MATCHING PROBLEM FOR STRONGLY CHORDAL GRAPHS IS IN NC

by
Elias Dahlhaus
and
Marek Karpinski
University of Bonn
Computer Science Department

Chordal graphs have become intersting as a generalization of interval graphs

Introduction:

(see [HM]).

(see for example [LB]) and cover a large field of applications [Go, BMFY]. That are graphs in which every cycle of of a length greater than three has a chord. We know that chordal graphs have only as many cliques as vertices. Therefore the hypergraph of cliques has a not much larger description than the given chordal graph. Farber [Fa 1, Fa 2] introduced the notion of strongly chordal graphs. That are chordal graphs with the additional property that their clique hypergraphs are acyclic (see [BDS]). Such structures have become interesting in connection to data base schemes [BMFY]. Chordal graphs are also related to elemination schemes (see for example [Go]). Elemination orderings for strongly chordal graphs are presented by M. Farber [Fa 1]. Linear time algorithms to test chordality and to compute an elemination ordering for chordal graphs are known by R. Tarjan and M. Yannakakis [TY]. On the other hand matching is generally in randomized NC (RNC) (see [MVV]). But we do not know a general deterministic NC-algorithm for matching. Our aim is to present some parallel algorithms corresponding to chordal and strongly chordal graphs. Section 1 gives some foundations in the field of chordal graphs. In section 2 we briefly discuss the parallel complexity of testing chordality and strong chordality. In section 3 we will present an NC^2 -algorithm computing a (strong) elemination order for (strongly) chordal graphs. In section 4 we will show that matching for strongly chordal graphs is in ${\it NC}^2$. But it is easily seen that matching restricted to chordal graphs is as difficult as the general bipartite case. A generalization of the parallel algorithm for strongly chordal graphs can have many applications as for example 2-processor scheduling

Section 1: Fundamental Definitions and Results

- 1.1. A chordal graph is a graph with no induced cycle greater than three.
- 1.2. Being chordal is equivalent to following statement [Go, Fa 1]: there is a (perfect) elemination order < on the verices:
 - (I) If $(x,y)\in E$ (=set of edges) and $(x,z)\in E$ then $(y,z)\in E$.
- 1.3. Farber [Fa 1] defined strongly chordal graphs as graphs which have a strong (perfect) elemination order <:
 That means that < satisfies (I) and additionally
 (II): If x<u and y<v and additionally (x,y), (x,v), (y,u) ∈ E
 then (u,v) ∈ E.</p>
- 1.4. Chordal graphs were defined by forbidden subgraphs. Strongly chordal graphs can also be characterized by forbidden subgraphs:

 G=(V,E) is strongly chordal if and only if it has no induced trampoline [Fa 1] or sun [BDS]. A trampoline or sun conists of a cycle of length at least 6 alternating between an independent set and a complete set.
- 1.5. Chordal graphs can also be characterized in notion of cliques: <u>Proposition</u>[Di]: A graph G=(V,E) is chordal iff for each induced subgraph of G one can find a simplicial vertex x, that means its neighborhood N(x)={y:y=x or (y,x)∈E} is complete. Farber [Fa 1] proved a corresponding result for strongly chordal graphs:
 - <u>Proposition</u>: G is strongly chordal iff each induced subgraph has a simple vertex x, that means $\{N(y):y\in N(x)\}$ can totally be ordered by inclusion.
- 1.6. The number of cliques (nonextendible complete subgraphs) of a chordal graph is at most as large as the number of vertices. The hypergraph of cliques of a strongly chordal graph is of interst. We can give the following statement:
 - <u>Proposition[BDS]</u>: The hypergraph of cliques of a graph G is acyclic if G is strongly chordal.

Section 2: Testing Chordality and Strong Chordality is in CONL

The following statement is easily checked:

<u>Proposition 1</u>: G is not chordal iff there is a cycle C, s.t. for directly consequting x,y,z (x,z) \in E.

That means

Corollary: Chordality is in CoNL.

Now [DD] gave a characterization of strongly chordal graphs which is also a reduction of strong chordality test to chordality test: $Proposition\ 2$ [DD]: Let E^2 be the set of unordered pairs of vertices which have a distance of at most two and which are unequal. Then (V,E) is strongly chordal iff (V,E^2) is chordal and (V,E) does not contain the $Hajos\ graph$ as an induced subgraph: The Hajos graph is the trampoline of a clique and an independent set both of size three. Corollary: Strong chordality can be tested in CoNL.

We can say that $\underline{\text{testing}}$ (strong) chordality is in NC^2 . In the next section we solve the corresponding construction problems, that means to construct a (strong) elemination order.

Section 3: Computing (Strong) Elemination Orders

At first a remark:

An ordering on the vertices is a (strong) elemination ordering iff each vertex v is simplicial (simple) in the subgraph induced by all vertices w greater or equal v.

Let G_0 =G and G_{i+1} = G_i -{x: x simplicial (simple) in G_i }. Then each ordering, s.t. $x \notin G_i$ and $y \in G_i$ implies x less than y, is a (strong) elemination ordering. It suffices to test " $x \in G_i$ " in NC². Then we have also an algorithm computing a (strong) elemination order. THEOREM 1: " $x \in G_i$ " can be tested by an alternating logspace machine with polynomial tree size.

By [Ru] we can conclude that above problem can be tested in NC^2 . Before we prove the theorem some remarks:

For a strongly chordal graph we call a *clique simple* iff the intersections with other cliques can be ordered by inclusion. Clearly x is a simple vertex iff it is simplicial and its unique clique is simple. Let S be the set of all cliques of a strongly chordal graph G..We can define analogeously:

 $S_n=S$ and $S_{i+1}=S_i-\{s:s \text{ simple in } S_i\}$. Clearly $x\in G_i$ iff $x\in s\in G_i$ for some s.

We can state the following

Lemma: For a strongly chordal graph we can find for each clique s an edge appearing only in s.

Therefore every clique of a strongly chordal graph is generated by an edge. That means: The set of cliques of a strongly chordal graph can be generated by a uniform sequence of circuits having unbounded fan in, constant depth and polynomial size. Therefore

<u>Corollary</u>: The set of cliques of any strongly chordal graph can be computed

For $x \in G_{i+1} - G_i$ resp. $S_{i+1} - S_i$ let C_x be the clique generated by x in G_i resp. the set of cliques $s \in S_i$ which intersect x nonempty.

Now we can define a tree structure T_G resp. T_S on $\{C_X : x \in G \text{ (resp. S)}\}$. The immediate successor of C_x is the unique C_y , s.t. $y \in C_x$ and y simplicial in G_j resp. simple in S, and j>i minimal. Note that in the chordal case the collection of $T_x := \{C_y : x \in C_y\}$ defines a collection of subtrees of T_G , and the intersection graph of the T_X is again G (compare [Ga]). We can observe that $x \in G_i$ iff there are two disjoint paths on T_G from C_X to a leaf. The analogeous observation is also true for $x \in S_i$.

The alternating polynomial tree size algorithm is based on such tree structures. We have to explain how to handle with $C_{\mathbf{x}}$ which have only one predecessor. Let $(C_i)_{i=1}^n$ be a sequence of C_X , s.t. C_i is the unique predecessor of C_{i+1} . In the strongly chordal case we have consequently a sequence $(s_i)_{i=1}^n$, s.t. for i=1...n-1 $s_i \cap s_{i+1}$ and $s_i \cap s_{i-1}$ are incomparable with respect to the set theoretic inclusion.

In the chordal case we get a sequence $(x_i, u_i)_{i=0}^{n-1}, x_n$, s.t. $(x_{i}, x_{i+1}), (u_{i}, u_{i+1}) \in E$ and $(x_{i}, u_{i}) \notin E, (x_{i+1}, u_{i}) \in E.$ We call such sequences chains of length n.from s_0 resp. x_0 to s_n resp. x_n . If C_x has at least two predecessors C_y and C_z then there are two possibilities:

a) (y,x'), $(z,x') \in E$, $C_x = C_x'$ b) (y,x_1) , $(z,x_2) \in E$, $C_x = C_{x_1} = C_{x_2}$ but (y,x_2) , $(z,x_1) \in E$

In the strongly chordal case we have the corresponding situation: $y \cap x_1$, $z \cap x_2$ noncomparable and $x_1 = x_2$ or $y \cap x_1, x_1 \cap x_2$ noncomparable and $z \cap x_2$ and $x_1 \cap x_2$ noncomparable.

Now we can present an alternating logspace algorithm of polynomial tree size checking whether $x \in G_i$ resp. S_i :

begin

for each vertex x'(clique x)'set $x \in G_0'(S_0)'$

repeat

for each i,j,k≤IGI

 $\underline{\text{for each}} \ x \in \textbf{G}_{i} \ , \ y \in \textbf{G}_{j}$

for each x_1 , u_1 , u_2 , y_1 , s.t.

 $(x_1, u_1), (y_1, u_2) \in E \text{ and } ((u_1, u_2) \in E \text{ or } u_1 = u_2) \text{ and } (x_1, y_1) \notin E$ $(x_1 \cap u_1, y_1 \cap u_2 \text{ incomparable } \text{and } (u_1 = u_2 \text{ or } u_1 \cap u_2 \text{ incomparable with } x_1 \cap u_1 \text{ and } y_1 \cap u_2)'$

and if there is a sequence $\bar{s}=(x_1,u_1)_{1=0}^{k-i}$, s.t. $x=x_0$ and a sequence $\bar{t}=(y_1,u_1)_{1=0}^{k-j}$ s.t. $y=y_0$ and $\bar{s}x_1,\bar{t}y_1,\bar{s}u_1,\bar{t}u_2$ are chains $\underline{or}(x=x_1)$ and $\underline{or}($

until one does not get new statements of the form " $x \in G_i$ ".

Statements in '()'-delimiters are alternatives for the strongly chordal case.

 $\underline{\mathit{Corollary}}$: It is possible to construct a structure of subtrees of a tree representing a given chordal graph in NC 2 .

Section 4: Matching on Strongly Chordal Graphs

We begin with a

 $\underline{\textit{Remark}}$: Let G be a bipartite graph s.t. its two partitions V₁ and V₂ have the same power. Let G' be the chordal graph which arises from G by making V₂ to a clique.

Then G has a perfect matching iff G' has a perfect matching. That means:

Matching on chordal graphs is as hard as matching on bipartite graphs.

But for strongly chordal graphs we get the following result:

THEOREM 2: Matching on strongly chordal graphs is in NC^2 .

Sketch of the proof: We use the following

 $\underline{\textit{Lemma}}[MVV]$: For a graph labeled by unary numbers a minimal perfect matching can be computed in NC^2 provided it is unique.

For the case of strongly chordal graphs we label the edges by the square of distances related to a strong elemination order.

We call a pair of edges $(u_1,u_2),(v_1,v_2)$ a *defect* iff $(u_1,v_1) \in E$ and $u_1 < v_2$ and $v_1 < u_2$. Suppose a matching has a defect as above. But by the fact that < is a strong elemination ordering, $(u_2v_2) \in E$. We can *remove* the defect by taking (u_1,v_1) and

 (u_2, v_2) into the matching. The key is the following

Lemma 1: Removing a defect deminuishes the sum of labels of a matching.

Lemma 2: There is a unique defect free matching.

From this two lemmas the theorem is easily checked.

Corollary: Perfect matching on chordal bipartite graphs is in NC².

Section 5: A Remark on Future Research

The above result includes the matching problem restricted to interval graphs [KVV], which is included again by 2-processor scheduling [HM]. It is known that 2-processor scheduling is in NC²[HM]. But the complement of a comparability graph need not be chordal. Only in the case of chordality we have an interval graph [GH]. But the techniques of [HM] give us a hint how to generalize our result and Helmbold and Mayr's result to a common upper class of graphs. It might suffice that we have a partial order on the vertices, s.t. (II) is fulfilled and pairs of vertices not joined by an edge are comparable.

References:

- [BFMY] C.Beeri, R. Fagin, D. Maier, M. Yannakakis, On the Desirability of Acyclic Data Base Schemes, JACM 30, p. 479-513 (1983)
- [BK] A.Brower, A. Kolen, A Super-Balanced Hypergraph has a Nest Point, Report ZW 146, Mathematisch Centrum, Amsterdam (1980)
- [Bu] A. Buneman, A Characterization of Rigid Circuit Graphs, Discrete Math. 9, p. 205-212 (1974)
- [BDS] A. Brouwer, P. Duchet, A. Schrijver, Graphs whose Neighborhoods have no Special Cycle, Discrete Math. 47, p. 177-182 (1983).
- [DD] E. Dahlhaus, P. Duchet, unpublished manuscript
- [Di] G. Dirac, On Rigid Circuit Graphs, Abhandlungen Mathematischer Seminare der Universität Hamurg 25, p. 71-76 (1961)
- [Fa 1]M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Math. 43, p. 173-189(1983)
- [Fa 2]M. Farber, Applications of L.P-Duality to Problems Involving Independence and Domination, Ph.D. Thesis, Computer Science Department, Rutgers University, New Brunswick, NJ 1982
- [Ga] F. Gavril, The Intersection Graphs of Subtrees of a Tree are Exactly the Chordal Graphs, J. Combinatorial Theory Ser. B 16, p. 47-56 (1974)
- [GH] P. Gilmore, A. Hoffman, A Characterization of Comparability Graphs and of Interval Graphs, Can. J. Math. 16, p. 539-548 (1964)

- [HM] D. Helmbold, E. Mayr, Two Processor Scheduling is in NC, in VLSI Algorithms and Architectures (Makedon et al. ed.), LNCS 227, p. 12-25
- [Go] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980)
- [KVV] D. Kozen, U. Vazirani, V. Vazirani, NC-Algorithms for Comparability Graphs, Interval Graphs and Testing Unique Perfect Matching, to appear
- [LB] C. Lekkerkerker, D. Boland, Representation of Finite Graphs by a Set of Intervals on the Real Line, Fund. Math. 51, p. 45-64 (1962)
- [MVV] K. Mulmuley, U. Vazirani, V. Vazirani, A Parallel Algorithm for Matching, to appear
- [Ru] W. Ruzzo, Tree Size Bounded Alternation, JCSS 21, p. 218-235 (1980)
- [TY] R. Tarjan, M Yannakakis, Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclity of Graphs, Test Acyclity of Graphs, Test Acyclity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs, SIAM J. Comp. 13, p. 566-579(1984)