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Abstract.

We shall prove that the perfect matching for regular graphs (even if re-
stricted to degree 3 and 2-connected 4-regular graphs) is AC%-equivalent
with the general perfect matching problem for arbitrary graphs.

1 Introduction

The parallel complexity of deciding the existence of a perfect matching in a
graph is an open problem. A perfect matching M of a graph G = (V, F) is a
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set of edges from E which cover all vertices, so that no two edges of M have
a common vertex. Randomized NC-algorithms are known [KUW 1], [MVV].
Also for special graph subclasses we know N(C?-algorithms for constructing
a perfect matching. Examples are strongly chordal graphs [DK], bipartite
graphs with a bounded permanent [GK], complements of transitive orientable
graphs [HM], and bipartite regular graphs [LPV]. The last class motivated
the question of the parallel complexity of the perfect matching problem for
reqular (not necessarily bipartite) graphs. The arguments of [LPV] fail for
non-bipartite regular graphs. We know that each regular bipartite graph has
a perfect matching and that we can color the edges with as many colors as
the degree of every vertex [LPV]. This is not true for non-bipartite regular
graphs. There is only one known additional result of Peterson (cf., e.g., [A]]

or [Bo 1]).

Proposition. (Peterson’s Theorem) FEvery 2-connected 3-regular graph
has a perfect matching.

The above result is existential and does not give a method for constructing
a matching.

In this paper we prove that, whenever we relax one of the two conditions
(being “2-connected ” or “3-regular”) in Peterson’s Theorem, the problems of
deciding the existence and the construction of a perfect matching in resulting
classes of graphs are both AC-equivalent to the respective perfect matching
problems in general graphs. It is an open question in parallel computation
whether the decision and the construction problems in perfect matching are
mutually NC-equivalent (cf. [KUW 2]). In the sequel we shall use the expres-
sion “perfect matching problem” to apply (separately) to both the decision
and the construction problem.

We shall prove the following surprising result:

Main Theorem. The perfect matching problem restricted to 3-regular
graphs and 4-regular 2-connected graphs is AC%-equivalent with the general
perfect matching problem. The reduction uses O(n?) boolean processors.

In particular: There exists a uniform sequence of unbounded fan in circuits
of polynomial size and constant depth which constructs for every graph ¢



a 3-regular graph G’ or a 4-regular 2-connected graph G’, respectively, such
that G has a perfect matching if and only if G’ has a perfect matching.
Moreover, from a perfect matching in G’ we can compute a perfect matching

in G by an AC%algorithm.

Being ACY means computable by uniform unbounded fan in circuits of poly-
nomial size and constant depth (see [Col, [KR]). An overview of parallel
complexity classes can be found in [Co].

Therefore an NC'-algorithm for the perfect matching problem restricted to
these graph classes would induce an NC'-algorithm for the general perfect
matching problem. For the proof of the main theorem we need two auxiliary
hardness results:

1) The AC°-hardness of the perfect matching problem restricted to 2-
connected graphs for the general matching problem:;
2) The AC°-hardness of the perfect matching problem restricted to graphs

of maximal degree 3.

Section 2 will present some basic definitions which will be used for the whole
paper.

Section 3 will present the auxiliary hardness results mentioned above.

In Section 4 we shall prove the main theorem.

2 Basic Definitions and Results.

A graph G = (V| F) consists of a set V' of vertices and a set E of edges.
|G7] = |V] is the number of vertices of (G and |E| is the number of edges of
(. Generally, we also denote the cardinality of a set S by |S].

(i is bipartite, if there is a pair (Uy, Uy) of complementary subsets of V', such
that each edge of (G has one end in U; and one end in U,.



A matching of a graph (' is a subset M of F, so that no two edges of M
have a common vertex. A matching M is called perfect if each vertex of G is
contained in some edge of M.

The degree of a vertex v is the number of edges containing v and is denoted
by d(v). A graph is k — regular or regular of the degree k, if all the vertices
have the same degree k. If & is k-regular for some k, then we call GG regular.

An edge coloring of G with k colors is a map ¢ : £ — {1---k}, so that
c(e1) # c(ez) if €1 and ey have a common vertex. The class of all edges of the
same color forms a perfect matching of GG. The following is true for regular
bipartite graphs:

Theorem 1. (cf., e.g., [Ai], p.135): Each regular bipartite graph of de-
gree k has an edge coloring with & colors.

Let NC* be the class of all functions and predicates which are computable or
decidable by a uniform (logspace) sequence (cf. [Co]) of circuits of polynomial
size and O(logk n) depth. AC? is the class of all functions computable by a
uniform sequence of unbounded fan in circuits of polynomial size and constant
depth. We call a predicate B, AC%reducible to A, B <4c0 A, if there is an
AC®computable function f, such that B = f~'(A). We say that A and B
are AC-equivalent, A =400 B, iff B <400 A and A <400 B. (We also say,
that A is AC % hard for B if B <400 A; and that A is AC°-complete for B
iff A =400 B. These notions are similar to the notion of graph isomorphism

completeness (cf. [BC])).

There is a well known open problem of self-reducibility of general search
and decision problems in parallel computation (cf. [KUW 2]).

It is not known whether the problems of deciding the existence of a perfect
matching and constructing a perfect matching are NC-equivalent. A con-
struction (search) problem is defined as follows. For a given predicate P and
x, construct y such that P(z,y) or output 'no’ if no such y exists. As an ex-
ample, a perfect matching problem is a predicate M(z,y) <= y is a perfect
matching in a graph z.

We say that the construction problem A(z,y) is ACY(NC*)-reducible to



B(a',y") if there exist ACY(NC*)-computable mappings f(z) and g(z,y),
such that for all

(1) dJy A(x,y) <= Ty [B(f(x),y")] (the existence problem related
to A is reduced to the existence problem related to B by mapping f)

(2) B(f(x),y") = A(x,¢9(x,y’)) (if the construction problem for B is in
ACP(NCH)).

The notions of equivalence, hardness and completeness for the construction
problems are defined analogously as for decision problems. A first known

result concerning the complexity of matching in parallel was the following

Theorem 2. [LPV]: An edge coloring of k colors of a k-regular bipartite
graph can be constructed in NC?.

Since every color forms a perfect matching, we have

Corollary 1. Each regular bipartite graph has a perfect matching which
can be constructed in NC?.

One problem is, however, how to construct a perfect matching for regular
but not necessarily bipartite graphs. We know only the following existential
result on 2-connected regular graphs.

Theorem 3. (Peterson, see [Ai]):  Each 2-connected (and therefore bridge-
less) 3-regular graph has a perfect matching.

We call an edge a bridge if its deletion enlarges the number of connected
components.

In the whole paper we shall consider only graphs with an even number of
vertices.

3 Auxiliary Hardness Results.

At first we prove the following



Lemma 1. The existence and the construction problem for a perfect
matching restricted to 2-connected graphs is AC%equivalent with the ex-
istence and the construction problem for a general perfect matching problem
respectively.

Proor. We shall use the method of “superfluous” edge systems. That
means we add subgraphs H with two leaving edges €1, ey, both adjacent to
exactly one vertex vy or vg, respectively, of the old graph, so that the edges
e1 and ey are not in any perfect matching. We say also that v; and v, are
joined by H. Consider for example the graph H (see Figure 1).

Uy

€1 €9
01 U2
us Uy

Uz

Figure 1: Graph H

Now all vertices vy # vy of G are joined by H. Then the resulting graph
G’ is 2-connected. Also inside H there are only two possibilities of perfect
matching:{[uq, us], [ug, us] and [uy, u4l, [ug, us]}. Therefore G has a perfect
matching if and only if G' has a perfect matching. It is easily seen that
we can construct a perfect matching in GG from a perfect matching in G’ in
AC®.

O

The next result we prove is the following

Theorem 4. The existence and the construction problem for a perfect
matching restricted to 2-connected graphs of maximal degree 3 is AC®-
equivalent with the existence and construction problem for a general perfect
matching problem respectively.

PROOF. Given any 2-connected graph G = (V, E). We construct a maxi-
mal degree 3 graph G/ = (V', £') as follows:



For each vertex v of G let €}, - -+, e} be an enumeration of its adjacent edges.
Replace v by vertices uy,---,u} and wy,---,w}_; of V'. The edges of i’ are
defined as follows:

For each ¢ < k : {u},w{}, {wf,u¥,} € E', and if ¢} = e?l is an edge of (¢
then {uf,ujl} er.

Clearly the construction of G’ from G can be done in AC? and G’ is 2-
connected. We have to prove that (G has a perfect matching if and only if G
has a perfect matching. Let M be a perfect matching of G. If ¢ = e = e?l,
replace e by {uf”,uyl} and for [ = 1 & v = v and for [ = 57 & v = v,
respectively, set {u? ,w" } € M’ for m < [ and {w? _,,u’} € M' for m > [.

m—17 “'m

This defines a perfect matching on G".

On the other hand let M’ be a perfect matching on G’. Since V¥ := {u} :
i=1, k}U{w! i =1,--+,k— 1} is odd, at least one V¥ leaving edge
e = {u?,ezl} is in M’. But then {u;_y,w;_1} € M’ (that is the only re-
maining edge of M’ containing w;_1) and so on {u;,w;} € M’ for all 1 < j.
Analogously {w;_1,u;} € M’ for all i > j. That means that exactly one V*
leaving edge, which is represented by an edge e of ¢ leaving v, is in M’. Set
e € M. Then M is a perfect matching on G.

The reduction of the perfect matching problem to the perfect matching prob-
lem for graphs of maximal degree 3 (bold edges are in a perfect matching) is
shown in Figure 2.

It is easily seen that we can construct a perfect matching in GG from a perfect
matching in G in AC°.
O

4 Proof of the Main Theorem.

We shall prove the following result:
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Figure 2: Reduction of the perfect matching problem

Lemma 2. The existence and the construction problem for a perfect
matching restricted to 2-connected 4-regular graphs is AC°-equivalent with
the existence and construction problem for a general matching problem re-
spectively.

PROOF. We construct an AC%reduction from the matching problem re-
stricted to 2-connected graphs of maximal degree 3. At first we give a reduc-
tion to graphs of degree 3 or 4. Consider any 2-connected graph G = (V, E) of
maximal degree 3. Let Hs(u1,uz) be the 5-clique without the edge {uq,us}.
Let v be a vertex of degree 2 with the neighbors vy and vy. Replace v by
Hs(uq,uz) and join the pairs {vy, us} and {vq, uz} by an edge. Call the graph
constructed in that way G’ = (V', E'). G’ has only degrees 3 and 4.

Claim. G’ has a perfect matching if and only if G has a perfect matching.

Let M’ be a perfect matching of G'. Then exactly one edge leaving Hs(uy, us)
is in M’ and a perfect matching on G is defined. Vice versa one has only to
enlarge the matching M of G by matchings on copies of Hs(uy,us) — {us} or
Hs(uq,uz) — {us}, which are both 4-cliques.



Remark. A perfect matching in G can be constructed from a perfect
matching in G/ in AC? in a straightforward way.

The next step is to reduce the perfect matching problem for graphs G’ of
degree 3 or 4 which are 2-connected to the perfect matching problem for
4-regular 2-connected graphs. W.l.o.g. we have to consider only graphs G’ of
an even number of vertices. But then we have an even number of vertices of
degree 3. Therefore there are either no vertices of degree 3 or at least two.
For the case that there are no vertices of degree 3 let GG := (. For the case
that there are vertices of degree 3 let G}, % be two copies of G’. Let u be
a vertex of degree 3 in . Let u; and uy be the corresponding vertex in ()
and GY, respectively. Join uy, uy by the graph H shown in Figure 3.

H5(51?17 51?2)
1 T2
€1 €2
U @ @ Uy
A1 Ya
H5(y1, yz)

Figure 3: Graph H

The resulting graph G” is 4-regular. It is also 2-connected because we have
at least two pairs of vertices (uy, ug) in G;UGY, which have to be connected by
H. The subgraphs Hs(x1,22), Hs(y1,y2) have the same behavior as vertices
connecting to perfect matching. As in the proof of the hardness of the perfect
matching problem restricted to 2-connected graphs, it is easily seen that the
edges e; and ey do not belong to any perfect matching. Therefore G has a



perfect matching if and only if G’ has a perfect matching.

On the other hand, it is possible to construct a perfect matching for G”
by enlarging any matching M’ on G’ by edges {s;, 1}, {t;,y2} and natural
enlargements on H;(xq,x2) — {x1} and H;(x1,22) — {x2}. This construction
can also be done in AC°.

From a perfect matching in G a perfect matching in G/ can be constructed

in AC®. O

The immediate class above the 3-regular 2-connected graphs is the class of
3-regular graphs (which are not necessarily 2-connected). To complete the
proof of the main theorem we have to show the following:

Lemma 3. The existence and the construction problem for the perfect
matching for 3-regular graphs is AC%equivalent with the existence and the
construction problem for a general matching problem respectively.

ProoFr. Consider any graph G of maximal degree 3 which is 2-connected.
For each vertex u of G of degree 2 let uy and ug be the corresponding vertices
in GGy and Gy, respectively.

Join uy and uy by the following graph H (see Figure 4).

€1 €9
U @ @ U2

Figure 4:

Call the resulting graph G’. Then the edge f belongs to any perfect matching
and therefore e; and ey both belong to no perfect matching of G'. G' is 3-
regular and GG' has a perfect matching if and only if G has a perfect matching.
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It is easily seen that we can construct a perfect matching in G from a perfect
matching in G/ in AC°.
O

5 Final Remarks.

The construction of a perfect matching for bridgeless 3-regular graphs in
parallel remains an open problem. We conjecture the problem lies in NC.
We also refer to [KUW 2]. This paper deals with the question of equivalence
of existence and construction problems.
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