Interpolation of Sparse Rational Functions

Without Knowing Bounds on Exponents *

Dima Yu. Grigoriev
Steklov Institute of Mathematics
Soviet Academy of Sciences
Leningrad 191011
Marek Karpinski ${ }^{\dagger}$
Dept. of Computer Science
University of Bonn
5300 Bonn 1
and
International Computer Science Institute
Berkeley, California
Michael F. Singer ${ }^{\ddagger}$
Dept. of Mathematics
N. C. State University
Raleigh, NC 27695

[^0]
Abstract

We present the first algorithm for the (black box) interpolation of t-sparse, n variate rational functions without knowing bounds on exponents of their sparse representation with the number of queries needed by the algorithm, independent on exponents. In fact, the algorithm uses $O\left(n t^{t}\right)$ queries to the black box, and can be implemented for a fixed t in a polynomially bounded storage (or polynomial parallel time).

Introduction.

A t-sparse rational function is a function that can be written as a quotient of two polynomials, each containing at most t terms. We show in this paper that, if we are given a black box to evaluate a t-sparse rational function f with integer coefficients, then one can bound the exponents appearing in a t-sparse representation of f by making $2(t+1)^{t}-1$ black box evaluations in the univariate case and $O\left(n t^{t}\right)$ black box evaluations in the n-variable case. Using this, we also give the first algorithm, depending in exponent only on t (!), for interpolation of t-sparse rational functions without knowing bounds on exponents and show that for fixed t this problem is in polynomial parallel time (sequential storage).

The authors were motivated by the question whether the recent parallel deterministic sparse interpolation algorithms ([GK 87], [BT 88], [GKS 88], [KL 88]) could be generalized to the rational function case without knowing an a priori bound on the exponents of their defining polynomials; and also by its natural connection to the seminal problem of Strassen ([S 73]) of computing the numerator and denumerator of rational functions. It was not known before whether the number of queries needed for the problem was recursive in n and t. Approximative unbounded degree interpolation arises also naturally in the issues of computational learnability of sparse rational functions (cf. [KW 89]).

For the corresponding versions of bounded degree rational interpolation (where the bound on the degree is part of the input) see [S 73], [K 86], [BT 88], [KT 88]. Another version of unbounded degree univariate polynomial interpolation is studied in [BT 89].

To bound the exponents appearing in some t-sparse representation of a t-sparse rational function $f(X)$ of one variable, we will proceed as follows. We consider representations of $f(X)$ of the form $\left(\sum_{i=1}^{t} a_{i} X^{\alpha_{i}}\right) /\left(\sum_{i=1}^{t} b_{i} X^{\beta_{i}}\right)$, where the a_{i} and b_{i} are real numbers and the α_{i} and β_{i} are non-negative real numbers. Such a function is called a quasirational function. We show that for t-sparse $f(X)$ the α_{i} and β_{i} must satisfy a system S of polynomial equalities and inequalities whose coefficients depend on the value of $f(X)$ at $2(t+1)^{t}-1$ points. By evaluating the black box for $f(X)$ at these points, we can determine this system. Using the results of [GV 88], we can bound a real solution of this system. Using the fact that $f(X)$ is a t-sparse rational function, we are then able to bound an integer solution of S and this gives our desired bound. The detailed complexity analysis of the algorithm will be given in the final version of the paper.

The rest of this paper is organized as follows.

In Section 1 we give a formal definition of quasirational functions and prove some basic facts about these functions. In Section 2, we describe some elementary properties of right euclidean rings. An example of such a ring is $F[\mathcal{D}]$, where F is the field of quasirational functions of one variable and \mathcal{D} is the operator defined by $\mathcal{D}(f(X))=f(p X)$ for some fixed prime p. For this ring, we are able to derive an analogue of the Sylvester matrix and the resultant. In Section 3 we use this to obtain the system S and the bound for the exponents appearing in a t-sparse representation of a t-sparse rational function. In Section 4 we show how the results of section 3 can be used to obtain a bound on the exponents of a t-sparse rational function of several variables. In Section 5 we describe an algorithm to interpolate t-sparse rational functions and give complexity bounds.

1. Quasirational Functions.

A finite sum of the form

$$
\sum_{I} c_{I} \mathrm{X}^{T}
$$

where $I=\left(\alpha_{1}, \ldots, \alpha_{n}\right), 0 \leq \alpha_{i} \in I R, \quad \mathrm{X}^{I}=X_{1}^{\alpha_{1}} \ldots \cdot X_{n}^{\alpha_{n}}, c_{I} \in \mathbb{R}$ is called a quasipolynomial of n variables. Denote by $\mathbb{R}<X_{1}, \ldots X_{n}>$ the ring of quasipolynomials of n variables.

A ratio of two quasipolynomials is called a quasirational function. If the number of terms in the sum is at most t, we say that the quasipolynomial is t-sparse. If a quasirational function can be represented as a ratio of two t-sparse quasipolynomials, we say that it is also t-sparse. We use the expressions "polynomial" or "rational function" in the usual sense, that is for quasipolynomials or quasirational functions with non-negative integer exponents in their terms.

We assume that we are given a "black box" representing an n-variable rational function f with integer coefficients into which we can put points with rational coefficients. The output of the black box is either the value of the function at this point or some special sign, e.g. " ∞ ", if the denominator of the irreducible representation of the function vanishes at this point (a representation $f=g / h, g, h \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, is irreducible if g and h are relatively prime). In what follows, we will sometimes obtain in intermediate steps a representation of a rational function in the form of a quasirational function. Nevertheless, our aim is to obtain a representation of a rational function in the usual form, provided that it is t-sparse.

We will need a zero test for t-sparse rational functions. This is similar to well known zero tests for t-sparse polynomials (cf. [GK 87], [GKS 88], [BT 88]). Recall that if M_{1}, \ldots, M_{t} are distinct positive numbers, then any $t \times t$ subdeterminant of the $(2 t-1) \times t$ matrix $\left(M_{s}^{j}\right)_{1 \leq s \leq t, 1 \leq j \leq 2 t-1}$ is non-singular (c.f. [EI 76]).

To test if a t-sparse rational function f is identically zero, use its black box to evaluate f at the $2 t-1$ points $P^{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right), 1 \leq j \leq 2 t-1$, where the p_{1}, \ldots, p_{n} are distinct primes. Since the black box gives output based on an irreducible representation of f, we see that any zero of the denominator of such a representation is a zero of the denominator of a t-sparse representation of f. Using the remark about the matrix (M_{i}^{j}) above we see that the denominator can vanish at, at most, $t-1$ of these points. The same concerns the numerator. Therefore, the t-sparse function f is not identically zero if and only if the black box outputs a number different from 0 and ∞ at one of the points P^{j}.

The next result concerns different t-sparse representations of a quasirational function f. This result can be thought of as saying that, under suitable hypotheses, two such representations can only differ in certain redundant terms that can be eliminated. If g is a quasipolynomial, we denote by ord $X_{i}(g)$ the least power of X_{i} occurring in g. We call a representation $g_{1} / h_{1}=f$ normalized if for each $i, 1 \leq i \leq n, \min \left(\operatorname{ord}_{X_{i}}\left(g_{1}\right), \operatorname{ord}_{X_{i}}\left(h_{1}\right)\right)=0$. For an arbitrary g_{1} / h_{1}, there is a unique monomial M such that $\left(g_{1} / M\right) /\left(h_{1} / M\right)$ is normalized. We call the latter representation the normalization of g_{1} / h_{1}.

Lemma 1. Assume that g_{1} / h_{1} is a t-sparse representation of a quasirational function and $g_{2} / h_{2}=g_{1} / h_{1}$ is another t-sparse normalized representation. Let $d=$ $\max _{i}\left\{\operatorname{deg}_{X_{i}}\left(g_{1}\right), \operatorname{deg}_{X_{i}}\left(h_{1}\right)\right\}$. We can delete some terms from g_{2} and h_{2} obtaining $\overline{g_{2}}, \overline{h_{2}}$ so that

$$
\overline{g_{2}} / \overline{h_{2}}=g_{1} / h_{1}
$$

and

$$
\max _{i}\left\{\operatorname{deg}_{X_{i}}\left(\overline{\bar{g}}_{2}\right), \operatorname{deg}_{X_{i}}\left(\overline{\bar{h}}_{2}\right)\right\} \leq 2 t d
$$

where $\overline{\bar{g}}_{2} / \overline{\bar{h}}_{2}$ is the normalization of $\bar{g}_{2} / \bar{h}_{2}$.

Proof.

Write

$$
g_{2}=\sum_{i=1}^{2 t} g_{2}^{(i)} X_{1}^{\beta_{i}}, \quad h_{2}=\sum_{i=1}^{2 t} h_{2}^{(i)} X_{1}^{\beta_{i}}
$$

where $\beta_{1}<\beta_{2}<\cdots$, and at most t terms of each set $\left\{g_{2}^{(i)}\right\},\left\{h_{2}^{(i)}\right\}$ are non-zero. Since g_{2} / h_{2} is normalized, $\beta_{1}=0$. We may assume that $g_{2}^{(1)} \neq 0$ (the argument is similar if $h_{2}^{(1)} \neq 0$). If $\beta_{i+1}-\beta_{i} \leq d$ for each i, then $\operatorname{deg}_{X_{1}} g_{2} \leq(2 t-1) d$. This would imply that $\operatorname{deg}_{X_{1}} h_{2} \leq \operatorname{deg}_{X_{1}} g_{2} h_{1} \leq 2 t d$ and we would be done.

Therefore we can assume there is a minimal number s such that $\beta_{i_{0}} \leq s-d<s<\beta_{i_{0}+1}$ for some $i_{0}<2 t$. Since $\beta_{1}=0$, we have $s \leq 2 t d$. Let

$$
\tilde{g}_{2}=\sum_{i=1}^{i_{0}} g_{2}^{(i)} X_{1}^{\beta_{i}}, \quad \tilde{h}_{2}=\sum_{i=1}^{i_{0}} h_{2}^{(i)} X_{1}^{\beta_{i}}
$$

If one compares the coefficients of $X_{1}^{\rho}, \rho \leq s$, in $g_{2} h_{1}=h_{2} g_{1}$, one can see that $\tilde{g}_{2} h_{1}=\tilde{h}_{2} g_{1}$ so $\tilde{g}_{2} / \tilde{h}_{2}=g_{1} / h_{1}$.

We now take the normalization $\tilde{\tilde{g}}_{2} / \tilde{\tilde{h}}_{2}$ of $\tilde{g}_{2} / \tilde{h}_{2}$ and apply considerations similar to those above to $\tilde{\tilde{g}}_{2} / \tilde{\tilde{h}}_{2}$ with X_{2} playing the role of X_{1}. At the end of this process we obtain the normalized representation $\overline{\bar{g}}_{2} / \overline{\bar{h}}_{2}$. It corresponds to a pre-normalized $\bar{g}_{2} / \bar{h}_{2}$ that satisfies the conclusion of the lemma.

Corollary. If, in the above Lemma, we assume $g_{2}, h_{2} \in I R\left[X_{1}, \ldots, X_{n}\right]$ are polynomial, then we can conclude that $\bar{g}_{2}, \bar{h}_{2} \in I R\left[X_{1}, \ldots, X_{n}\right]$ as well.

We note that in Lemma 1 and its corollary, \bar{g}_{2} and \bar{h}_{2} are obtained by eliminating terms of sufficiently high degree and keeping lower order terms in g_{2} and h_{2}.

2. Right Euclidean Rings (a digest).

Let F be a field and let $\mathcal{D}: F^{+} \rightarrow F^{+}$be a homomorphism with respect to the additive structure of F. Let $F[\mathcal{D}]$ be the subring of $\operatorname{HOM}\left(F^{+}, F^{+}\right)$generated by F (acting on F^{+} by multiplication) and \mathcal{D}. We assume that each element $a \neq 0$ from $F[\mathcal{D}]$ can be uniquely represented in the form $a=\sum_{0 \leq i \leq m} \alpha_{i} \mathcal{D}^{i}$ where $\alpha_{i} \in F$ and $\alpha_{m} \neq 0$. We denote the integer m by $\operatorname{deg}(a)$ and adopt the convention that $\operatorname{deg}(0)=-\infty$.

We furthermore assume that for $a, b \in F[\mathcal{D}], \operatorname{deg}(a b)=\operatorname{deg}(a)+\operatorname{deg}(b)$. This assumption is equivalent to the statement that for each α in F there are unique α_{1}, α_{2} in F, with $\alpha_{1} \neq 0$, such that $\mathcal{D} \cdot \alpha=\alpha_{1} \mathcal{D}+\alpha_{2}$. We can conclude that there exists right Euclidean division in $F[\mathcal{D}]$, that is, for any $a, b \in F[\mathcal{D}] b \neq 0$, there exist unique b_{1}, b_{2} with $\operatorname{deg}\left(b_{2}\right)<\operatorname{deg}(b)$ such that $a=b_{1} b+b_{2}$. This leads to a right Euclidean algorithm and a notion of greatest
common right divisor $(\operatorname{gcrd}(a, b))$ of two elements a and b, which can be represented in the form $\operatorname{gcrd}(a, b)=a_{1} a+b_{1} b$ for some $a_{1}, b_{1} \in F[\mathcal{D}]$. Furthermore $a=a_{0} \operatorname{gcrd}(a, b)$ and $b=b_{0} \operatorname{gcrd}(a, b)$ for some $a_{0}, b_{0} \in F[\mathcal{D}]$ (c.f. [O 33]).

Let a and b be elements of $F[\mathcal{D}]$ and assume $\operatorname{deg}(a)=m$ and $\operatorname{deg}(b)=n$. Consider

$$
\mathcal{D}^{i} \cdot a=\sum_{0 \leq j \leq m+i} a_{j}^{(i)} \mathcal{D}^{j}, \quad \mathcal{D}^{l} \cdot b=\sum_{0 \leq j \leq n+l} b_{j}^{(l)} \mathcal{D}^{j}
$$

for $0 \leq i \leq n-1,0 \leq l \leq m-1$. Note that $a_{m}^{(i)}=a_{m}^{(0)}$ and for $b_{n}^{(l)}=b_{n}^{(0)}$ for $0 \leq i \leq n-1,0 \leq$ $l \leq m-1$. Let $S(a, b)$ be the $(m+n) \times(m+n)$ matrix

$$
\left(\begin{array}{cccccccccc}
a_{m}^{(n-1)} & a_{m-1}^{(n-1)} & \ldots & a_{1}^{(n-1)} & a_{0}^{(n-1)} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & a_{m}^{(n-2)} & \ldots & 0 \\
\vdots & \vdots \\
0 & 0 & \ldots & \ldots & \ldots & \ldots & a_{m}^{(0)} & \ldots & \ldots & a_{0}^{(0)} \\
b_{n}^{(m-1)} & b_{n-1}^{(m-1)} & \ldots & \ldots & \ldots & \ldots & \ldots & b_{0}^{(m-1)} & 0 & \ldots \\
0 & b_{n}^{(m-2)} & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & b_{0}^{(m-2)} & \ldots \\
\vdots & \vdots \\
0 & 0 & \ldots & b_{n}^{(0)} & b_{n-1}^{(0)} & \ldots & \ldots & \ldots & \ldots & b_{0}^{(0)}
\end{array}\right)
$$

that is, the matrix whose columns correspond to the operators $\mathcal{D}^{n+m-1}, \ldots, \mathcal{D}^{2}, \mathcal{D}, 1$ and whose rows contain the coefficients of the operators in $\mathcal{D}^{i}(a), 0 \leq i \leq k-1$ and $\mathcal{D}^{l}(b), 0 \leq$ $l \leq m-1(S(a, b)$ resembles the Sylvester matrix [VDW 66]; for differential operators a similar object is described in [G 89]). Let $R(a, b)=\operatorname{det}(S(a, b))$.

Lemma 2. $R(a, b)=0$ if and only if $\operatorname{deg}(\operatorname{gdrc}(a, b))>0$.

Proof. \quad (a, b) satisfies the following three properties:

1. $R(a, 0)=0$
2. $R(a, b)=(-1)^{m n} R(b, a)$
3. If $m \leq n$ and if b_{1} is the remainder after euclidean division of b by a, then $R(a, b)=$ $a_{m}^{(0)}{ }^{n-m} R\left(a, b_{1}\right)$

The first two properties are obvious. The last property follows from the fact that euclidean division of b by a corresponds to using elementary row operations to put zeroes in the first
$m-n$ columns of the last n rows of $S(a, b)(c f .[\mathrm{M} 89])$. Repeated use of the above properties together with the euclidean algorithm yields the desired result

We note that a stronger result is true. As in [G 89] Lemma 12, one can show: $\operatorname{deg}(\operatorname{gdrc}(a, b))=n-\operatorname{rank}(S)$.

In what follows we restrict ourselves to the case where F is the field of quasirational functions in one variable and \mathcal{D} is the operator defined by $\mathcal{D}\left(X^{\alpha}\right)=(p X)^{\alpha}$, where p is some fixed prime number. Note that $\mathcal{D} \cdot f=\mathcal{D}(f) \cdot \mathcal{D}$.

Lemma 3. If $f \in F$ and $\mathcal{D}(f)=f$, then $f \in \mathbb{R}$.

Proof. If $\mathcal{D}(f)=f$, then $f(X)=f(p X)=f\left(p^{2} X\right)=\ldots$ The zero test of section 1 implies that $f(X)=f(Y X)$ for a new variable Y. If $f=g / h$ let

$$
g=\sum a_{i} X^{\alpha_{i}}, h=\sum b_{i} X^{\beta_{i}}
$$

$0 \leq \alpha_{1}<\alpha_{2}<\ldots 0 \leq \beta_{1}<\beta_{2}<\ldots$, and $a_{i}, b_{i} \in I R$. Since

$$
g(Y X) h(X)=g(X) h(Y X)
$$

we can conclude, by comparing coefficients of the corresponding monomials in X and Y, that $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots$ and $a_{i} b_{j}=a_{j} b_{i}$ for all i, j. Therefore $f \in \mathbb{R}$.

Lemma 4. If $y_{1}, \ldots, y_{n} \in F$, then y_{1}, \ldots, y_{n} are linearly dependent over $I R$ if and only if

$$
W\left(y_{1}, \ldots, y_{n}\right)=\operatorname{det}\left[\begin{array}{lll}
y_{1}(x) & \ldots & y_{n}(x) \\
y_{1}(p x) & \ldots & y_{n}(p x) \\
\vdots & & \vdots \\
y_{1}\left(p^{n-1} x\right) & \ldots & y_{n}\left(p^{n-1} x\right)
\end{array}\right]=0
$$

Proof. If y_{1}, \ldots, y_{n} are linearly dependent over $I R$ then, clearly, $W\left(y_{1}, \ldots, y_{n}\right)=0$. Now assume that $W\left(y_{1}, \ldots, y_{n}\right)=0$. In this case there exist $f_{1}, \ldots, f_{n} \in F$, not all zero, such that

$$
f_{1} y_{1}+\ldots+f_{n} y_{n}=f_{1} \mathcal{D} y_{1}+\ldots+f_{n} \mathcal{D} y_{n}=\ldots=f_{1} \mathcal{D}^{n-1} y_{1}+\ldots+f_{n} \mathcal{D}^{n-1} y_{n}
$$

We may assume $f_{1}=1$. Applying \mathcal{D} to each of these equations, we have

$$
\mathcal{D}^{i} y_{1}+\mathcal{D} f_{2} \mathcal{D}^{i} y_{1}+\ldots+\mathcal{D} f_{n} \mathcal{D}^{i} y_{n}=0
$$

for $i=1, \ldots, n$. This implies that

$$
\left(f_{2}-\mathcal{D} f_{2}\right) \mathcal{D}^{i} y_{2}+\ldots+\left(f_{n}-\mathcal{D} f_{n}\right) \mathcal{D}^{i} y_{n}=0
$$

for $i=1, \ldots, n-1$. Either $f_{i}-\mathcal{D} f_{i}=0$ for $i=2, \ldots, n$, in which case we are done by Lemma 3 , or by induction there exist $\alpha_{2}, \ldots, \alpha_{n} \in I R$, not all zero, such that $\alpha_{2} \mathcal{D} y_{2}+\ldots+\alpha_{n} \mathcal{D} y_{n}=0$. Therefore $\mathcal{D}\left(\alpha_{2} y_{2}+\ldots+\alpha y_{n}\right)=0$ so $\alpha_{2} y_{2}+\ldots+\alpha_{n} y_{n}=0$.

Corollary. Let $L=\sum_{i=0}^{t} a_{i} \mathcal{D}^{i}$ with $a_{i} \in F$, not all zero. The dimension of the $I R$-vectorspace of solutions in F of $L y=0$ is at most t.

Proof. Let y_{1}, \ldots, y_{t+1} be solutions of $L y=0$. We then have

$$
\left(a_{0}, \ldots, a_{t}\right)\left[\begin{array}{lll}
y_{1} & \ldots & y_{t+1} \\
\mathcal{D} y_{1} & \ldots & \mathcal{D} y_{t+1} \\
\vdots & & \vdots \\
\mathcal{D}^{t} y_{1} & \ldots & \mathcal{D}^{t} y_{t+1}
\end{array}\right]=0
$$

Lemma 4 implies that y_{1}, \ldots, y_{t+1} are linearly dependent.

Lemma 5. Let $L=\sum_{j=0}^{t} a_{j} \mathcal{D}^{j}$ with $a_{i} \in I R$ and assume that $P_{L}(z)=a_{t} z^{t}+\ldots+a_{0} \in$ $I R[z]$ has t distinct roots ≥ 1, say $p^{\alpha_{1}}, \ldots, p^{\alpha_{t}}$. Then $\left\{X^{\alpha_{1}}, \ldots, X^{\alpha_{n}}\right\}$ is a base for the space of solutions of $L y=0$.

Proof. One easily sees that $L\left(X^{\alpha_{i}}\right)=0$ for $i=1, \ldots, t$. The functions $X^{\alpha_{1}}, \ldots, X^{\alpha_{t}}$ are linearly independent over $I R$, so by the corollary to Lemma 4 they must be a basis of the space of solutions.

Lemma 6. Let L be as in Lemma 5 and assume that $L=L_{1} \cdot L_{2}$ where $L_{1}=$ $\sum_{j=0}^{t-s} b_{j}^{(1)} \mathcal{D}^{j}$ and $L_{2}=\sum_{j=0}^{s} b_{j}^{(2)} \mathcal{D}^{j}$ with $b_{j}^{(i)} \in F$. Then the space of solutions in F of $L_{2}(y)=0$ has dimension s.

Proof. Let V be the solution space of $L y=0$. By Lemma 5, this has dimension t. L_{2} maps V into the solution space of $L_{1} y=0$, which has dimension at most $t-s$ by Lemma 4 . Therefore the dimension of the solution space of $L_{2} y=0$ is at least s and so by Lemma 4 , it must equal s.

3. Bounding the Exponents of a Sparse Univariate Rational Function

Lemma 5 in the previous section allows us to characterize t-sparse quasipolynomials g as those quasipolynomials for which there exits an operator of degree $t, L=\sum_{j=0}^{t} a_{j} \mathcal{D}^{j}$, with $P_{L}(z)=$ $a_{t} z^{t}+\ldots+a_{0} \in \mathbb{R}[z]$ having distinct real roots ≥ 1, such that $L g=0$. Therefore a t-sparse quasirational function f is a quasirational function for which there exists a quasipolynomial h and operators of degree t, L_{1} and L_{2} as above such that $L_{1}(h)=0$ and $L_{2}(h f)=0 . L_{1}(y)$ and $L_{2}(y f)$ will therefore have a common solution. The results of section 2 allow us to eliminate y using the determinant of the Sylvester matrix. This determinant is a quasirational function and, by evaluating at sufficiently many points, we obtain (together with the conditions that the α_{i}, β_{j} are distinct and ≥ 1) a system of polynomial inequalities that must be satisfied by the exponents appearing in f. We will then bound a real solution of this system using [GV 88] and, assuming that f is a univariate rational function, we can use Lemma 1 to bound the exponents of f.

We now proceed more formally. Let $f=\frac{g}{h}$ be a t-sparse quasirational function of one variable where $g=\sum_{i=1}^{t} a_{i} X^{\alpha_{i}}$ and $h=\sum_{i=1}^{t} b_{i} X^{\beta_{i}}$ are t-sparse quasipolynomials. Let $G(z)=c_{0}+c_{1} z+\ldots+z^{t}$ be the unique monic polynomial whose roots are $p^{\alpha_{1}}, \ldots, p^{\alpha_{t}}$ and let $H(z)=d_{0}+d_{1} z+\ldots+z^{t}$ be the unique monic polynomial whose roots are $p^{\beta_{1}}, \ldots, p^{\beta_{t}}$. Consider the operators $L_{G}=\sum_{i=0}^{t} c_{i} \mathcal{D}^{i}$ and $L_{H}=\sum_{i=0}^{t} d_{i} \mathcal{D}^{i}$ (where $d_{t}=c_{t}=1$). We then have $L_{H}(h)=0$ and $L_{G}(f h)=0$. Therefore $L_{H}(y)=0$ and $L_{G}(f y) \equiv \tilde{L}_{G}(y)=0$ have a nonzero common solution $y=h$ in F (note that the coefficients of \tilde{L}_{G} are \mathbb{R}-linear combinations of $\left.f, \mathcal{D} f, \ldots, \mathcal{D}^{t} f\right)$. Consider the Sylvester matrix $S=S\left(c_{0}, c_{1}, \ldots, c_{t-1}, d_{0}, \ldots, d_{t-1}, f\right)$ of L_{H} and \tilde{L}_{G}. By Lemma 2 , $\operatorname{det}(S)=0$ (note that $\operatorname{det} S$ is a quasirational function).

Conversely if $\operatorname{det}(S)=0$, then Lemma 2 implies that $\operatorname{deg}\left(\operatorname{gcrd}\left(L_{H}, \tilde{L}_{G}\right)\right) \geq 1$. Since the coefficients of L_{H} satisfy the hypotheses of Lemma $5 \operatorname{and} \operatorname{gcrd}\left(L_{H}, \tilde{L}_{G}\right)$ divides L_{H}, L_{H} and \tilde{L}_{G} will have a common non-zero solution h_{0} in F (by Lemma 6). Lemma 5 then implies that f is a t-sparse quasirational function because h_{0} and $h_{0} f$ are both t-sparse quasipolynomials, again by Lemma 5 . We have therefore proved the following lemma.

Lemma 7. A quasirational function f is t-sparse if and only if there exist real numbers $\bar{c}_{0}, \ldots, \bar{c}_{t-1}, \bar{d}_{0}, \ldots, \bar{d}_{t-1}$ such that
(i) $\operatorname{det}\left(S\left(\bar{c}_{0}, \ldots, \bar{c}_{t-1}, \bar{d}_{0}, \ldots, \bar{d}_{t-1}, f\right)\right)=0$, and
(ii) there exist t distinct real numbers ≥ 1 that are roots of

$$
G(z)=\bar{c}_{0}+\ldots+\bar{c}_{t-1} z^{t-1}+z^{t}=0
$$

and there exist t distinct real numbers ≥ 1 that are roots of

$$
H(z)=\bar{d}_{0}+\ldots+\bar{d}_{t-1} z^{t-1}+z^{t}=0 .
$$

Now assume that f is a t-sparse rational function whose coefficients are integers. We see that each entry of S is a t-sparse rational function. From the form of the matrix, we see that $\operatorname{det}(S)$ is a $(t+1)^{t}$ sparse rational function. Therefore condition (i) is equivalent (by the zero test) to the fact that $\operatorname{det}(S)_{X=p_{1}^{i}}$ is either ∞ of 0 for $i=1, \ldots, 2(t+1)^{t}-1$ (p_{1} is any prime). For at least $(t+1)^{t}$ of these points $\operatorname{det}(S)_{X=p_{1}^{i}}$ will be zero. Using the black box, we can determine a system of $(t+1)^{t}$ equations in the unknowns $c_{0}, \ldots, c_{t-1}, d_{0}, \ldots, d_{t-1}$ of degree at most $2 t$, that is equivalent to the vanishing of $\operatorname{det}(S)$ at these points. Assume the bitsize of the values (yielded by the black box) of $\mathcal{D}^{j} f\left(p_{1}^{i}\right), i=1, \ldots, 2(t+1)^{t}-1, j=0, \ldots, t$ is at most M (that is, those that are not ∞ and therefore rational numbers). We then see that the bitsize of each coefficient in this system is at most $O(t \ln t)+t M$.

Furthermore, condition (ii) is equivalent to
(ii') On $1 \leq z \leq 1+c_{t-1}+c_{t-2}+\ldots+c_{0}$, the polynomial $G(z)=0$ has precisely t roots and a similar statement holds for H. In addition, the discriminants of G and H are not zero.

The first sentence of (ii') can be expressed in terms of Sturm sequences. This yields a system of $2 t$ polynomial inequalities and (by the Habicht subresultant theorem [LO 83]) each inequality has degree at most $2 t$ and the bitsize of the coefficients is at most $O(t \ln t)$. Similar bounds hold for the discriminants.

Therefore, under the assumption that f is a t-sparse rational function with integer coefficients, we are able to construct a system of polynomial inequalities equivalent to (i) and (ii) and bound the bitsize of the coefficients of this system. The results of [GV 88] imply that this system has a solution in a ball of radius $\exp \left(\left(M t^{t^{2}}\right)^{O(1)}\right)$.

This gives a bound on some solution $\bar{c}_{0}, \ldots, \bar{c}_{t-1}, \bar{d}_{0}, \ldots, \bar{d}_{t-1}$ which gives a t-sparse quasirational representation of f. The exponents in this representation can be bounded from
these $\bar{c}_{0}, \ldots, \bar{c}_{t-1}, \bar{d}_{0}, \ldots, \bar{d}_{t-1}$ also by $\exp \left(\left(M t^{t^{2}}\right)^{O(1)}\right)$ since they are roots of the polynomials $G(z)$ and $H(z)$. By Lemma 2, the exponents in a t-sparse rational function representation of f are bounded by a similar number. This bound therefore can be explicitly calculated by making $2(t+1)^{t}-1$ black box evaluations.

4. Bounding the Exponents of a Sparse Multivariate Rational Function.

Let

$$
\begin{aligned}
f\left(X_{1}, \ldots, X_{n}\right) & =\frac{g\left(X_{1}, \ldots, X_{n}\right)}{h\left(X_{1}, \ldots, X_{n}\right)} \\
& =\frac{\sum_{i=1}^{t} g_{i}\left(X_{2}, \ldots, X_{n}\right) X_{1}^{\alpha_{i}}}{\sum_{i=1}^{t} h_{i}\left(X_{2}, \ldots, X_{n}\right) X_{1}^{\beta_{i}}}
\end{aligned}
$$

be a normalized representation of the t-sparse rational function f.

Consider the $2 t^{4}+2 t^{2}+1$ points $P^{j}=\left(p_{2}^{j}, \ldots, p_{n}^{j}\right)$ for $1 \leq j \leq 2 t^{4}+2 t^{2}+1$. Let

$$
\begin{aligned}
f^{j}\left(X_{1}\right) & =f\left(X_{1}, p_{2}^{j}, \ldots, p_{n}^{j}\right) \\
& =\frac{\sum_{i=1}^{t} g_{i}\left(p_{2}^{j}, \ldots, p_{n}^{j}\right) X_{1}^{\alpha_{i}}}{\sum_{i=1}^{t} h_{i}\left(p_{2}^{j}, \ldots, p_{n}^{j}\right) X_{1}^{\beta_{i}}}
\end{aligned}
$$

Note that there are at most $2 t^{2}$ points P^{j} for which some g_{i} or h_{i} vanishes at P^{j}. We call these points bad points. For a point P_{j} that is not bad, let D_{j} be the bound on the degree of some normalized t-sparse representation of $f^{j}\left(X_{1}\right)$. For these points, Lemma 2 allows us to conclude that there exist t_{1}, t_{2} (not necessarily unique) such that

$$
f^{j}\left(X_{1}\right)=\frac{\sum_{i=1}^{t_{1}} g_{i}\left(p_{2}^{j}, \ldots, p_{n}^{j}\right) X_{1}^{\alpha_{i}}}{\sum_{i=1}^{t_{2}} h_{i}\left(p_{2}^{j}, \ldots, p_{n}^{j}\right) X_{1}^{\beta_{i}}}=\frac{\bar{g}^{j}}{\bar{h}^{j}}
$$

and

$$
\max \left\{\operatorname{deg}_{X_{1}} \bar{g}^{j}, \operatorname{deg}_{X_{1}} \bar{h}^{j}\right\} \leq 2 t D_{j}
$$

To each j corresponds some pair t_{1}, t_{2}. Therefore, at least $2 t^{2}+1$ non-bad points P^{j} correspond to some pair $\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$. For this pair $\left(\tilde{t}_{1}, \tilde{t}_{2}\right)$ we have that

$$
\begin{align*}
& g\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sum_{i=1}^{t} h_{i}\left(X_{2}, \ldots, X_{n}\right) X_{1}^{\alpha_{i}} \\
& \quad-h\left(X_{1}, \ldots, X_{n}\right) \sum_{i=1}^{t} g_{i}\left(X_{2}, \ldots, X_{n}\right) X_{1}^{\beta_{i}} \tag{1}
\end{align*}
$$

is zero at these $2 t^{2}+1$ points. If we consider (1) as a polynomial in X_{1} whose coefficients are $2 t^{2}$ sparse polynomials in X_{2}, \ldots, X_{n}, we see that (1) is identically zero. This implies that f has
a t-sparse representation with $\operatorname{deg}_{X_{1}} f \leq B_{1}=\max _{j}\left\{2 t D_{j}\right\}$. We consider this representation and let X_{2} play the role of the principal variable. We apply the same construction to prove the existence of a representation with $\operatorname{deg}_{X_{1}} f \leq B_{1}$ and $\operatorname{deg}_{X_{2}} f \leq B_{2}$. In this way we are able to determine B for which these exists a t-sparse representation of f with $\operatorname{deg}_{X_{i}} f \leq B$ for $1 \leq i \leq n$.

Note that as in the univariate case, $B \leq \exp \left(\left(M t^{t^{2}}\right)^{O(1)}\right)$ where M is a bound on the bitsize of $f\left(p_{1}^{j}, \ldots, p_{n}^{j}\right)$ for $1 \leq j \leq 2(t+1)^{t}-1$.

5. Interpolation of Sparse Multivariate Rational Functions.

Let f be a t-sparse multivariate rational function and let $B \leq \exp \left(\left(M t^{t^{2}}\right)^{O(1)}\right)$ be the bound obtained in the previous section. Let

$$
\mathcal{A}=\left\{A_{i}=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{n}}\right) \mid 0 \leq \alpha_{i j} \leq B\right\}
$$

and

$$
\mathcal{B}=\left\{B_{i}=\left(\beta_{i_{1}}, \ldots, \beta_{i_{n}}\right) \mid 0 \leq \beta_{i j} \leq B\right\}
$$

Select, in parallel, $2 t$-tuples $I=\left\{A_{1}, \ldots, A_{t}\right\}, J=\left\{B_{1}, \ldots, B_{t}\right\}$ with $A_{i} \in \mathcal{A}$ and $B_{i} \in \mathcal{B}$. We calculate $f(X)$ at $\left(p_{1}^{i}, \ldots, p_{n}^{i}\right)$ for $i=1, \ldots, 4 t^{2}$. For each selection of I and J we obtain the following linear system
$f\left(p_{1}^{i}, \ldots, p_{n}^{i}\right)\left(b_{1}\left(p_{1}^{\beta_{11}} \ldots p_{n}^{\beta_{1 n}}\right)^{i}+\ldots+b_{t}\left(p_{1}^{\beta_{t 1}} \ldots p_{n}^{\beta_{t n}}\right)^{i}\right)=a_{1}\left(p_{1}^{\alpha_{11}} \ldots p_{n}^{\alpha_{1 n}}\right)^{i}+\ldots+a_{t}\left(p_{1}^{\alpha_{t 1}} \ldots p_{n}^{\alpha_{t n}}\right)^{i}$
where $1 \leq i \leq 4 t^{2}$, in the unknowns $b_{1}, \ldots, b_{t}, a_{1}, \ldots, a_{t}$. If such a system has a solution $\bar{b}_{1}, \ldots, \bar{b}_{t}, \bar{a}_{1}, \ldots, \bar{a}_{t}$, then the zero test implies that

$$
f\left(X_{1}, \ldots, X_{n}\right)=\frac{\bar{a}_{1} X_{1}^{\alpha_{11}} \ldots X_{n}^{\alpha_{1 n}}+\ldots+\bar{a}_{t} X_{1}^{\alpha_{t 1}} \ldots X_{n}^{\alpha_{t n}}}{\bar{b}_{1} X_{1}^{\beta_{11}} \ldots X_{n}^{\alpha_{1 n}}+\ldots+\bar{b}_{t} X_{1}^{\alpha_{t 1}} \ldots X_{n}^{\alpha_{t n}}}
$$

For some I and J we will be able to solve (2) so the algorithm terminates with a correct answer. We now give an analysis of the complexity. Each of \mathcal{A} and \mathcal{B} contain B^{n} terms. We select t elements from each, so there are $O\left(B^{n t}\right)$ systems of type (2), each of size at most $4 t^{2}$. This implies that the sequential time complexity is $B^{O(n t)}$ and the parallel complexity is $(n t \log B)^{O(1)}(c f .[B G H 82],[\mathrm{M} \mathrm{86]}$, [KR 88]). We can further bound B in terms of the size of the output. Let $\delta=\max _{i}\left\{\operatorname{deg}_{X_{i}} f\right\}$ and let μ be a bound on the bitsize of the coefficients
of f. Let μ_{j} be the bitsize of any coefficient of $f^{j}\left(X_{1}\right)$ (as in section 4). We then have that the bitsize of any output is not greater than $\mu_{j}+t+\delta$. Furthermore, each μ_{j} can be bounded by $\mu+O\left(t^{4} \delta n \log n\right)$ by looking at each term of the representation of f and noting that $p_{n}=O(n \log n)$. Therefore

$$
\begin{aligned}
B_{1} & \leq \exp \left(\left(M t^{t^{2}}\right)^{O(1)}\right) \\
& \leq \exp \left(\left(\left(\mu+t^{4} \delta n \log n+\delta\right) t^{t^{2}}\right)^{O(1)}\right) \\
& \left.=\exp \left(\left((\mu+\delta n \log n) t^{t^{2}}\right)\right)^{O(1)}\right)
\end{aligned}
$$

Therefore the sequential complexity of the algorithm is $\exp \left((\mu+\delta n \log n) t^{t^{2}}\right)^{O(1)}$ and the parallel complexity is $\left((\mu+\delta n \log n) t^{t^{2}}\right)^{O(1)}$. Therefore, for fixed t, interpolation of t-sparse rational functions can be done in polynomial parallel time (as well as in sequential storage, [C81]).

6. Further Research

It remains an interesting open problem how to improve our algorithm. Is, in view of our results, also the polynomial time solution in the size of g, h and n, t possible?

Acknowledgement.

We are indebted to Volker Strassen for motivating the problem and a number of interesting discussions.

References

[BT 88] Ben-Or, M. and Tiwari, P. A., A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation, Proc. $20^{\text {th }}$ ACM STOC (1989), pp. 301-309.
[BGH 82] Borodin, A., von zur Gathen, J. and Hopcroft, J., Fast Parallel Matrix and GCD Computation, Information and Control (1982), 52, pp. 478-504.
[BT 89] Borodin, A. and Tiwari, P. A., On the Decidability of Sparse Univariate Polynomial Interpolation, Research Report RC 14923, IBM T. J. Watson Research Center, New York, 1989, to appear in Proc. $21^{\text {st }}$ ACM STOC (1990).
[C 81] Cook, S. A., Towards a Complexity Theory of Synchronous Parallel Computation, Ensein. Math. (1981), 27, pp. 99-124.
[C 85] Cook, S. A., A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control (1985), 64, pp. 2-22.
[EI 76] Evans, R.J. and Isaacs, I.M., Generalized Vandermonde Determinants and Roots of Unity of Prime Order, Proc. of the AMS (1976), 58.
[G 89] Grigoriev, D. Yu., Factoring and Calculating the GCDs of Linear Differential Operators, to appear in Journal of Symbolic Computation (1989).
[GK 87] Grigoriev, D. Yu., and Karpinski, M., The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC, Proc. $28^{\text {th }}$ IEEE FOCS (1987), pp. 166-172.
[GKS 88] Grigoriev, D. Yu., Karpinski, M., and Singer, M., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, University of Bonn (1988), Research Report No. 8523-CS: to appear in SIAM J. Computing (1990).
[GV 88] Grigoriev, D. Yu., and Vorobjov, N. N., Solving Systems of Polynomial Inequalities in Subexponential Time, Journal of Symbolic Computation (1988), 5, pp. 37-64.
[K 86] Kaltofen, E., Uniform Closure Properties of P-computable Functions, Proc. $18^{\text {th }}$ ACM STOC (1986), pp. 330-337.
[KL 88] Kaltofen, E. and Lakshman, Y., Improved Sparse Multivariate Polynomial Interpolation Algorithms, Proc. ISSAC '88, LCNS, Springer-Verlag Berlin (1988).
[KT 88] Kaltofen, E. and Trager, B., Computing with Polynomials Given by Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators, $29^{\text {th }}$ IEEE FOCS (1988), pp. 296-305.
[KR 88] Karp, R. M. and Ramachandran, V. L., A Survey of Parallel Algorithms for Shared-Memory Machines, Research Report No. UCB/CSD88/407, University of California, Berkeley (1988); to appear in: Handbook of Theoretical Computer Science, North Holland (1989).
[KW 89] Karpinski, M. and Werther, T., VC Dimension and Learnability of Sparse Polynomials and Rational Functions, Technical Report TR-89-060, International Computer Science Institute, Berkeley (1989).
[LO 83] Loos, R., Generalized Polynomial Remainder Sequences, in Computer Algebra: Symbolic and Algebraic Computation, Second Edition, Buchberger et al eds., Springer-Verlag, Wien (1983).
[M 86] Mulmuley, K., A Fast Parallel Algorithm to Compute the Rank of a Matrix over an Arbitrary Field, Proc. ACM STOC (1986).
[M 89] Mignotte, M., Mathématiques pour le calcul formel, Presses Universitaires de France, Paris, 1989.
[O 33] Ore, O. Theory of Non-Commutative Polynomials, Ann. of Math. (1933), 34, pp. 480-508.
[S 73] Strassen, V., Vermeidung von Divisionen, J. Reine und Angewandte Math. (1973), 65, pp. 182-202.
[VDW 66] van der Waerden, B. L., Algebra, Part I (esp. section 34), Springer Verlag Berlin (1966).

[^0]: *A preliminary version of this paper has apeared in Proc. 31 ${ }^{s t}$ IEEE FOCS (1990), pp. 840-846.
 ${ }^{\dagger}$ Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1 and by the SERC Grant GR-E 68297
 ${ }^{\ddagger}$ Supported in part by NSF Grant DMS-8803109

