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Abstract. We present the �rst algorithm for the (black box) interpolation of t-sparse, n-variate rational functions without knowing bounds on exponents of their sparse representationwith the number of queries needed by the algorithm, independent on exponents. In fact, thealgorithm uses O(ntt) queries to the black box , and can be implemented for a �xed t in apolynomially bounded storage (or polynomial parallel time).
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Introduction.A t-sparse rational function is a function that can be written as a quotient of two polynomi-als, each containing at most t terms. We show in this paper that, if we are given a black boxto evaluate a t-sparse rational function f with integer coe�cients, then one can bound theexponents appearing in a t-sparse representation of f by making 2(t+1)t� 1 black box eval-uations in the univariate case and O(ntt) black box evaluations in the n-variable case. Usingthis, we also give the �rst algorithm, depending in exponent only on t (!), for interpolationof t-sparse rational functions without knowing bounds on exponents and show that for �xedt this problem is in polynomial parallel time (sequential storage).The authors were motivated by the question whether the recent parallel deterministicsparse interpolation algorithms ([GK 87], [BT 88], [GKS 88], [KL 88]) could be generalizedto the rational function case without knowing an a priori bound on the exponents of theirde�ning polynomials; and also by its natural connection to the seminal problem of Strassen([S 73]) of computing the numerator and denumerator of rational functions. It was notknown before whether the number of queries needed for the problem was recursive in nand t. Approximative unbounded degree interpolation arises also naturally in the issues ofcomputational learnability of sparse rational functions (cf. [KW 89]).For the corresponding versions of bounded degree rational interpolation (where the boundon the degree is part of the input) see [S 73], [K 86], [BT 88], [KT 88]. Another version ofunbounded degree univariate polynomial interpolation is studied in [BT 89].To bound the exponents appearing in some t-sparse representation of a t-sparse rationalfunction f(X) of one variable, we will proceed as follows. We consider representations off(X) of the form (Pti=1 aiX�i)=(Pti=1 biX�i), where the ai and bi are real numbers and the�i and �i are non-negative real numbers. Such a function is called a quasirational function.We show that for t-sparse f(X) the �i and �i must satisfy a system S of polynomial equalitiesand inequalities whose coe�cients depend on the value of f(X) at 2(t + 1)t � 1 points. Byevaluating the black box for f(X) at these points, we can determine this system. Using theresults of [GV 88], we can bound a real solution of this system. Using the fact that f(X) is at-sparse rational function, we are then able to bound an integer solution of S and this givesour desired bound. The detailed complexity analysis of the algorithm will be given in the�nal version of the paper. 3



The rest of this paper is organized as follows.In Section 1 we give a formal de�nition of quasirational functions and prove some basicfacts about these functions. In Section 2, we describe some elementary properties of righteuclidean rings. An example of such a ring is F [D], where F is the �eld of quasirationalfunctions of one variable and D is the operator de�ned by D(f(X)) = f(pX) for some �xedprime p. For this ring, we are able to derive an analogue of the Sylvester matrix and theresultant. In Section 3 we use this to obtain the system S and the bound for the exponentsappearing in a t-sparse representation of a t-sparse rational function. In Section 4 we showhow the results of section 3 can be used to obtain a bound on the exponents of a t-sparserational function of several variables. In Section 5 we describe an algorithm to interpolatet-sparse rational functions and give complexity bounds.1. Quasirational Functions.A �nite sum of the form XI cIXIwhere I = (�1; : : : ; �n); 0 � �i 2 IR; XI = X�11 �: : :�X�nn ; cI 2 IR is called a quasipolynomialof n variables. Denote by IR< X1; : : :Xn > the ring of quasipolynomials of n variables.A ratio of two quasipolynomials is called a quasirational function. If the number of termsin the sum is at most t, we say that the quasipolynomial is t-sparse. If a quasirationalfunction can be represented as a ratio of two t-sparse quasipolynomials, we say that it isalso t-sparse. We use the expressions \polynomial" or \rational function" in the usual sense,that is for quasipolynomials or quasirational functions with non-negative integer exponentsin their terms.We assume that we are given a \black box" representing an n-variable rational function fwith integer coe�cients into which we can put points with rational coe�cients. The outputof the black box is either the value of the function at this point or some special sign, e.g.\1", if the denominator of the irreducible representation of the function vanishes at thispoint (a representation f = g=h ; g; h 2 IR[X1; : : : ; Xn], is irreducible if g and h are relativelyprime). In what follows, we will sometimes obtain in intermediate steps a representation of arational function in the form of a quasirational function. Nevertheless, our aim is to obtaina representation of a rational function in the usual form, provided that it is t-sparse.4



We will need a zero test for t-sparse rational functions. This is similar to well known zerotests for t-sparse polynomials (cf. [GK 87], [GKS 88], [BT 88]). Recall that if M1; : : : ;Mtare distinct positive numbers, then any t � t subdeterminant of the (2t � 1) � t matrix(M js )1�s�t ;1�j�2t�1 is non-singular (c.f. [EI 76]).To test if a t-sparse rational function f is identically zero, use its black box to evaluatef at the 2t � 1 points P j = (pj1; : : : ; pjn); 1 � j � 2t � 1, where the p1; : : : ; pn are distinctprimes. Since the black box gives output based on an irreducible representation of f , we seethat any zero of the denominator of such a representation is a zero of the denominator of at-sparse representation of f . Using the remark about the matrix (M ji ) above we see that thedenominator can vanish at, at most, t� 1 of these points. The same concerns the numerator.Therefore, the t-sparse function f is not identically zero if and only if the black box outputsa number di�erent from 0 and 1 at one of the points P j .The next result concerns di�erent t-sparse representations of a quasirational functionf . This result can be thought of as saying that, under suitable hypotheses, two such rep-resentations can only di�er in certain redundant terms that can be eliminated. If g is aquasipolynomial, we denote by ordXi(g) the least power of Xi occurring in g. We call a rep-resentation g1=h1 = f normalized if for each i, 1 � i � n, min (ordXi(g1); ordXi(h1)) = 0. Foran arbitrary g1 = h1, there is a unique monomial M such that (g1=M) = (h1=M) is normalized.We call the latter representation the normalization of g1 = h1.Lemma 1. Assume that g1 = h1 is a t-sparse representation of a quasirationalfunction and g2 = h2 = g1 = h1 is another t-sparse normalized representation. Let d =maxi fdegXi(g1); degXi(h1)g. We can delete some terms from g2 and h2 obtaining �g2; �h2so that �g2 = �h2 = g1 = h1and maxi fdegXi(��g2); degXi(��h2)g � 2td;where ��g2 = ��h2 is the normalization of �g2 = �h2.Proof.Write g2 = 2tXi=1 g(i)2 X�i1 ; h2 = 2tXi=1 h(i)2 X�i15



where �1 < �2 < � � �, and at most t terms of each set fg(i)2 g; fh(i)2 g are non-zero. Sinceg2=h2 is normalized, �1 = 0. We may assume that g(1)2 6= 0 (the argument is similar ifh(1)2 6= 0). If �i+1 � �i � d for each i, then degX1 g2 � (2t � 1)d. This would imply thatdegX1 h2 � degX1 g2h1 � 2td and we would be done.Therefore we can assume there is a minimal number s such that �i0 � s� d < s < �i0+1for some i0 < 2t. Since �1 = 0, we have s � 2td. Let~g2 = i0Xi=1 g(i)2 X�i1 ; ~h2 = i0Xi=1 h(i)2 X�i1 :If one compares the coe�cients of X�1 ; � � s, in g2h1 = h2g1, one can see that ~g2h1 = ~h2g1so ~g2=~h2 = g1=h1.We now take the normalization ~~g2=~~h2 of ~g2=~h2 and apply considerations similar to thoseabove to ~~g2=~~h2 with X2 playing the role of X1. At the end of this process we obtain thenormalized representation ��g2=��h2. It corresponds to a pre-normalized �g2=�h2 that satis�es theconclusion of the lemma. �Corollary. If, in the above Lemma, we assume g2; h2 2 IR[X1; : : : ; Xn] are polynomial,then we can conclude that �g2; �h2 2 IR[X1; : : : ; Xn] as well.We note that in Lemma 1 and its corollary, �g2 and �h2 are obtained by eliminating termsof su�ciently high degree and keeping lower order terms in g2 and h2.2. Right Euclidean Rings (a digest).Let F be a �eld and let D : F+ ! F+ be a homomorphism with respect to the additivestructure of F . Let F [D] be the subring of HOM (F+; F+) generated by F (acting on F+by multiplication) and D. We assume that each element a 6= 0 from F [D] can be uniquelyrepresented in the form a =P0�i�m �iDi where �i 2 F and �m 6= 0. We denote the integerm by deg(a) and adopt the convention that deg(0) = �1.We furthermore assume that for a; b 2 F [D]; deg(ab) = deg(a) + deg(b). This assumptionis equivalent to the statement that for each � in F there are unique �1; �2 in F , with �1 6= 0,such that D � � = �1D + �2. We can conclude that there exists right Euclidean divisionin F [D], that is, for any a; b 2 F [D] b 6= 0, there exist unique b1; b2 with deg(b2) < deg(b)such that a = b1b + b2. This leads to a right Euclidean algorithm and a notion of greatest6



common right divisor ( gcrd(a; b) ) of two elements a and b, which can be represented inthe form gcrd(a; b) = a1a + b1b for some a1; b1 2 F [D]. Furthermore a = a0gcrd(a; b) andb = b0gcrd(a; b) for some a0; b0 2 F [D] (c.f. [O 33]).Let a and b be elements of F [D] and assume deg(a) = m and deg(b) = n. ConsiderDi � a = X0�j�m+i a(i)j Dj ; Dl � b = X0�j�n+l b(l)j Djfor 0 � i � n�1; 0 � l � m�1. Note that a(i)m = a(0)m and for b(l)n = b(0)n for 0 � i � n�1; 0 �l � m� 1. Let S(a; b) be the (m+ n)� (m+ n) matrix0BBBBBBBBBBBBBBBBBBBBB@
a(n�1)m a(n�1)m�1 : : : a(n�1)1 a(n�1)0 0 : : : : : : : : : 00 a(n�2)m : : : : : : : : : : : : : : : : : : : : : 0... ... ... ... ... ... ... ... ... ...0 0 : : : : : : : : : : : : a(0)m : : : : : : a(0)0b(m�1)n b(m�1)n�1 : : : : : : : : : : : : : : : b(m�1)0 0 : : :0 b(m�2)n : : : : : : : : : : : : : : : : : : b(m�2)0 : : :... ... ... ... ... ... ... ... ... ...0 0 : : : b(0)n b(0)n�1 : : : : : : : : : : : : b(0)0

1CCCCCCCCCCCCCCCCCCCCCAthat is, the matrix whose columns correspond to the operators Dn+m�1 ; : : : ;D2; D; 1 andwhose rows contain the coe�cients of the operators in Di(a), 0 � i � k � 1 and Dl(b); 0 �l � m � 1 (S(a; b) resembles the Sylvester matrix [VDW 66]; for di�erential operators asimilar object is described in [G 89]). Let R(a; b) = det(S(a; b)).Lemma 2. R(a; b) = 0 if and only if deg(gdrc(a; b)) > 0.Proof. R(a,b) satis�es the following three properties:1. R(a; 0) = 02. R(a; b) = (�1)mnR(b; a)3. If m � n and if b1 is the remainder after euclidean division of b by a, then R(a; b) =a(0) n�mm R(a; b1)The �rst two properties are obvious. The last property follows from the fact that euclideandivision of b by a corresponds to using elementary row operations to put zeroes in the �rst7



m�n columns of the last n rows of S(a; b)(cf. [M 89]). Repeated use of the above propertiestogether with the euclidean algorithm yields the desired resultWe note that a stronger result is true. As in [G 89] Lemma 12, one can show:deg(gdrc(a; b)) = n � rank(S).In what follows we restrict ourselves to the case where F is the �eld of quasirational functionsin one variable and D is the operator de�ned by D(X�) = (pX)�, where p is some �xed primenumber. Note that D � f = D(f) � D.Lemma 3. If f 2 F and D(f) = f , then f 2 IR.Proof. If D(f) = f , then f(X) = f(pX) = f(p2X) = : : : . The zero test of section 1implies that f(X) = f(Y X) for a new variable Y . If f = g=h letg =X aiX�i; h =X biX�i0 � �1 < �2 < : : : 0 � �1 < �2 < : : : ; and ai; bi 2 IR. Sinceg(Y X)h(X) = g(X)h(YX);we can conclude, by comparing coe�cients of the corresponding monomials in X and Y , that�1 = �1; �2 = �2; : : : and aibj = ajbi for all i; j. Therefore f 2 IR. �Lemma 4. If y1; : : : ; yn 2 F , then y1; : : : ; yn are linearly dependent over IR if and onlyif W (y1; : : : ; yn) = det266666664 y1(x) : : : yn(x)y1(px) : : : yn(px)... ...y1(pn�1x) : : : yn(pn�1x) 377777775 = 0Proof. If y1; : : : ; yn are linearly dependent over IR then, clearly, W (y1; : : : ; yn) = 0.Now assume that W (y1; : : : ; yn) = 0. In this case there exist f1; : : : ; fn 2 F , not all zero,such thatf1y1 + : : :+ fnyn = f1Dy1 + : : :+ fnDyn = : : := f1Dn�1y1 + : : :+ fnDn�1yn:We may assume f1 = 1. Applying D to each of these equations, we haveDiy1 + Df2Diy1 + : : :+DfnDiyn = 08



for i = 1; : : : ; n. This implies that(f2 �Df2)Diy2 + : : :+ (fn � Dfn)Diyn = 0for i = 1; : : : ; n�1. Either fi�Dfi = 0 for i = 2; : : : ; n, in which case we are done by Lemma3, or by induction there exist �2; : : : ; �n 2 IR, not all zero, such that �2Dy2+: : :+�nDyn = 0.Therefore D(�2y2 + : : :+ �yn) = 0 so �2y2 + : : :+ �nyn = 0. �Corollary. Let L = Pti=0 aiDi with ai 2 F , not all zero. The dimension of theIR-vectorspace of solutions in F of Ly = 0 is at most t.Proof. Let y1; : : : ; yt+1 be solutions of Ly = 0. We then have(a0; : : : ; at)266666664 y1 : : : yt+1Dy1 : : : Dyt+1... ...Dty1 : : : Dtyt+1 377777775 = 0Lemma 4 implies that y1; : : : ; yt+1 are linearly dependent. �Lemma 5. Let L =Ptj=0 ajDj with ai 2 IR and assume that PL(z) = atzt+ : : :+a0 2IR[z] has t distinct roots � 1, say p�1 ; : : : ; p�t. Then fX�1; : : : ; X�ng is a base for the spaceof solutions of Ly = 0. �Proof. One easily sees that L(X�i) = 0 for i = 1; : : : ; t. The functions X�1; : : : ; X�tare linearly independent over IR, so by the corollary to Lemma 4 they must be a basis of thespace of solutions. �Lemma 6. Let L be as in Lemma 5 and assume that L = L1 � L2 where L1 =Pt�sj=0 b(1)j Dj and L2 = Psj=0 b(2)j Dj with b(i)j 2 F . Then the space of solutions in F ofL2(y) = 0 has dimension s.Proof. Let V be the solution space of Ly = 0. By Lemma 5, this has dimension t. L2maps V into the solution space of L1y = 0, which has dimension at most t� s by Lemma 4.Therefore the dimension of the solution space of L2y = 0 is at least s and so by Lemma 4, itmust equal s. �9



3. Bounding the Exponents of a Sparse Univariate Rational FunctionLemma 5 in the previous section allows us to characterize t-sparse quasipolynomials g as thosequasipolynomials for which there exits an operator of degree t, L =Ptj=0 ajDj , with PL(z) =atzt + : : :+ a0 2 IR[z] having distinct real roots � 1, such that Lg = 0. Therefore a t-sparsequasirational function f is a quasirational function for which there exists a quasipolynomial hand operators of degree t; L1 and L2 as above such that L1(h) = 0 and L2(hf) = 0. L1(y) andL2(yf) will therefore have a common solution. The results of section 2 allow us to eliminatey using the determinant of the Sylvester matrix. This determinant is a quasirational functionand, by evaluating at su�ciently many points, we obtain (together with the conditions thatthe �i; �j are distinct and � 1) a system of polynomial inequalities that must be satis�edby the exponents appearing in f . We will then bound a real solution of this system using[GV 88] and, assuming that f is a univariate rational function, we can use Lemma 1 to boundthe exponents of f .We now proceed more formally. Let f = gh be a t-sparse quasirational function of onevariable where g = Pti=1 aiX�i and h = Pti=1 biX�i are t-sparse quasipolynomials. LetG(z) = c0 + c1z + : : :+ zt be the unique monic polynomial whose roots are p�1 ; : : : ; p�t andlet H(z) = d0 + d1z + : : :+ zt be the unique monic polynomial whose roots are p�1 ; : : : ; p�t.Consider the operators LG = Pti=0 ciDi and LH = Pti=0 diDi (where dt = ct = 1). We thenhave LH(h) = 0 and LG(fh) = 0. Therefore LH(y) = 0 and LG(fy) � ~LG(y) = 0 have a non-zero common solution y = h in F (note that the coe�cients of ~LG are IR-linear combinationsof f;Df; : : : ;Dtf). Consider the Sylvester matrix S = S(c0; c1; : : : ; ct�1; d0; : : : ; dt�1; f) ofLH and ~LG. By Lemma 2, det (S) = 0 (note that det S is a quasirational function).Conversely if det (S) = 0, then Lemma 2 implies that deg(gcrd(LH ; ~LG)) � 1. Since thecoe�cients of LH satisfy the hypotheses of Lemma 5 and gcrd(LH ; ~LG) divides LH , LH and~LG will have a common non-zero solution h0 in F (by Lemma 6). Lemma 5 then implies thatf is a t-sparse quasirational function because h0 and h0f are both t-sparse quasipolynomials,again by Lemma 5. We have therefore proved the following lemma.Lemma 7. A quasirational function f is t-sparse if and only if there exist real numbers�c0; : : : ; �ct�1; �d0; : : : ; �dt�1 such that(i) det(S(�c0; : : : ; �ct�1; �d0; : : : ; �dt�1; f)) = 0, and10



(ii) there exist t distinct real numbers � 1 that are roots ofG(z) = �c0 + : : :+ �ct�1zt�1 + zt = 0and there exist t distinct real numbers � 1 that are roots ofH(z) = �d0 + : : :+ �dt�1zt�1 + zt = 0:Now assume that f is a t-sparse rational function whose coe�cients are integers. We seethat each entry of S is a t-sparse rational function. From the form of the matrix, we see thatdet(S) is a (t+1)t sparse rational function. Therefore condition (i) is equivalent (by the zerotest) to the fact that det(S)X=pi1 is either 1 of 0 for i = 1; : : : ; 2(t+1)t�1 (p1 is any prime).For at least (t + 1)t of these points det(S)X=pi1 will be zero. Using the black box, we candetermine a system of (t + 1)t equations in the unknowns c0; : : : ; ct�1; d0; : : : ; dt�1 of degreeat most 2t, that is equivalent to the vanishing of det(S) at these points. Assume the bitsizeof the values (yielded by the black box) of Djf(pi1); i = 1; : : : ; 2(t+ 1)t� 1; j = 0; : : : ; t is atmost M (that is, those that are not 1 and therefore rational numbers). We then see thatthe bitsize of each coe�cient in this system is at most O(t ln t) + tM .Furthermore, condition (ii) is equivalent to(ii') On 1 � z � 1 + ct�1 + ct�2 + : : :+ c0, the polynomial G(z) = 0 has precisely t rootsand a similar statement holds for H . In addition, the discriminants of G and H are notzero.The �rst sentence of (ii') can be expressed in terms of Sturm sequences. This yields a system of2t polynomial inequalities and (by the Habicht subresultant theorem [LO 83]) each inequalityhas degree at most 2t and the bitsize of the coe�cients is at most O(t ln t). Similar boundshold for the discriminants.Therefore, under the assumption that f is a t-sparse rational function with integer coe�-cients, we are able to construct a system of polynomial inequalities equivalent to (i) and (ii)and bound the bitsize of the coe�cients of this system. The results of [GV 88] imply thatthis system has a solution in a ball of radius exp((Mtt2)O(1)).This gives a bound on some solution �c0; : : :, �ct�1; �d0; : : :, �dt�1 which gives a t-sparse qua-sirational representation of f . The exponents in this representation can be bounded from11



these �c0; : : : ; �ct�1; �d0; : : : ; �dt�1 also by exp((Mtt2)O(1)) since they are roots of the polynomialsG(z) and H(z). By Lemma 2, the exponents in a t-sparse rational function representationof f are bounded by a similar number. This bound therefore can be explicitly calculated bymaking 2(t+ 1)t � 1 black box evaluations.4. Bounding the Exponents of a Sparse Multivariate Rational Function.Let f(X1; : : : ; Xn) = g(X1; : : : ; Xn)h(X1; : : : ; Xn)= Pti=1 gi(X2; : : : ; Xn)X�i1Pti=1 hi(X2; : : : ; Xn)X�i1be a normalized representation of the t-sparse rational function f .Consider the 2t4 + 2t2 + 1 points P j = (pj2; : : : ; pjn) for 1 � j � 2t4 + 2t2 + 1. Letf j(X1) = f(X1; pj2; : : : ; pjn)= Pti=1 gi(pj2; : : : ; pjn)X�i1Pti=1 hi(pj2; : : : ; pjn)X�i1Note that there are at most 2t2 points P j for which some gi or hi vanishes at P j . We callthese points bad points. For a point Pj that is not bad, let Dj be the bound on the degreeof some normalized t-sparse representation of f j(X1). For these points, Lemma 2 allows usto conclude that there exist t1; t2 (not necessarily unique) such thatf j(X1) = Pt1i=1 gi(pj2; : : : ; pjn)X�i1Pt2i=1 hi(pj2; : : : ; pjn)X�i1 = �gj�hjand maxfdegX1 �gj; degX1 �hjg � 2tDj :To each j corresponds some pair t1; t2. Therefore, at least 2t2 + 1 non-bad points P j corre-spond to some pair (~t1; ~t2). For this pair (~t1; ~t2) we have thatg(X1; X2; : : : ; Xn) tXi=1 hi(X2; : : : ; Xn)X�i1� h(X1; : : : ; Xn) tXi=1 gi(X2; : : : ; Xn)X�i1 (1)is zero at these 2t2+1 points. If we consider (1) as a polynomial in X1 whose coe�cients are 2t2sparse polynomials in X2; : : : ; Xn, we see that (1) is identically zero. This implies that f has12



a t-sparse representation with degX1 f � B1 = maxj f2tDjg. We consider this representationand let X2 play the role of the principal variable. We apply the same construction to provethe existence of a representation with degX1 f � B1 and degX2 f � B2. In this way we areable to determine B for which these exists a t-sparse representation of f with degXi f � Bfor 1 � i � n.Note that as in the univariate case, B � exp((Mtt2)O(1)) where M is a bound on thebitsize of f(pj1; : : :, pjn) for 1 � j � 2(t+ 1)t � 1.5. Interpolation of Sparse Multivariate Rational Functions.Let f be a t-sparse multivariate rational function and let B � exp((Mtt2)O(1)) be the boundobtained in the previous section. LetA = fAi = (�i1 ; : : : ; �in)j0 � �ij � Bgand B = fBi = (�i1 ; : : : ; �in)j0 � �ij � Bg:Select, in parallel, 2 t-tuples I = fA1; : : : ; Atg, J = fB1; : : : ; Btg with Ai 2 A and Bi 2 B.We calculate f(X) at (pi1; : : : ; pin) for i = 1; : : : ; 4t2. For each selection of I and J we obtainthe following linear systemf(pi1; : : : ; pin)(b1(p�111 : : : p�1nn )i+: : :+bt(p�t11 : : : p�tnn )i) = a1(p�111 : : :p�1nn )i+: : :+at(p�t11 : : :p�tnn )i(2)where 1 � i � 4t2, in the unknowns b1; : : : ; bt; a1; : : : ; at. If such a system has a solution�b1; : : : ;�bt; �a1; : : : ; �at, then the zero test implies thatf(X1; : : : ; Xn) = �a1X�111 : : :X�1nn + : : :+ �atX�t11 : : :X�tnn�b1X�111 : : :X�1nn + : : :+ �btX�t11 : : :X�tnnFor some I and J we will be able to solve (2) so the algorithm terminates with a correctanswer. We now give an analysis of the complexity. Each of A and B contain Bn terms. Weselect t elements from each, so there are O(Bnt) systems of type (2), each of size at most4t2. This implies that the sequential time complexity is BO(nt) and the parallel complexity is(nt logB)O(1) (cf. [BGH 82], [M 86], [KR 88]). We can further bound B in terms of the sizeof the output. Let � = maxi fdegXi fg and let � be a bound on the bitsize of the coe�cients13



of f . Let �j be the bitsize of any coe�cient of f j(X1) (as in section 4). We then havethat the bitsize of any output is not greater than �j + t + �. Furthermore, each �j can bebounded by � +O(t4�n logn) by looking at each term of the representation of f and notingthat pn = O(n logn). ThereforeB1 � exp((Mtt2)O(1))� exp(((�+ t4�n logn+ �)tt2)O(1))= exp(((�+ �n logn)tt2))O(1))Therefore the sequential complexity of the algorithm is exp((�+ �n logn)tt2)O(1) and theparallel complexity is ((� + �n logn)tt2)O(1). Therefore, for �xed t, interpolation of t-sparserational functions can be done in polynomial parallel time (as well as in sequential storage,[C81]).6. Further ResearchIt remains an interesting open problem how to improve our algorithm. Is, in view of ourresults, also the polynomial time solution in the size of g, h and n, t possible?Acknowledgement.We are indebted to Volker Strassen for motivating the problem and a number of interestingdiscussions.
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