeration of its adjacent edges.Replace v by vertices uv1; � � � ; uvk and wv1; � � � ; wvk�1 of V 0. The edges of G0 arede�ned as follows:For each i < k : fuvi ; wvi g; fwvi ; uvi+1g 2 E 0, and if evi = ev0j is an edge of Gthen fuvi ; uv0j g 2 E0.Clearly the construction of G0 from G can be done in AC0 and G0 is 2-connected. We have to prove that G has a perfect matching if and only if G0has a perfect matching. Let M be a perfect matching of G. If e = ev00i = ev0j ,replace e by fuv00i ; uv0j g and for l = i & v = v00 and for l = j & v = v0,respectively, set fuvm; wvmg 2 M 0 for m < l and fwvm�1; uvmg 2 M 0 for m > l.This de�nes a perfect matching on G0.On the other hand let M 0 be a perfect matching on G0. Since V v := fuvi :i = 1; � � � ; kg [ fwvi : i = 1; � � � ; k � 1g is odd, at least one V v leaving edgee = fuvj ; ev0k g is in M 0. But then fuj�1; wj�1g 2 M 0 (that is the only re-maining edge of M 0 containing wj�1) and so on fui; wig 2 M 0 for all i < j.Analogously fwi�1; uig 2 M 0 for all i > j. That means that exactly one V vleaving edge, which is represented by an edge e of G leaving v, is in M 0. Sete 2M . Then M is a perfect matching on G.The reduction of the perfect matching problem to the perfect matching prob-lem for graphs of maximal degree 3 (bold edges are in a perfect matching) isshown in Figure 2.It is easily seen that we can construct a perfect matching in G from a perfectmatching in G0 in AC0. �4 Proof of the Main Theorem.We shall prove the following result: 7
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Figure 2: Reduction of the perfect matching problemLemma 2. The existence and the construction problem for a perfectmatching restricted to 2-connected 4-regular graphs is AC0-equivalent withthe existence and construction problem for a general matching problem re-spectively.Proof. We construct an AC0-reduction from the matching problem re-stricted to 2-connected graphs of maximal degree 3. At �rst we give a reduc-tion to graphs of degree 3 or 4. Consider any 2-connected graph G = (V;E) ofmaximal degree 3. Let H5(u1; u2) be the 5-clique without the edge fu1; u2g.Let v be a vertex of degree 2 with the neighbors v1 and v2. Replace v byH5(u1; u2) and join the pairs fv1; u1g and fv2; u2g by an edge. Call the graphconstructed in that way G0 = (V 0; E0). G0 has only degrees 3 and 4.Claim. G0 has a perfect matching if and only if G has a perfect matching.LetM 0 be a perfect matching of G0. Then exactly one edge leavingH5(u1; u2)is in M 0 and a perfect matching on G is de�ned. Vice versa one has only toenlarge the matchingM of G by matchings on copies of H5(u1; u2)�fu1g orH5(u1; u2)� fu2g, which are both 4-cliques.8



Remark. A perfect matching in G can be constructed from a perfectmatching in G0 in AC0 in a straightforward way.The next step is to reduce the perfect matching problem for graphs G0 ofdegree 3 or 4 which are 2-connected to the perfect matching problem for4-regular 2-connected graphs. W.l.o.g. we have to consider only graphs G0 ofan even number of vertices. But then we have an even number of vertices ofdegree 3. Therefore there are either no vertices of degree 3 or at least two.For the case that there are no vertices of degree 3 let G00 := G0. For the casethat there are vertices of degree 3 let G01; G02 be two copies of G0. Let u bea vertex of degree 3 in G0. Let u1 and u2 be the corresponding vertex in G01and G02, respectively. Join u1; u2 by the graph H shown in Figure 3.
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Figure 3: Graph HThe resulting graph G00 is 4-regular. It is also 2-connected because we haveat least two pairs of vertices (u1; u2) in G01[G02 which have to be connected byH. The subgraphs H5(x1; x2); H5(y1; y2) have the same behavior as verticesconnecting to perfect matching. As in the proof of the hardness of the perfectmatching problem restricted to 2-connected graphs, it is easily seen that theedges e1 and e2 do not belong to any perfect matching. Therefore G00 has a9



perfect matching if and only if G0 has a perfect matching.On the other hand, it is possible to construct a perfect matching for G00by enlarging any matching M 0 on G0 by edges fsj; x1g; ftj; y2g and naturalenlargements on Hj(x1; x2)� fx1g and Hj(x1; x2)� fx2g. This constructioncan also be done in AC0.From a perfect matching in G00 a perfect matching in G0 can be constructedin AC0. �The immediate class above the 3-regular 2-connected graphs is the class of3-regular graphs (which are not necessarily 2-connected). To complete theproof of the main theorem we have to show the following:Lemma 3. The existence and the construction problem for the perfectmatching for 3-regular graphs is AC0-equivalent with the existence and theconstruction problem for a general matching problem respectively.Proof. Consider any graph G of maximal degree 3 which is 2-connected.For each vertex u of G of degree 2 let u1 and u2 be the corresponding verticesin G1 and G2, respectively.Join u1 and u2 by the following graph H (see Figure 4).
u1 v e1 e2f vvv���vvHHH�������vQQQQvAAA u2Figure 4:Call the resulting graph G0. Then the edge f belongs to any perfect matchingand therefore e1 and e2 both belong to no perfect matching of G0. G0 is 3-regular and G0 has a perfect matching if and only if G has a perfect matching.10



It is easily seen that we can construct a perfect matching in G from a perfectmatching in G0 in AC0. �5 Final Remarks.The construction of a perfect matching for bridgeless 3-regular graphs inparallel remains an open problem. We conjecture the problem lies in NC.We also refer to [KUW 2]. This paper deals with the question of equivalenceof existence and construction problems.Acknowledgements.We are thankful to L�aszl�o Lov�asz for posing the matching problem for reg-ular graphs and to Dick Karp for displaying an existing solution for bipartiteregular graphs [LPV] and the suggestion of studying the general problem.We are thankful to Avi Wigderson for many stimulating discussions.References[Ai] M. Aigner, Graphentheorie, Teubner Studienb�ucher Mathematik,Stuttgart 1983.[Bo 1] B. Bollobas, Extremal Graph Theory, Academic Press, London-New York 1978.[Bo 2] K.S. Booth, Isomorphism Testing for Graphs, Semigroups, and Fi-nite Automata are Polynomially Equivalent Problems, SIAM J.Comput. 7 (1987), pp. 273-279.11
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