MATCHING PROBLEM FOR STRONGLY CHORDAL GRAPHS IS IN NC
by
'""Elias Dahlhaus
and
Marek Karpinski

University of Bonn
Computer Science Department

Introduction:
Chordal graphs have become intersting as a generalization of interval graphs
(see for example [LB]).and cover a large field of applications [Go, BMFY].

That are graphs in which every cycle of .of a length greater than three has

a chord. We know that chordal graphs have only as many cliques as vertices.
Therefore the hypergraph of cliques has a not much larger description than

the given chordal graph. Farber [Fa 1, Fa 2] introduced the notion of strongly
chordal graphs. That are chordal graphs with the additional property that their
clique hypergraphs are acyclic.(see [BDS]). Such structures have become interesting
in connection to data base schemes [BMFY]. Chordal graphs are also related

to elemination schemes (see for example [Go]). Elemination orderings for

strongly chordal graphs are presented by M. Farber [Fa 1]. Linear time algorithms
to test chordality and to compute an elemination ordering for chordal graphs

are known by R. Tarjan and M. Yannakakis [TY].

On the other hand matching is generally in randomized NC (RNC) (see [MVV]),

But we do not know a general deterministic NC-algorithm for matching.

Our aim is to present some parallel algorithms corresponding to chordal and
strongly chordal graphs. Section 1 gives some foundations in the field of chordal
graphs. In section 2 we briefly discuss the parallel complexity of testing
chordality and strong chordality. In section 3 we will present an Hcgralgorithm
computing a (strong) elemination order for (strongly) chordal graphs. In section 4
we will show that matching for strongly chordal graphs is in nc?. But it is
easily seen that matching restricted to chordal graphs is as difficult as the
general bipartite case. A generalization of the parallel algorithm for stfong]y
chordal graphs can have many applications as for example 2-processor scheduling
(see [HM]).

Section 1: Fundamental Definitions and Results

1:1.
1.2.

1.3.

1.4.

1.5.

1.6.

A chordal graph is a graph with no induced cycle greater than three.
Being chordal is equivalent to following statement [Go, Fa 1]:
there is a (perfect) elemination order < on the verices:
(1) If (x,y)€E(=set of edges) and (x,z)€E then (y,z)€E.
Farber [Fa 1] defined strongly chordal graphe as graphs which
have a strong (perfect) elemination order <£:
That means that < satisfies (I) and additionally
(I11): If x<u and y<v and additionally (x,y), (x,v), (y,u) € E

then (u,v) € E.
Chordal graphs were defined by forbidden subgraphs. Strongly
chordal graphs can also be characterized by forbidden subgraphs:
G=(V,E) is strongly chordal if and only if it has no induced
trampoline [Fa 1] or sun [BDS]. A trampoline or sun conists of a
cycle of length at least 6 alternating between an independent set
and a complete set.
Chordal graphs can also be_characterized in notion of cliques:
Proposition[Di]: A graph'G=(V,E) is chordal iff for each induced
subgraph of G one can find a eimplicial vertex x, that means
its neighborhood N(x)={y:y=x or {y,x)€E} is complete.
Farber [Fa 1] pro&ed a corresponding result for strongly chordal
graphs:
Proposition: G is strongly chordal iff each induced subgraph has a
simple vertex x, that means {N(y):yeN(x)} can totally be ordered
by inclusion.
The number of cliques (nonextendible complete subgraphs) of a chordal
graph is at most as large as the number of vertices. The hypergraph
of cliques of a strongly chordal graph is of interst. We can give
the following statement:
Proposition[BDS]: The hypergraph of cliques of a graph G is acyclic
if G is strongly chordal.

Section 2: Testing Chordality and Strong Chordality is in CoNL
The following statement is easily checked:

Proposition 1: G is not chordal iff there is a cycle C, s.t. for
directely consequting x,y,z (x,z)&E.

That means

Corollary: Chordality is in CoNL.

Now [DD] gave a characterization of strongly chordal graphs which

is also a reduction of strong chordality test to chordality test:
Proposition 2 [DD]: Let E2 be the set of unordered pairs of vertices
which have a distance of at most two and which are unequal. Then
(V,E) is strongly chordal iff (V,Ez) is chordal and (V,E) does not
contain the Hajos graph as an induced subgraph: The Hajos graph is
the trampoline of a clique and an independent set both of size three.
Corollary: Strong chordality can be tested in CoNL.

We can say that testing (strong) chordality is in ne2.
In the next section we solve the corresponding construction problems,
that means to construct a (strong) elemination order.

Section 3: Computing (Strong) Elemination Orders

At first a remark:

An ordering on the vertices is a (strong) elemination ordering iff
each vertex v is simplicial (simple) in the subgraph induced by all
vertices w greater or equal v.

Let GO=G and Gi+]=Giv{x: x simplicial (simple) in Gi}'

Then each ordering, s.t. xt;‘EG:.L and yEGi implies x less than y, is

a (strong) elemination ordering. It suffices to test "xeGi" in NCZ.
Then we have also an algorithm computing a (strong) elemination order.
THEOREM 1: HXEGi" can be tested by an alternating logspace machine
with polynomial tree size.

By [Ru] we can conclude that above problem can be tested in NC2.

Before we prove the theorem some remarks:

For a strongly chordal graph we call a elique simple iff the intersections
with other cliques can be ordered by inclusion. Clearly

x is a simple vertex iff it is simplicial and its unique clique is simple.
Let S be the set of all cliques of a strongly chordal graph G..We can define
analogeously:

SO=S and Si+|=Si-{s:s simple in Si}. Clearly xeGi1ff xEsEGi for some s.

We can state the following
Lemma:For a strongly chordal graph we can find for each clique s an edge
appearing only in s.

Therefore every clique of a strongly chordal graph is generated by an edge.

That means: The set of cliques of a strongly chordal graph can be generated

by a uniform sequence of circuits having unbounded fan in, constant depth

and polynomial size. Therefore

orollarg The set of cliques of any strongly chordal graph can be computed

in NC

For x € Gi+l'Gi resp. SiH—Si 1et'Cx be the clique generated by x in Gi resp.
the set of cliques s € Si which intersect x nonempty.

Now we can define a tree structure TG resp. TS on {C :X€G (resp. S)}. The
immediate successor of C is the unique Cy, A yEC and y simplicial in G
resp. simple in S. and J>1 minimal. Note that in the chorda1 case

the collection of Tx.-{cy.xec } defines a collection of subtrees of TG, and

the intersection graph_of the Ty is again G (compare [Ga]). We can observe

that x € Gi iff there are two disjoint paths on TG from Cx to a leaf. The
analogeous observation is also true for x € Si.

The alternating polynomial tree size algorithm is based on such tree structures.
We have to explain how to handle with Cx which have only one predecessor.

Let (Ci)i:] be a sequence of Cx’ St Ci is the unique predecessor of ci+l

In the strongly chordal case we have consequently a sequence (Si)izl’ s.t.

for i=l...n-1 s.ns. , and s.Ns, ., are incomparable with respect to the

set theoretic 1nc]u51on

In the chordal case we get a sequence (x sU.,)l 0,x y el

(xl,x1+]) 1+i) € £ and (xi,ui) 3 E (xi+] ui) € E.
We call such sequences chains of length n.from 5o resp. Xg to s, resp. x .

If Cx has at least two predecessors Cy and Cz then there are two possibilities:
a) {(y,x"), (z,x") € E, Cx=cx‘
b) (y,xl), (z,xz) € E, Cx=cxl=C

(u sU

xz but (y,xz), (Z,X]) €t
In the strongly chordal case we have the corresponding $ituation:

yNXy, znx, noncomparable and x [=X, OF yNXx ,xlnxznoncomparable and zNx, and x
noncomparable.

Nx

172

Now we can present an alternating logspace algorithm of polynomial tree size
checking whether xEGi resp. Si:

begin
for each vertex x'(clique x)'set x € GO'(S0)

repeat
for each i,j,ksIGl

for each x € Gi s ¥ € Gj
for each Xps Ups uz,y],s.t.

(xl, ul), (y],uz) € E and ((u!,uz) € E or ul=u2) and (x].yl) € E

i . - . . 1
(X nu ylnu2 incomparable and (u]—u2 or ulnu2 incomparable with xlnu] and y‘nuz)
and & K : k-]

if there is a sequence §=(xl,u1)§;3, s.t. x=xpand a sequence T:=(yl,ul)1=0 s.t. y=y,

and EXI,Ey],Eu],Euz are chains or(x=x, and y=y, and i=j=k)then set u,,u, € G 41
'(if there is a chain of length k-i via x| from x to u, and a chain of length
k-j via y, to uzfrom y then set Uy, Uy € 5k)}

until one does not get new statements of the form “x € Gi“.

Statements in '()'-delimiters are alternatives for the strongly chordal case.

Corollary: It is possible to construct a structure of subtrees of a tree
representing a given chordal graph in NC2.

Section 4: Matching on Strongly Chordal Graphs

We begin with a

Remark: Let G be a bipartite graph s.t. its two partitions Vl and V2 have the same
power. Let G' be the chordal graph which arises from G by making V2 to a clique.
Then G has a perfect matching iff G' has a perfect matching. That means:

Matching on chordal graphs ie as hard as matching on bipartite graphs.

But for strongly chordal graphs we get the following result:

THEOREM 2: Matching on strongly chordal graphs is in ch_

Lemma[MVV]: For a grdph labeled by unary numbers a minimal perfect matching can

be computed in NC2 provided it is unique.

For the case of str0ngly'chord5} graphs we label the edges by the square of

distances related to a strong elemination order.

We call a pair of edges (ul,uz),(v],vz) a defect iff (ul,vl) € E and u,<v,

Suppose a matching has a defect as above. But by the fact that < is a strong
elemination ordering, (”zvz) € E. We can remove the defect by taking (u],vl)and

<u..
and vl u2

(uz,vz) into the matching. The key is the following

Lemma 1: Removing a defect deminuishes the sum of labels of a matching.
Lemma 2: There is a unique defect free matching.

From this two lemmas the theorem is easily checked.

Corollary: Perfect matching on chordal bipartite graphs is in NCZ.

Section 5: A Remark on Future Research

The above result includes the matching problem restricted to interval graphs [KVV],
which is included again by 2-processor scheduling [HM]. It is known that 2-processor
scheduling is in NCZ[HM]. But the complement of a comparability graph need not be
chordal. Only in the case of chordality we have an interval graph [GH]. But the
techniques of [HM] give us a hint how to generalize our result and Helmbold

and Mayr“s result to a common upper class of graphs. It might suffice that

we have a partial order on the vertices, s.t. (II) is fulfilled and pairs

of vertices not joined by an edge are comparable.

References:

[BFMY] C.Beeri, R. Fagin, D. Maier, M. Yannakakis, On the Desirability of Acyelic
Data Base Schemes, JACM 30, p. 479-513 (1983)

[BK] A.Brower, A. Kolen, 4 Super-Balanced Hypergraph has a Nest Point,Report
ZW 146, Mathematisch Centrum, Amsterdam (1980)

{ Bu] A. Buneman, 4 Characterization of Rigid Circuit Graphs, Discrete Math. 9,
p. 205-212 (1974) |

[BDS] A. Brouwer, P. Duchet, A. Schrijver, Graphs whose Neighborhoods have no
Special Cyele, Discrete Math. 47, p. 177-182 (1983).

[DD] E. Danhlhaus, P.'Duchet, unpublished manuscript

[Di] G. Dirac, On Rigid Circuit Graphs, Abhandlungen Mathematischer Seminare
der Universitdt Hamurg 25, p. 71-76 {1961)

[Fa 1]M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Math. 43,
p. 173-189(1983)

[Fa 2]M. Farber, Applications of L.P-Duality to Problems Imvolving Independence
and Domination, Ph.D. Thesis, Computer Science Department, Rutgers
University, New Brunswick, NJ 1982

[Ga] F. Gavril, The Intersection Graphs of Subtreee of a Tree are Exactly the
Chordal Graphs, J. Combinatorial Theory Ser. B 16, p. 47-56 (1974)

[GH] P. Gilmore, A. Hoffman, 4 Characterization of Comparability Graphs and of
Interval Graphs, Can. J. Math. 16, p. 539-548 (1964)

(WM] D. Helmbold, E. Mayr, Two Processor Scheduling is in NC, in
VIST Algorithms and Architectures (Makedon et al. ed.), LNCS 227,
p. 12-25)

l6o] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York (1980)

(KWW D. Kozen, U. Vazirani, V. Vazirani, NC-Algorithms for Comparability Graphs,
Interval Graphs and Testing Unique Perfect Matehing, to appear

[LB] C. Lekkerkerker, D. Boland, Representation of Finite Graphs by a Set of
Intervals on the Real Line, Fund. Math. 51, p. 45-64 (1962)

[MW] K. Mulmuley, U. Vazirani, V. Vazirani, 4 Parallel Algorithm for Matching,
to appear

[Ru] W. Ruzzo, Tree Size Bounded Altermaiion, JCSS 21, p. 218-235 (1980)

[TY] R. Tarjan, M Yannakakis, Simple Linear-Time Algorithms to Test Chordality
of Graphs, Test Acyclity of Graphs, Test Acyelity of Graphs, Test Acyclity
of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM J. Comp. 13,
p. 566- 579(1984)

