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Abstract. We present the first algorithm for the (black box) interpolation of t-sparse, n-
variate rational functions without knowing bounds on exponents of their sparse representation
with the number of queries needed by the algorithm, independent on exponents. In fact, the
algorithm uses O(nt') queries to the black box, and can be implemented for a fixed ¢ in a

polynomially bounded storage (or polynomial parallel time).



Introduction.

A t-sparse rational function is a function that can be written as a quotient of two polynomi-
als, each containing at most ¢ terms. We show in this paper that, if we are given a black box
to evaluate a t-sparse rational function f with integer coeflicients, then one can bound the
exponents appearing in a t-sparse representation of f by making 2(¢ + 1)’ — 1 black box eval-
uations in the univariate case and O(nt") black box evaluations in the n-variable case. Using
this, we also give the first algorithm, depending in exponent only on ¢ (!), for interpolation
of t-sparse rational functions without knowing bounds on exponents and show that for fixed

t this problem is in polynomial parallel time (sequential storage).

The authors were motivated by the question whether the recent parallel deterministic
sparse interpolation algorithms ([GK 87], [BT 88], [GKS 88], [KL 88]) could be generalized
to the rational function case without knowing an a priori bound on the exponents of their
defining polynomials; and also by its natural connection to the seminal problem of Strassen
([S 73]) of computing the numerator and denumerator of rational functions. It was not
known before whether the number of queries needed for the problem was recursive in n
and ¢. Approximative unbounded degree interpolation arises also naturally in the issues of

computational learnability of sparse rational functions (cf. [KW 89]).

For the corresponding versions of bounded degree rational interpolation (where the bound
on the degree is part of the input) see [S 73], [K 86], [BT 88], [K'T 88]. Another version of

unbounded degree univariate polynomial interpolation is studied in [BT 89].

To bound the exponents appearing in some t-sparse representation of a ¢-sparse rational
function f(X) of one variable, we will proceed as follows. We consider representations of
F(X) of the form (30, a; X))/ (32—, b;X7), where the a; and b; are real numbers and the
«; and f3; are non-negative real numbers. Such a function is called a quasirational function.
We show that for t-sparse f(.X) the a; and /3; must satisfy a system S of polynomial equalities
and inequalities whose coefficients depend on the value of f(X) at 2(¢ + 1)' — 1 points. By
evaluating the black box for f(X) at these points, we can determine this system. Using the
results of [GV 88], we can bound a real solution of this system. Using the fact that f(X)is a
t-sparse rational function, we are then able to bound an integer solution of S and this gives
our desired bound. The detailed complexity analysis of the algorithm will be given in the

final version of the paper.



The rest of this paper is organized as follows.

In Section 1 we give a formal definition of quasirational functions and prove some basic
facts about these functions. In Section 2, we describe some elementary properties of right
euclidean rings. An example of such a ring is F[D], where F is the field of quasirational
functions of one variable and D is the operator defined by D(f(X)) = f(pX) for some fixed
prime p. For this ring, we are able to derive an analogue of the Sylvester matrix and the
resultant. In Section 3 we use this to obtain the system S and the bound for the exponents
appearing in a t-sparse representation of a t-sparse rational function. In Section 4 we show
how the results of section 3 can be used to obtain a bound on the exponents of a t-sparse
rational function of several variables. In Section 5 we describe an algorithm to interpolate

t-sparse rational functions and give complexity bounds.

1. Quasirational Functions.

A finite sum of the form
Z C[XI
I
where I = (a1, ..., ), 0< oy € IR, X' = X{'.... X ¢; € IRis called a quasipolynomial

of n variables. Denote by IR< X1,...X, > the ring of quasipolynomials of n variables.

A ratio of two quasipolynomials is called a quasirational function. If the number of terms
in the sum is at most ¢, we say that the quasipolynomial is ¢-sparse. If a quasirational
function can be represented as a ratio of two t-sparse quasipolynomials, we say that it is
also t-sparse. We use the expressions “polynomial” or “rational function” in the usual sense,
that is for quasipolynomials or quasirational functions with non-negative integer exponents

in their terms.

We assume that we are given a “black box” representing an n-variable rational function f
with integer coefficients into which we can put points with rational coefficients. The output
of the black box is either the value of the function at this point or some special sign, e.g.
“00”, if the denominator of the irreducible representation of the function vanishes at this
point (a representation f = g/h,g,h € IR[X4,..., X,], is irreducible if g and h are relatively
prime). In what follows, we will sometimes obtain in intermediate steps a representation of a

rational function in the form of a quasirational function. Nevertheless, our aim is to obtain

a representation of a rational function in the usual form, provided that it is t-sparse.



We will need a zero test for t-sparse rational functions. This is similar to well known zero
tests for t-sparse polynomials (cf. [GK 87], [GKS 88], [BT 88]). Recall that if My,..., M,
are distinct positive numbers, then any ¢ X ¢ subdeterminant of the (2t — 1) X ¢ matrix

(Mg)lSsSt’lSjSQt_l is non-singular (c.f. [El 76]).

To test if a t-sparse rational function f is identically zero, use its black box to evaluate
f at the 2t — 1 points P/ = (p{7 coopl), 1 < j <2t — 1, where the py,...,p, are distinct
primes. Since the black box gives output based on an irreducible representation of f, we see
that any zero of the denominator of such a representation is a zero of the denominator of a
t-sparse representation of f. Using the remark about the matrix (MZ]) above we see that the
denominator can vanish at, at most, t — 1 of these points. The same concerns the numerator.
Therefore, the t-sparse function f is not identically zero if and only if the black box outputs

a number different from 0 and oo at one of the points P7.

The next result concerns different t-sparse representations of a quasirational function
f. This result can be thought of as saying that, under suitable hypotheses, two such rep-
resentations can only differ in certain redundant terms that can be eliminated. If ¢ is a
quasipolynomial, we denote by ordx,(g) the least power of X; occurring in g. We call a rep-
resentation g;/hy = f normalizedif for each 7,1 < i < n, min (ordx,(g1), ordx,(h1)) = 0. For
an arbitrary g; / hq, there is a unique monomial M such that (¢1/M) / (h1/M) is normalized.

We call the latter representation the normalization of gy / hy.

Lemma 1. Assume that ¢y /hy is a t-sparse representation of a quasirational
function and g2 /he = gy /hy is another t-sparse normalized representation. Let d =
max {degy, (g1),degx, (h1)}. We can delete some terms from gy and hy obtaining G2, ho
so that

G2/ b2 = g1/ M
and

max {degy, (7,), degx, (h2)} < 2td,
where §, / hy is the normalization of g / hs.
Proor.
Write

2% 2%
92 — Zggl)Xlﬁz7 h2 — Z h(zl)Xlﬁz
=1

=1



where 1 < (2 < ---, and at most ¢t terms of each set {gy)},{h(;)} are non-zero. Since
g2/h2 is normalized, §; = 0. We may assume that ggl) # 0 (the argument is similar if
h(Ql) # 0). If B;y1 — B; < d for each ¢, then degy go < (2¢t — 1)d. This would imply that

degy, hy < degy, g2h1 < 2td and we would be done.

Therefore we can assume there is a minimal number s such that 3;; < s—d < s < 3; 41
for some 29 < 2t. Since 1 = 0, we have s < 2td. Let
> ) N0
2= 95 X7 hy = > hy X
If one compares the coefficients of X{, p < s, in gahy = hagy, one can see that gshy = hogy

SO gz/ilz = 91/h1-

We now take the normalization §2//~zg of gg/ﬁg and apply considerations similar to those
above to §2/iL2 with Xy playing the role of Xy. At the end of this process we obtain the
normalized representation 572//32. It corresponds to a pre-normalized g,/hy that satisfies the

conclusion of the lemma. O

Corollary. If, in the above Lemma, we assume ¢, hy € IR[ X}, ..., X,] are polynomial,

then we can conclude that go, hy € IR[X4, ..., X,] as well.

We note that in Lemma 1 and its corollary, g, and hy are obtained by eliminating terms

of sufficiently high degree and keeping lower order terms in g, and hs,.

2. Right Euclidean Rings (a digest).

Let F be a field and let D : F* — FT be a homomorphism with respect to the additive
structure of F. Let F[D] be the subring of HOM (F*, F'T) generated by F (acting on F'*
by multiplication) and D. We assume that each element a # 0 from F[D] can be uniquely
represented in the form a =} o<, ;D' where o; € F and a,, # 0. We denote the integer

m by deg(a) and adopt the convention that deg(0) = —oc.

We furthermore assume that for a,b € F[D], deg(ab) = deg(a) + deg(b). This assumption
is equivalent to the statement that for each « in I there are unique oy, oy in F, with oy # 0,
such that D -a = a1 D + ay. We can conclude that there exists right Euclidean division
in F[D], that is, for any a,b € F[D] b # 0, there exist unique by, by with deg(bz) < deg(b)

such that @ = b1b + by. This leads to a right Fuclidean algorithm and a notion of greatest



common right divisor (gerd(a,bd)) of two elements @ and b, which can be represented in
the form gerd(a,b) = aja 4 b1b for some aq,b; € F[D]. Furthermore a = aggerd(a,b) and
b = bogerd(a, b) for some ag, by € F[D] (c.f. [O 33]).

Let @ and b be elements of F[D] and assume deg(a) = m and deg(b) = n. Consider

Pa= Y d'D, D= Y D

0<j<m+1 0<y<n+!

for0<:<n-1,0<I<m—1. Notethata%):agg) andforbg):b%o)forogign—l,og

[ <m—1. Let S(a,b) be the (m + n) X (m+ n) matrix

agﬁf_l) ags:ll) e a(ln_l) aén_l) 0o ... e e 0
0 oy 0
0 0 agr?) aéo)
m—1 m—1 m—1

DS A |
0 b7(1m—2) bém—?)
0 0 oV ) b

that is, the matrix whose columns correspond to the operators P?t™~1 . . D2 D,1 and

whose rows contain the coefficients of the operators in D'(a), 0 < i < k — 1 and D!(b), 0 <
I < m—1 (S(a,b) resembles the Sylvester matrix [VDW 66]; for differential operators a
similar object is described in [G 89]). Let R(a,b) = det(S(a,b)).

Lemma 2. R(a,b) = 0 if and only if deg(gdrc(a, b)) > 0.

Proor. R(a,b) satisfies the following three properties:

1. R(a,0)=0
2. R(a,b) = (~1)™R(b, a)

3. If m < n and if by is the remainder after euclidean division of b by a, then R(a,b) =

aly "™ R(a, by)

The first two properties are obvious. The last property follows from the fact that euclidean

division of b by a corresponds to using elementary row operations to put zeroes in the first



m — n columns of the last n rows of S(a,b)(cf. [M 89]). Repeated use of the above properties

together with the euclidean algorithm yields the desired result

We note that a stronger result is true. As in [G 89] Lemma 12, one can show:

deg(gdre(a, b)) = n — rank(95).

In what follows we restrict ourselves to the case where F' is the field of quasirational functions
in one variable and D is the operator defined by D(X?) = (pX)?, where p is some fixed prime
number. Note that D - f =D(f) - D.

Lemma 3. If f € I'and D(f) = f, then f € IR.

Proor. If D(f) = f, then f(X) = f(pX) = f(p?X) = .... The zero test of section 1
implies that f(X) = f(Y X) for a new variable Y. If f = g/h let

g:ZaiXa", h:ZbiXﬁ"
0<a<ay<...0< 31 < @< ..., and a;,b; € IR. Since
g(Y X)h(X) = g(X)h(Y X),

we can conclude, by comparing coeflicients of the corresponding monomials in X and Y, that

ay = B, a0 = B, ... and a;b; = a;b; for all 7, j. Therefore f € IR. O

Lemma 4. Ify,...,y, € F,then y,...,y, are linearly dependent over IR if and only

if i i
Wiyt ...,yn) = det ‘yl (p) o yn(px) =0
L () g ()

Proor. If y1,...,y, are linearly dependent over IR then, clearly, W(yi,...,y,) = 0.
Now assume that W(yy,...,y,) = 0. In this case there exist fi,..., f, € F, not all zero,
such that

iyt fayn = AiDyi + A Dy = .. = AD Ty Dy

We may assume f; = 1. Applying D to each of these equations, we have

Diyy + DDy + ...+ Df, Dy, = 0



for 2 = 1,...,n. This implies that

(fo=Df)Dys+ ...+ (fo = Dfu)Diy, =0

forte=1,...,n—1. Either f;—Df; =0for:=2,...,n,in which case we are done by Lemma
3, or by induction there exist aq, ..., o, € IR, not all zero, such that ayDys+. ..+, Dy, = 0.
Therefore D(agys + ...+ ay,) = 0s0 agyz + ...+ a,y, = 0. O

Corollary. Let I = Y!_,a;D' with a; € F, not all zero. The dimension of the

IR-vectorspace of solutions in F of Ly = 0 is at most ¢.

ProoF. Let y1,..., 941 be solutions of Ly = 0. We then have

U1 . yt-l-l
Dy ... Dy
(a07 ’ at) X =0
L Dtyl e DtyH_l ]
Lemma 4 implies that yy,...,y.41 are linearly dependent. O

Lemma 5. Let L= Zé‘:o aﬂ?j with a; € IR and assume that Pp,(z) = a;2'+...+ag €
IR[z] has t distinct roots > 1, say p®t,...,p“. Then {X?1, ... X%} is a base for the space
of solutions of Ly = 0. O

ProOOF. One easily sees that L(X“) =0 for i = 1,...,¢t. The functions X1 ..., X
are linearly independent over IR, so by the corollary to Lemma 4 they must be a basis of the

space of solutions. O

Lemma 6. Let L be as in Lemma 5 and assume that L = Ly - Ly where L, =
Z;;g b;l)Dj and Ly = Y774 b;z)Dj with by) € F. Then the space of solutions in F' of

Ly(y) = 0 has dimension s.

ProoOF. Let V be the solution space of Ly = 0. By Lemma 5, this has dimension ¢. L,
maps V into the solution space of Ly = 0, which has dimension at most ¢ — s by Lemma 4.
Therefore the dimension of the solution space of Lyy = 0 is at least s and so by Lemma 4, it

must equal s. O



3. Bounding the Exponents of a Sparse Univariate Rational Function

Lemma 5 in the previous section allows us to characterize {-sparse quasipolynomials g as those
quasipolynomials for which there exits an operator of degree t, I = Zé‘:o aﬂ?j, with Pr(z) =
a;z' + ...+ ag € IR[z] having distinct real roots > 1, such that Lg = 0. Therefore a t-sparse
quasirational function f is a quasirational function for which there exists a quasipolynomial h
and operators of degree ¢, Ly and L as above such that Ly(h) = 0and Ly(hf) = 0. Ly(y) and
Lo(yf) will therefore have a common solution. The results of section 2 allow us to eliminate
y using the determinant of the Sylvester matrix. This determinant is a quasirational function
and, by evaluating at sufficiently many points, we obtain (together with the conditions that
the a5, ; are distinct and > 1) a system of polynomial inequalities that must be satisfied
by the exponents appearing in f. We will then bound a real solution of this system using
[GV 88] and, assuming that f is a univariate rational function, we can use Lemma 1 to bound

the exponents of f.

We now proceed more formally. Let f = { be a t-sparse quasirational function of one
variable where ¢ = Y21, a; X% and h = S, ;X% are t-sparse quasipolynomials. Let
G(z) = co+c1z+ ...+ 2" be the unique monic polynomial whose roots are p®',..., p** and
let H(z) = do+dyz+ ...+ z' be the unique monic polynomial whose roots are pf1, ..., p.
Consider the operators Lg = Y.i_, ;D' and Ly = Y.l d;D? (where d; = ¢, = 1). We then
have Ly (h) = 0 and Lg(fh) = 0. Therefore Ly (y) = 0 and La(fy) = La(y) = 0 have a non-
zero common solution y = h in F (note that the coefficients of L are IR-linear combinations
of f,Df,...,D'f). Consider the Sylvester matrix S = S(cg,c1,...,¢;—1,do,...,di_1, f) of

Ly and L. By Lemma 2, det (S) = 0 (note that det S is a quasirational function).

Conversely if det () = 0, then Lemma 2 implies that deg(gerd (L, L)) > 1. Since the
coefficients of Ly satisfy the hypotheses of Lemma 5 and gerd (L, ig) divides Ly, Ly and
L will have a common non-zero solution kg in F' (by Lemma 6). Lemma 5 then implies that
[ is a t-sparse quasirational function because hg and hg f are both t-sparse quasipolynomials,

again by Lemma 5. We have therefore proved the following lemma.

Lemma 7. A quasirational function f is t-sparse if and only if there exist real numbers

607 ey Et—h Jg, ey Jt—l such that

(i) det(S(E(), ceey Et—h Jg, . .7Jt_17 f)) = 07 and

10



(ii) there exist ¢ distinct real numbers > 1 that are roots of
G(z)=co4 ...+ 6127 42 =0

and there exist ¢ distinct real numbers > 1 that are roots of

H(Z):do—l—...—l—(jt_lzt_l—l—ztzo.

Now assume that f is a t-sparse rational function whose coefficients are integers. We see
that each entry of S is a t-sparse rational function. From the form of the matrix, we see that
det(S) is a (t4 1) sparse rational function. Therefore condition (i) is equivalent (by the zero
test) to the fact that det(s)xng is either co of 0 fori = 1,...,2(t+1)" — 1 (py is any prime).
For at least (¢ + 1)* of these points det(S) x—pi will be zero. Using the black box, we can
determine a system of (¢ 4+ 1)" equations in the unknowns cg, ..., c;_1,do,...,d;—1 of degree
at most 2¢, that is equivalent to the vanishing of det(S) at these points. Assume the bitsize
of the values (yielded by the black box) of D’ f(pi), i=1,...,2(t+1)' =1, =0,...,tis at
most M (that is, those that are not oo and therefore rational numbers). We then see that

the bitsize of each coefficient in this system is at most O(tInt) +tM.

Furthermore, condition (ii) is equivalent to

(i) On 1 <2< 14 ¢1-1+ ¢—2+ ...+ co, the polynomial G/(z) = 0 has precisely ¢ roots
and a similar statement holds for H. In addition, the discriminants of G and H are not

Zero.

The first sentence of (ii’) can be expressed in terms of Sturm sequences. This yields a system of
2t polynomial inequalities and (by the Habicht subresultant theorem [LO 83]) each inequality
has degree at most 2t and the bitsize of the coefficients is at most O(¢Int). Similar bounds

hold for the discriminants.

Therefore, under the assumption that f is a t-sparse rational function with integer coeffi-
cients, we are able to construct a system of polynomial inequalities equivalent to (i) and (ii)
and bound the bitsize of the coefficients of this system. The results of [GV 88] imply that

this system has a solution in a ball of radius exp((Mt*)°W).

This gives a bound on some solution ¢y, ..., ¢;_1,do, ..., d;—1 which gives a {-sparse qua-

sirational representation of f. The exponents in this representation can be bounded from

11



these €, ..., ¢—_1,do, ..., d;_1 also by exp((MttZ))O(l)) since they are roots of the polynomials
G(z) and H(z). By Lemma 2, the exponents in a t-sparse rational function representation
of f are bounded by a similar number. This bound therefore can be explicitly calculated by

making 2(¢ + 1) — 1 black box evaluations.

4. Bounding the Exponents of a Sparse Multivariate Rational Function.

Let

9(X, . X)
h(X17 .- 7Xn)
Zf:l gZ(X27 .. 7Xn)X1al
Zf:l hi(X% B 7Xn)Xlﬁl

be a normalized representation of the t-sparse rational function f.
Consider the 2t* 4 2t> + 1 points P/ = (p%7 conpl) for 1< < 2t* 4262 4 1. Let

f](Xl) - f(X17p‘;77p{1)
i1 9i(Py - pi) XY
Zf:l hi(pév .- '7p%)Xlﬁi

Note that there are at most 2t points P’ for which some ¢; or h; vanishes at P7. We call

these points bad points. For a point P; that is not bad, let D; be the bound on the degree
of some normalized t-sparse representation of f7(X;). For these points, Lemma 2 allows us
to conclude that there exist ¢1,%2 (not necessarily unique) such that

YLy gi(ph - P)XTT g

252:1 hi(pév - '7p%)Xlﬁi h?

F(Xy) =

and

max{deg x, g’ degy, R} < 2D .

To each j corresponds some pair t;,t;. Therefore, at least 2t> 4+ 1 non-bad points P’ corre-
spond to some pair (f1,%3). For this pair (¢1,f2) we have that

1
9(X1, Xa, .o X)) Y hi(Xg, oo, X)X

=1

t

—h(X1y e X)) S gi(Xey o X)X (1)

=1
is zero at these 2t241 points. If we consider (1) as a polynomial in X; whose coefficients are 2¢2

sparse polynomials in Xy, ..., X, we see that (1) is identically zero. This implies that f has

12



a t-sparse representation with degy f < By = m]ax {2tD;}. We consider this representation
and let X, play the role of the principal variable. We apply the same construction to prove
the existence of a representation with degy, f < Bj and degy, f < By. In this way we are
able to determine B for which these exists a ¢-sparse representation of f with degy, f < B

for 1 <¢<m.

Note that as in the univariate case, B < exp((Mt*")°()) where M is a bound on the

bitsize of f(p{7 s pl)for1<j<2(t+ 1) - 1.

5. Interpolation of Sparse Multivariate Rational Functions.

Let f be a t-sparse multivariate rational function and let B < exp((Mt")°()) be the bound

obtained in the previous section. Let
A={A = (a;,,...,0;,)|0 < a;; < B}

and

B={B;=(Bi,---,0:,)|0 < Bi; < B}.

Select, in parallel, 2 t-tuples I = {Ay,..., A}, J = {By,..., B} with A; € Aand B; € B.
We calculate f(X) at (pi,...,p.) for i = 1,...,4¢%. For each selection of I and .J we obtain

the following linear system

fph,.. .,p;)(bl(pf“ copimy .—I—bt(pf“ PP = ag (PP L PR L a (pt L pS)t
(2)
where 1 < i < 4t2, in the unknowns by,...,bs ay,...,a;. If such a system has a solution

bi,...,bs @y, ..., a, then the zero test implies that

ap X XS e XX
f(le"'vXn):*l 15 o *t iz o
by XU XS b XX

For some [ and J we will be able to solve (2) so the algorithm terminates with a correct
answer. We now give an analysis of the complexity. Each of A and B contain B™ terms. We
select ¢ elements from each, so there are O(B"™) systems of type (2), each of size at most
4t2. This implies that the sequential time complexity is B9(") and the parallel complexity is
(ntlog B)°M (cf. [BGH 82], [M 86], [KR 88]). We can further bound B in terms of the size

of the output. Let 6 = max {degy, f} and let i be a bound on the bitsize of the coefficients

13



of f. Let p; be the bitsize of any coefficient of f/(X;) (as in section 4). We then have
that the bitsize of any output is not greater than u; + ¢ 4 . Furthermore, each p; can be
bounded by u + O(t*énlogn) by looking at each term of the representation of f and noting
that p, = O(nlogn). Therefore

By < exp((M17)70)
< exp(((,u—l—t‘l(snlogn—l—5)tt2)0(1))

= exp(((u+ dnlogn)t”))°M)

Therefore the sequential complexity of the algorithm is exp((p+ nlogn)t”*)°(M) and the
parallel complexity is ((¢ + dnlog n)ttQ)O(l). Therefore, for fixed ¢, interpolation of {-sparse
rational functions can be done in polynomial parallel time (as well as in sequential storage,

[C81)).

6. Further Research

It remains an interesting open problem how to improve our algorithm. Is, in view of our

results, also the polynomial time solution in the size of ¢, h and n, ¢ possible?
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