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Abstract

We prove upper and lower bounds on the VC dimension of sparse univariate polynomi-
als over reals, and apply these results to prove uniform learnability of sparse polynomials
and rational functions. As another application we solve an open problem of Vapnik ([Vap-
nik 82]) on uniform approximation of the general regression functions, a central problem
of computational statistics (cf. [Vapnik 82]), p. 256).

*Department of Computer Science, University of Bonn, and International Computer Science Institute, Berke-
ley, California. Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA
673/2-1, and by the SERC Grant GR-E 68297.

"Department of Computer Science, University of Bonn, and International Computer Science Institute, Berke-

ley, California.



1 Introduction

The paper studies the problem of computational identification (learnability) of sparse real
polynomials and rational functions.

In [Val 84], Valiant introduced a model of learning concepts from examples taken from an
unknown distribution. In this model, a concept ¢ from a class C' is a subset of an instance
space X. Let C' be a class of concepts from X. A labeled example < z,+ > or < z,— > of a
target concept ¢ is an element of X, along with a label '+’ or ’—’, indicating whether x is a
member of the set ¢. In the Valiant model of learning, each example is drawn independently
from a fixed but unknown distribution P on X. Each example is labeled either as a positive
or as a negative example, consistently with the unknown target concept c.

The goal of the learning algorithm is to compute a good uniform approximation of the
target concept, with high probability. Upper and lower bounds on the sample complexity
for learning various concept classes have been given in [VC 71], [BEHW 87], [F] 89]. These
bounds are based on the Vapnik-Chervonenkis (VC) dimension of a class C.

For the corresponding problem of interpolation of polynomials over fields of characteristic

zero cf. [GK 87], [BT 88] and over finite fileds cf. [GKS 88].

Definition 1.  For a concept class C' on X and for S C X, let II¢(S) be the set of
subsets T" of S such that 7" = S N ¢ for some concept ¢ in C. Thus Il (9) is the restriction of
concept class C' to the set 5. If I1¢(S) = 25 then the set S is shattered by C. The Vapnik-
Chervonenkis dimension (VC dimension) of the class C'is the largest integer d such that some
set S C X of size d is shattered by C.

This paper explores the VC dimension of the concept class P; consisting of the t-sparse
polynomials over the real numbers, i.e

Pe=A{f|f€IR[x], fis t-sparse }.

Valiant’s model of learning can be thought of as learning the border between positive and
negative examples. In this situation we consider {0, 1}-valued indicator functions ([Vap 82]).
Hence, in the context of the Problem of Pattern Recognition [Vap 82], we define examples
(z,y) from the instance space X = (IR, IR) to be labeled positive if the point (z,y) lies
"above’ the t-sparse polynomial f (f € P; the unknown target concept), and vice versa, i.e.

<(z,y),+> <= y > f(2) and <(z,y),— > <= y< f(2).
Let S C (IR, IR) be the set of points {(;,y;) }i=1,.. 4 of size d for 1 < 23 < ... < z4. A

t-sparse polynomial f is said to satisfy a labeling ¢ € {+, =} on S if the points (x;,y;) are
positive examples for f if o(¢) = 4, and negative examples for f if o(:) = —. The set 9 is



shattered by the class of t-sparse polynomials P, iff for each labeling o € {4, —}? there exists
a t-sparse polynomial f, satisfying o on 5. We denote the VC dimension of the set P; in this
context by VC> (Py).

Several generalizations of the standard PAC-model have been considered (cf. [Ha 89],
[Vap 89]) in order to deal with real-valued functions instead with the indicator functions
implied by the class P; as above. We will use the notion proposed in [Ha 89].

Here for each f € Py, an indicator function I(f) is defined by

I(f)(w,y,e):{ Lif|f@) -yl <e

0 otherwise

where ¢ is any positive real number.

We define eVC(P;) = VC(I(Py)). Examples (z,y) from the instance space X = (IR, IR)
are labeled positive if the point (z, y) lies within e-distance from the unknown target function,
and vice versa.

This paper is organized as follows.

Section 2 gives lower and upper bounds on the VCs dimension of sparse polynomials,
proving that the class of sparse polynomials is uniformly learnable (cf. [BEHW 87]). Fur-
thermore, upper and lower bounds on the sample complexity for learning sparse polynomials
can be derived ([Fl 89], [Ha 89]). The more complete discussion of underlying algorithms and
their analysis will be given in a full version of this paper.

Section 3 generalizes these bounds for the e-VC dimension of t-sparse polynomials. Apply-
ing results of Vapnik ([Vap 82]), we prove the existence of algorithms that approximate the
regression function uniformly by sparse polynomials.

2 Lower and Upper Bounds on VC. (7))

2.1 Lower bounds on VC;(P;)

We start with a lower bound on the VC5 dimension of 1-sparse polynomials.
Lemma 2.  The V(> dimension of 1-sparse polynomials is at least 3.

PrOOF. We show that for each labeling o € {+, —}> there is a l-sparse polynomial f,
satisfying o on the set S = {(—1,0), (1,2), (4,14)} of size 3. Choose for example



— 41+

a

Remark 3. Let a set S of size d be shattered by the class of t-sparse polynomials.
Then there is a set Z = {(2;, y;) }i=1,...4 and constants ¢; > 0, ¢ = 1,...,d, such that every set
S'={(Z:,9) | (Z:,9:) — (25, ¥:)| < € }i=1,...q 18 shattered by t-sparse polynomials.

Proor. For each ¢ € {+,—}? there is a t-sparse polynomial f, satisfying ¢ on S. For
t=1,...,d we define the regions

B Jy>f ifo(i)=+
M= e e oyt { 120 R0

Since S is shattered by {f;},c4 14 there exists a point (z;,y;) and a constant ¢ > 0
such that the ball

Be,(wiyi) = { (z,9) | (2, y) — (i wi)| < & }
is a prober subset of M;, hence every set S’ defined as above is shattered by the t-sparse
polynomials {fg}ge{_l_’_}d. O

Given a set shattered by ¢;-sparse polynomials and a set shattered by t5-sparse polynomials
we construct a set shattered by (¢; + t2)-sparse polynomials.

Lemma 4. VCZ (Pt1_|_t2) Z VCZ (Ptl) —|— VCZ (Pt2).

Proor. Let d; = VC>(Py,) and dy = VC5(Py,). Then there are sets of points S; and
So of size dy, dy that are shattered by ¢;-sparse polynomials and t3-sparse polynomials, resp..

Let S = {(xgl), yfl))}i:17,,,7dl and Sy = {(xgz), y](z))}j:lw’dz). For a labeling o) ¢
{4, =} let f, ) satisfy o(") on S1, and for a labeling ¢(?) € {+, =}% let g () satisfy ¢(?) on
Ss.

In order to show that VCs (P 44,) > di + da, we modify the sets S; and Sy (and the
corresponding polynomials shattering S; and S3), such that the union of these modified sets
is shattered by polynomials derived by adding some of the modified polynomials.

First, we pull the sets Sy, So apart, such that the points in S; have an absolute z-coordinate
of at most 1/2 and the points in 53 have an absolute z-coordinate of at least 2.



So let,

1
c1>2- max {|z; and 3 < —- min z:}.
1 (%yi)esl{l |} 2< 5 (%y])esz)ﬂ il}

By Remark 3, we can assume that ¢ > 0.

Then the set
1

Sy ={(#,¥:) biz1,..a, Wwith (Z;,7;) = (a%yi% (i, ) € S1

is of size dy and is shattered by the set of t-sparse polynomials {fg(l)}g(1)€{+7_}dl7 where

fo (@) = fo ().
Similarly the set
S2 = (2, 9) Yimtowdy  With (25,55) = (22,1), (25, 95) € 52
is of size dy and is shattered by the set of fy5-sparse polynomials {gg(2)}g(2)e{+7_}d27 where
950 () = g0 (c21).
) Sy and Sy satisfy the conditions claimed above, i.e. V(z,y) € Sy : |z| < 1/2 and V(z,y) €
Syt x| > 2.

Let ¢; be the minimal distance of the point (z;,y;) € S to some shattering polynomial in

{f,m} ie.
€= min [f—yi|
fe{fo_(l)}| |
Similarly let &; be defined for each point (z;,y;) € Sq by

6; = min |g— y;l.
! 96{570(2)}| ]|

Again, by Remark 3 we can assume that €;,d; > 0.

Our goal is to unite the two sets so that their union is shattered by polynomials derived
by adding two polynomials shattering the two single sets, i.e. the polynomial shattering the
first set of the union may not interfere with the shattering of the second set and vice versa.

We define a polynomial F'(x) to be an upper bound on the shattering polynomials for Sy
in the region according to Sy, i.e.

F(z) > max |[f(z)] forall|z|>2,
F@e{f,m}

in order to have an upper bound on the influence of the polynomials shattering S; on the
shattering of the set Sg.



For some even integer N we transform the set Sy into the set S3¥ by
& N oN
(zj,y;) €S2 = (@j,2; -y;) €57
Since N is even, the set SJV is shattered by the set of ty-sparse polynomials {zV - g2 } and

the minimal distance of the point (z;,y;) € S to some shattering polynomial in {z’ Gy2) } 18
N

A
J J

We choose the parameter N to be large enough so that the following two conditions are
satisfied:
e The polynomials {2V -G, } may not interfere with the shattering of 51, i.e
eN g <e¢  forall (a;,y) € Sy and for all 002 e {4, -1,

i.e. let G be the maximum of the absolute values of the polynomials {g,@)(z)} for
|z| < 1/2 and € the maximum over all ¢;. Then we choose N according to

G- ()N < ie. N> logz(g).

e The polynomials {fg(l)} may not interfere with the shattering of S, i.e

Flz;) < ¥

;0 forall (z),y;) € SN

We can choose such an N since all the z;’s have absolute value greater than 1 and N is
even.
Let Sy = {(2},y})}iz1. 4, With 2] < ... < x&l and let S = {(x;’, yé’)}j:17...7d2 with

" "
e <<l

Let S = 5’1 U S’é\f S = {($k7yk)}k:1,...,d1+d2 and 1 < ... < Tdy4dy- For o € {—I—7 _}d1+d2
we define oy € {+, —}dl and oy € {+, _}d2 by

o1(1) = o(k) iff z, = 2} and o3(j) = o (k) iff zp = 2.

S'is of size dy+dz and is shattered by the set of (t1412)-sparse polynomials {ho—}ge{+7_}d1+d2 .

where h, = f,, +2"Vg,,. Hence the VC> dimension of the class of (¢ 4+1;)-sparse polynomials
is at least VCs (Py,) + VC» (Pr,). |

We are now able to state our lower bound on the VC5 dimension of ¢-sparse polynomials.
Lemma 5. The V(> dimension of t-sparse polynomials is at least 3t.

Proor. By Lemma 4, we have VC>(P;) > t - VCs(P;). With Lemma 2 we have
VCZ(Pt) > 3t. 0



2.2 Upper bounds on VC;(P;)

In order to develop upper bounds on the VC5 dimension of {-sparse polynomials we make
intensive use of upper bounds on the number of zeros of t-sparse polynomials.

t
Let f; = Zcixei be a t-sparse polynomial over the real numbers. f; is said to be axis
=1
symmetric (or even) iff fi(z) = fi(—z) (i.e. Vi =1,...,t: e; is even) and f; is said to be
point symmetric (or odd) iff fi(z) = —fi(—z) (le. Vi=1,...,t: ¢ is odd).

Lemma 6. Let f; be a t-sparse polynomial over the real numbers. Let N(f;) denote
the number of real zeros of f;.

(1) N(f:) <2t— 1. There are t-sparse polynomials with 2¢ — 1 zeros.
(2) Let N(f;) =2t — 1. Then f; is either odd or even.

(3) Let N(f;) = 2t — 1. Then f; changes sign on each of its zeros iff f; is odd, and changes
sign at each of its zeros except at the origin iff f; is even.

(4) If f, = ¢ has 2t solutions, ¢ a constant, then f; is even.

ProoF. We show the statements by induction on .

The case t = 1 is trivial. So assume Lemma 6 holds for all £ <t — 1.

¢
Let fi(z) = Zcixei with €; < e < ... < ¢;. Rewrite
=1

£
ft(w) — (Z Ciwei_el ‘|‘Cl) C gl
=2

N————
gt—l(l’)

g¢—1 is (t — 1)-sparse, so is its derivation g;_,. g;_, has at most 2t — 3 real zeros, therefore
gi+—1 + c¢1 has at most 2t — 2 zeros. Hence the number of zeros of f; is bounded by 2t — 1. On
the other hand there are polynomials ¢;_1 s.t. g:—1 + ¢1 has exactly 2t — 2 zeros. Hence there
are t-sparse polynomials with exactly 2¢ — 1 real zeros. This proves the first statement.

Assume N(f;) = 2t — 1. Then (g;—1(2) 4+ ¢1) has to have 2t — 2 zeros, hence by (4)
(ge—1(x) + 1) is even. This proves (2).

Since (gi—1(x) + 1) is even, (gi—1(z) + ¢1) changes sign at each of its zeros except at the
origin. Hence f; changes sign at each of its zeros iff €1 is odd, and changes sign at each of its
zeros except at the origin iff e; is even. This proves (3).



If f; = ¢ has 2t solutions then f] has 2t — 1 zeros and has to change sign on each of its
zeros. Therefore f] is odd and f; is even. This proves (4). a

We now state the upper bound on the VCs dimension of ¢-sparse polynomials over the
real numbers.

Lemma 7.  The V(> dimension of t-sparse polynomials is at most 4t — 1.
ProoF. First, we prove that VCs (Py) < 4t.

Let d = VC>(P;) and S = {(2,%;) }i=1,....d, Where 2; < 29 < ... < 24 be a set of points
of size d shattered by t-sparse polynomials. Let f; and f; be t-sparse polynomials satisfying
the two alternating labelings of the points in S. Then between each pair of points (2, y;) and
(%i41,Yi+1) in 9, f1 and fo must intersect. That is, (fi — f2) has at least d — 1 zeros. Since
(f1 — f2) is 2t-sparse, the number of zeros is bounded by 4¢ — 1 by Lemma 6. That is, d < 4¢,
proving that VCs (Py) < 4t.

Now, we show that there is no set of 4¢ points shattered by t-sparse polynomials.

Assume that VC» (P;) = 4t. Let S = {(2i, i) }i=1,...4r Where 2y < 23 < ... < 24 be a set
of points shattered by t-sparse polynomials. Let f; and f; be t-sparse polynomials satisfying
the two alternating labelings oy = (+,—,+,—,---,4+,—) and 02 = (—,+,—,+, -+, —,+). fi
and f; have 4t — 1 intersection points at z; < z2 < ... < zg_1, and (fi — f2) has to change
its sign at each of its zeros. Hence, by Lemma 6 (3), (fi — f2) is odd, therefore both f; and
fo are point symmetric.

We define regions R; to be the set of points between two neighboring intersection points
and bounded by f; and f, i.e. (let zp = —00, 244 = 00)

R, :={(z,y)|x € [zi—1, 2], y € [min(f1(x), fo(2)), max(fi(z), f2(x))]}, i=1,...,4¢.

We note that (2;,y;) € R;. R; is point-symmetric to Ry—; (R; = {(—2,—y)|(z,y) €
Ry—i}).

Consider the labelings v; and 73 on S

71:(_7+7_7+7'"7_7+7+7_7+7_7"'7+7_)7
2t 2t
72:71_1:(+7_7+7_7"'7+7_7_7+7_7+7"'7_7+)'
2t 2t

We prove that there are no t-sparse polynomials satisfying vy and 72 on S. For purpose
of contradiction assume that g1, go are t-sparse polynomials satisfying v and v, on S.



g1 and g9 have at least 4¢ — 2 intersection points. Let ¢y, ¢ be the constant terms of g1,
g2, G =g1— g2 — (c1 —¢c2) and ¢ = ¢3 — cy.

Assume ¢1 # 0 and ¢y # 0. Then G is (2t — 2)-sparse. Hence by Lemma 6, G = ¢ holds for
at most 4¢ —4 points, contradicting the assertion that g, and g, have at least 4t — 2 intersection
points.

Assume ¢; = 0 and ¢ # 0. Then G is (2t — 1)-sparse, and G = ¢ has to hold for at
least 4t — 2 points. Hence by Lemma 6 G is even, so both ¢; and ¢, are axis symmetric. Let

V] < vy < ..o < Vgp—q < Vgpgq < ... < Ugi—1 be the intersection points of g; and gz. We
define regions T;, similar to the definition of the regions R;, to be the set of points between
two neighboring intersection points of ¢; and gz bounded by g; and g3, i.e. (let vg = —o0,

vy = 0, vy = +00)
T :={(z,y) | v € [vj_1,v5], y € [min(g1(2), g2(2)), max(g1(z), g92(2))] }, j=1,....4¢

(We divided the region between vy;_1 and vy.1; into two regions because of numbering reasons.)
T; is axis symmetric to Ty—; (T = {(—2, y)|(z,y) € Ta—;}).

We note that (2;,y;) € T;. Since (24, y;) € R;, the intersection R,UT; # 0 fori=1,..., 4t.
Suppose R;N{y =0} = 0. Then T;N{y = 0} # 0 since the set R; is point symmetric to Ry_;
and the region T; is axis symmetric to Ty;_;.

For each 1 <i < 4t, R;N{y = 0} # 0 forces f; or f5 to have at least two zeros in [z;_1, 2;].
Therefore by Lemma 6, there are at least 2t 4+ 2 regions R; such that B; N {y = 0} = . By
a similar counting argument there are at most 2t — 2 regions such that T; N {y = 0} # 0
contradicting that for each ¢ with R, N {y = 0} = 0 we have T; N {y = 0} # (). Hence we
contradicted the assumption ¢; = 0 and ¢z # 0. The case ¢; # 0 and ¢; = 0 is symmetric to
this case.

Now assume both ¢; =0 and ¢; = 0. For z =1, ..., 4t we define

Rf =={(z,9)|(z,y) €Ri, y> qu(x)} and R; :={(a,y)](2,y) € Ri, y < g1(2) }.

Since g; is point symmetric to the origin, R;»" is point symmetric to Ry, _,. We show that
R, R7 # 0. Assume R} = (). Then v;(i) = —. Furthermore R}, ; = ) and (4t — i) = +

contradicting the construction of 4.

We define for go the sets Rj’ and RZ_ similar to R;»" and R;. As above, R;",RZ_ + 0.
Analogously, since o = 71_1, the intersections R N R may not be empty. Hence g; and gy
have to intersect in each region R;, i.e. (g1 —¢2) has to have at least 4¢ zeros which contradicts
the assumption that ¢g; and ¢, are t-sparse.

Therefore there are no t-sparse polynomials satisfying vy and v, on S. Hence there is no
set of 4¢ points shattered by t-sparse polynomials. a



We note that the bounds derived in this section remain valid when restricted to t-sparse
polynomials over the rational numbers and t-sparse polynomials over the integers.

Let P;" denote the class of t-sparse polynomials over the positive real numbers. Then,
following the proofs in this section we can derive the exact VC» dimension of the class P

VCZ (77{'_) = 2t.

Furthermore our results can be transferred to sparse rational functions. Let R; denote the
class of real rational functions with ¢-sparse numerator and t-sparse denominator. Following
the proof of Lemma 7, we derive the upper bound

VCZ (Rt) < 442,

Because of the finiteness of the VC5 dimension of the classes P; and Ry, we can state the
following theorem without explicitly giving learning algorithms for these classes ((BEHW 87]):

Theorem 8.  The classes of sparse polynomials and sparse rational functions are uni-
formly learnable.

3 Approximating Polynomial Regression

One of the central problems in computational regression theory is the problem of deter-
mining the number of terms in an arranged system of functions. The most important case of
this problem is the approximation of polynomial regression (cf. [Vap 82], pp. 254-258). For
underlying definitions and terminology see [Po 84], [Vap 82].

The classical scheme of approximating polynomial regression, which involves the deter-
mination of the true degree n of regression and the expansion in a system of n orthogonal
polynomials of degree 1,2,..., n, can be successfully implemented only when large samples are
used. The reason for this is the (possibly) large degree of regression and therefore the large
e-VC dimension (capacity) of the class of polynomials of degree n. The problem for small
samples remained open. Here we are giving solution to this problem.

Hence this problem reduces to the determination of the e-VC dimension (capacity) of sparse
polynomials (independent of the degree). We prove linear bounds on the eVC dimension
of t-sparse polynomials, and, as a direct consequence, derive the surprising result that the
regression function can be approximated uniformly by sparse polynomials.

First, we bound the ¢-VC dimension of the class P;. As a remark, we note that e-VC(Py)
is independent of ¢, i.e.

61—VC(P75) = 62‘VC(P7§)7 €1,€9 > 0.

10



Proor. Let d = ¢-VC(Py) and S., = {(z;,¥;) }i=1,...a be a set of points shattered (in
€1-sense) by the set of ¢-sparse polynomials {fg}ge{+7_}d C Py, ie.

<€ o(t)=
>e o) =

I+

Vi=1,...,d Yo € {+,=} : |fo(z:) —y¢|{

Hence
<e o(i)=+4
> € o(1)

9

Vi=1,...,d Yo € {+,-}" : |6—1fg(xi)—€—1yi|{
€2 €2

therefore the set S, = {(z, Zy) | (z,y) € S, } of size d is shattered (in €;-sense) by the set of

t-sparse polynomials {E_;fcr}cre{-h_}d C PF. Hence e-VC(P;) > ¢;-VC(P;) and vice versa.
O

Lemma 9.

Proor. Let d = VC5(P;) and S> = {(2,¥%;)}i=1,...d be a set of points shattered (in
>-sense) by the set of t-sparse polynomials {f;},c(y,_ya C P, ice.

- iy [ <0 ey =1
Vi=1,...,d Yo e {+, -} 1 fo(x;) y2{>0 (i) = —
Let ¢ be defined by
€= max max  y; — fo(z;).

i=1,...,d cr,o’(i):-l—
Then

Vi=1,...,d Yo € {+,—} : Ifa(wi)—(yz'—é)l{ ii 58?5

Hence the set S, = {(z,y—¢€) | (z,y) € S>} of size d is shattered (in e-sense) by the set of
t-sparse polynomials {fg}ge{+7_}d C Py. Hence eVC(Py) > VO (Py). a
We introduce the following lemma to derive an upper bound on eVC(P).

Lemma 10. Let S = {(z;, ;) }i=1,....4 Where 21 < 29 < 23 < 24 be a set of points and
let oy = (+,—,—+), 02 = (—,+,+,—), 03 = (+,—,+,—), 04 = (—,+, —, +) be labelings on
S. Let {f;}i=1,..4 be continuous functions satisfying o; on S (in e¢-sense). Then there is an
intersection of either (f1, f2) or (f1, f3) or (f1, fa) or (fs, fa) in the interval (21, z4).

Proor. Consider the 2% cases for fi(z;) > y; +eor fi(z;) <y; —eif o;(j) = —. O
Lemma 11.  The ¢-VC dimension of t-sparse polynomials is at most 48t — 9.

ProoF. Let d = eVC(Py) and S = {(@i,y)}i=1,..4 Where 21 < @9 < ... < @4 be
a set of points of size d shattered by t-sparse polynomials. Consider the labelings o, =

11



(+7_7_7+7_7_7+7_7_7"-)702 = (_7+7+7_7+7+7_7+7+7"-)703 = (+7_7+7_7+7_7"')
and o4 = (—, 4+, —,+, —,+,...). Let fi,..., fa be t-sparse polynomials satisfying oy, ..., 04.
Then, by Lemma 10 there are two polynomials with at least d/12 intersections and with
Lemma 6 we conclude that d < 12(4¢t — 1) +3 = 48t — 9. o

Now we state our main theorem, solving the problem of Vapnik [Vap 82].

Theorem 12. The polynomial regression can be approzimated uniformly by sparse
polynomials for small samples. a
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