# VC Dimension and Learnability of Sparse Polynomials and Rational Functions

Marek Karpinski \* Thorsten Werther †

#### Abstract

We prove upper and lower bounds on the VC dimension of sparse univariate polynomials over reals, and apply these results to prove uniform learnability of sparse polynomials and rational functions. As another application we solve an open problem of Vapnik ([Vapnik 82]) on uniform approximation of the general regression functions, a central problem of computational statistics (cf. [Vapnik 82]), p. 256).

<sup>\*</sup>Department of Computer Science, University of Bonn, and International Computer Science Institute, Berkeley, California. Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

<sup>&</sup>lt;sup>†</sup>Department of Computer Science, University of Bonn, and International Computer Science Institute, Berkeley, California.

#### 1 Introduction

The paper studies the problem of computational identification (learnability) of sparse real polynomials and rational functions.

In [Val 84], Valiant introduced a model of learning concepts from examples taken from an unknown distribution. In this model, a concept c from a class C is a subset of an instance space X. Let C be a class of concepts from X. A labeled example < x, +> or < x, -> of a target concept c is an element of X, along with a label '+' or '-', indicating whether x is a member of the set c. In the Valiant model of learning, each example is drawn independently from a fixed but unknown distribution P on X. Each example is labeled either as a positive or as a negative example, consistently with the unknown target concept c.

The goal of the learning algorithm is to compute a good uniform approximation of the target concept, with high probability. Upper and lower bounds on the sample complexity for learning various concept classes have been given in [VC 71], [BEHW 87], [Fl 89]. These bounds are based on the Vapnik-Chervonenkis (VC) dimension of a class C.

For the corresponding problem of interpolation of polynomials over fields of characteristic zero cf. [GK 87], [BT 88] and over finite fileds cf. [GKS 88].

**Definition 1.** For a concept class C on X and for  $S \subset X$ , let  $\Pi_C(S)$  be the set of subsets T of S such that  $T = S \cap c$  for some concept c in C. Thus  $\Pi_C(S)$  is the restriction of concept class C to the set S. If  $\Pi_C(S) = 2^S$ , then the set S is shattered by C. The Vapnik-Chervonenkis dimension (VC dimension) of the class C is the largest integer d such that some set  $S \subset X$  of size d is shattered by C.

This paper explores the VC dimension of the concept class  $\mathcal{P}_t$  consisting of the t-sparse polynomials over the real numbers, i.e

$$\mathcal{P}_t = \{ f \mid f \in IR[x], f \text{ is } t\text{-sparse } \}.$$

Valiant's model of learning can be thought of as learning the border between positive and negative examples. In this situation we consider  $\{0,1\}$ -valued indicator functions ([Vap 82]). Hence, in the context of the Problem of Pattern Recognition [Vap 82], we define examples (x,y) from the instance space  $X=(\mathbb{R},\mathbb{R})$  to be labeled positive if the point (x,y) lies 'above' the t-sparse polynomial f ( $f \in \mathcal{P}_t$  the unknown target concept), and vice versa, i.e.

$$\langle (x,y), + \rangle \iff y \ge f(x)$$
 and  $\langle (x,y), - \rangle \iff y < f(x)$ .

Let  $S \subset (IR, IR)$  be the set of points  $\{(x_i, y_i)\}_{i=1,\dots,d}$  of size d for  $x_1 < x_2 < \dots < x_d$ . A t-sparse polynomial f is said to satisfy a labeling  $\sigma \in \{+, -\}^d$  on S if the points  $(x_i, y_i)$  are positive examples for f if  $\sigma(i) = +$ , and negative examples for f if  $\sigma(i) = -$ . The set S is

shattered by the class of t-sparse polynomials  $\mathcal{P}_t$ , iff for each labeling  $\sigma \in \{+, -\}^d$  there exists a t-sparse polynomial  $f_{\sigma}$  satisfying  $\sigma$  on S. We denote the VC dimension of the set  $\mathcal{P}_t$  in this context by  $VC_{>}(\mathcal{P}_t)$ .

Several generalizations of the standard PAC-model have been considered (cf. [Ha 89], [Vap 89]) in order to deal with real-valued functions instead with the indicator functions implied by the class  $\mathcal{P}_t$  as above. We will use the notion proposed in [Ha 89].

Here for each  $f \in \mathcal{P}_t$ , an indicator function I(f) is defined by

$$I(f)(x, y, \epsilon) = \begin{cases} 1 & \text{if } |f(x) - y| \le \epsilon \\ 0 & otherwise \end{cases},$$

where  $\epsilon$  is any positive real number.

We define  $\epsilon$ -VC( $\mathcal{P}_t$ ) = VC( $I(\mathcal{P}_t)$ ). Examples (x,y) from the instance space  $X = (I\!\!R,I\!\!R)$  are labeled positive if the point (x,y) lies within  $\epsilon$ -distance from the unknown target function, and vice versa.

This paper is organized as follows.

Section 2 gives lower and upper bounds on the  $VC_{\geq}$  dimension of sparse polynomials, proving that the class of sparse polynomials is uniformly learnable (cf. [BEHW 87]). Furthermore, upper and lower bounds on the sample complexity for learning sparse polynomials can be derived ([Fl 89], [Ha 89]). The more complete discussion of underlying algorithms and their analysis will be given in a full version of this paper.

Section 3 generalizes these bounds for the  $\epsilon$ -VC dimension of t-sparse polynomials. Applying results of Vapnik ([Vap 82]), we prove the existence of algorithms that approximate the regression function uniformly by sparse polynomials.

# 2 Lower and Upper Bounds on $VC_{\geq}(\mathcal{P}_t)$

## 2.1 Lower bounds on $VC_{\geq}(\mathcal{P}_t)$

We start with a lower bound on the  $VC_{\geq}$  dimension of 1-sparse polynomials.

**Lemma 2.** The  $VC_{>}$  dimension of 1-sparse polynomials is at least 3.

PROOF. We show that for each labeling  $\sigma \in \{+, -\}^3$  there is a 1-sparse polynomial  $f_{\sigma}$  satisfying  $\sigma$  on the set  $S = \{(-1, 0), (1, 2), (4, 14)\}$  of size 3. Choose for example

| σ                           | $f_{\sigma}$ | $\sigma$ | $f_{\sigma}$ |
|-----------------------------|--------------|----------|--------------|
|                             | 15           | +        | 5x           |
| +                           | 3            | +-+      | 3x           |
| $\parallel - + - \parallel$ | $x^2$        | ++-      | $x^3$        |
| -++                         | 1            | +++      | -1           |

**Remark 3.** Let a set S of size d be shattered by the class of t-sparse polynomials. Then there is a set  $Z = \{(x_i, y_i)\}_{i=1,\dots,d}$  and constants  $\epsilon_i > 0$ ,  $i = 1,\dots,d$ , such that every set  $S' = \{(\bar{x}_i, \bar{y}_i) \mid |(\bar{x}_i, \bar{y}_i) - (x_i, y_i)| \leq \epsilon_i\}_{i=1,\dots,d}$  is shattered by t-sparse polynomials.

PROOF. For each  $\sigma \in \{+, -\}^d$  there is a t-sparse polynomial  $f_{\sigma}$  satisfying  $\sigma$  on S. For i = 1, ..., d we define the regions

$$M_i = \{ (x,y) \mid \forall \sigma \in \{+,-\}^d : \left\{ \begin{array}{l} y \ge f_\sigma & \text{if } \sigma(i) = + \\ y < f_\sigma & \text{if } \sigma(i) = - \end{array} \right\} \}.$$

Since S is shattered by  $\{f_{\sigma}\}_{{\sigma}\in\{+,-\}^d}$  there exists a point  $(x_i,y_i)$  and a constant  $\epsilon_i>0$  such that the ball

$$B_{\epsilon_i}(x_i, y_i) = \{ (x, y) \mid |(x, y) - (x_i, y_i)| \le \epsilon_i \}$$

is a prober subset of  $M_i$ , hence every set S' defined as above is shattered by the t-sparse polynomials  $\{f_{\sigma}\}_{{\sigma}\in\{+,-\}^d}$ .

Given a set shattered by  $t_1$ -sparse polynomials and a set shattered by  $t_2$ -sparse polynomials we construct a set shattered by  $(t_1 + t_2)$ -sparse polynomials.

$$\textbf{Lemma 4.} \quad \operatorname{VC}_{\geq}(\mathcal{P}_{t_1+t_2}) \geq \operatorname{VC}_{\geq}(\mathcal{P}_{t_1}) + \operatorname{VC}_{\geq}(\mathcal{P}_{t_2}).$$

PROOF. Let  $d_1 = \mathrm{VC}_{\geq}(\mathcal{P}_{t_1})$  and  $d_2 = \mathrm{VC}_{\geq}(\mathcal{P}_{t_2})$ . Then there are sets of points  $S_1$  and  $S_2$  of size  $d_1$ ,  $d_2$  that are shattered by  $t_1$ -sparse polynomials and  $t_2$ -sparse polynomials, resp..

Let  $S_1 = \{(x_i^{(1)}, y_i^{(1)})\}_{i=1,\dots,d_1}$  and  $S_2 = \{(x_j^{(2)}, y_j^{(2)})\}_{j=1,\dots,d_2}$ . For a labeling  $\sigma^{(1)} \in \{+, -\}^{d_1}$  let  $f_{\sigma^{(1)}}$  satisfy  $\sigma^{(1)}$  on  $S_1$ , and for a labeling  $\sigma^{(2)} \in \{+, -\}^{d_2}$  let  $g_{\sigma^{(2)}}$  satisfy  $\sigma^{(2)}$  on  $S_2$ .

In order to show that  $VC_{\geq}(\mathcal{P}_{t_1+t_2}) \geq d_1 + d_2$ , we modify the sets  $S_1$  and  $S_2$  (and the corresponding polynomials shattering  $S_1$  and  $S_2$ ), such that the union of these modified sets is shattered by polynomials derived by adding some of the modified polynomials.

First, we pull the sets  $S_1$ ,  $S_2$  apart, such that the points in  $S_1$  have an absolute x-coordinate of at most 1/2 and the points in  $S_2$  have an absolute x-coordinate of at least 2.

So let

$$c_1 > 2 \cdot \max_{(x_i, y_i) \in S_1} \{|x_i|\}$$
 and  $c_2 < \frac{1}{2} \cdot \min_{(x_j, y_j) \in S_2} \{|x_j|\}.$ 

By Remark 3, we can assume that  $c_2 > 0$ .

Then the set

$$\bar{S}_1 = \{(\bar{x}_i, \bar{y}_i)\}_{i=1,\dots,d_1} \text{ with } (\bar{x}_i, \bar{y}_i) = (\frac{1}{c_1}x_i, y_i), (x_i, y_i) \in S_1$$

is of size  $d_1$  and is shattered by the set of  $t_1$ -sparse polynomials  $\{\bar{f}_{\sigma^{(1)}}\}_{\sigma^{(1)} \in \{+,-\}^{d_1}}$ , where  $\bar{f}_{\sigma^{(1)}}(x) = f_{\sigma^{(1)}}(c_1 x)$ .

Similarly the set

$$\bar{S}_2 = \{(\bar{x}_j, \bar{y}_j)\}_{j=1,\dots,d_2}$$
 with  $(\bar{x}_j, \bar{y}_j) = (c_2 x_j, y_j), (x_j, y_j) \in S_2$ 

is of size  $d_2$  and is shattered by the set of  $t_2$ -sparse polynomials  $\{\bar{g}_{\sigma^{(2)}}\}_{\sigma^{(2)} \in \{+,-\}^{d_2}}$ , where  $\bar{g}_{\sigma^{(2)}}(x) = g_{\sigma^{(2)}}(c_2x)$ .

 $\bar{S}_1$  and  $\bar{S}_2$  satisfy the conditions claimed above, i.e.  $\forall (x,y) \in \bar{S}_1 : |x| < 1/2$  and  $\forall (x,y) \in \bar{S}_2 : |x| > 2$ .

Let  $\epsilon_i$  be the minimal distance of the point  $(x_i, y_i) \in \bar{S}_1$  to some shattering polynomial in  $\{\bar{f}_{\sigma^{(1)}}\}$ , i.e.

$$\epsilon_i = \min_{f \in \{\bar{f}_{\sigma(1)}\}} |f - y_i|.$$

Similarly let  $\delta_j$  be defined for each point  $(x_j, y_j) \in \bar{S}_2$  by

$$\delta_j = \min_{g \in \{\bar{g}_{\sigma^{(2)}}\}} |g - y_j|.$$

Again, by Remark 3 we can assume that  $\epsilon_i, \delta_j > 0$ .

Our goal is to unite the two sets so that their union is shattered by polynomials derived by adding two polynomials shattering the two single sets, i.e. the polynomial shattering the first set of the union may not interfere with the shattering of the second set and vice versa.

We define a polynomial F(x) to be an upper bound on the shattering polynomials for  $\bar{S}_1$  in the region according to  $\bar{S}_2$ , i.e.

$$F(x) > \max_{f(x) \in \{\bar{f}_{-(1)}\}} |f(x)|$$
 for all  $|x| \ge 2$ ,

in order to have an upper bound on the influence of the polynomials shattering  $\bar{S}_1$  on the shattering of the set  $\bar{S}_2$ .

For some even integer N we transform the set  $\bar{S}_2$  into the set  $\bar{S}_2^N$  by

$$(x_j, y_j) \in \bar{S}_2 \implies (x_j, x_i^N \cdot y_j) \in \bar{S}_2^N.$$

Since N is even, the set  $\bar{S}_2^N$  is shattered by the set of  $t_2$ -sparse polynomials  $\{x^N \cdot \bar{g}_{\sigma^{(2)}}\}$  and the minimal distance of the point  $(x_j,y_j) \in \bar{S}_2^N$  to some shattering polynomial in  $\{x^N \bar{g}_{\sigma^{(2)}}\}$  is  $x_i^N \cdot \delta_j$ .

We choose the parameter N to be large enough so that the following two conditions are satisfied:

• The polynomials  $\{x^N \cdot \bar{g}_{\sigma^{(2)}}\}$  may not interfere with the shattering of  $\bar{S}_1$ , i.e

$$x_i^N \cdot \bar{g}_{\sigma^{(2)}} < \epsilon_i$$
 for all  $(x_i, y_i) \in \bar{S}_1$  and for all  $\sigma^{(2)} \in \{+, -\}^{d_2}$ ,

i.e. let G be the maximum of the absolute values of the polynomials  $\{\bar{g}_{\sigma^{(2)}}(x)\}$  for  $|x| \leq 1/2$  and  $\epsilon$  the maximum over all  $\epsilon_i$ . Then we choose N according to

$$G \cdot (\frac{1}{2})^N < \epsilon,$$
 i.e.  $N > \log_2(\frac{G}{\epsilon}).$ 

• The polynomials  $\{\bar{f}_{\sigma^{(1)}}\}$  may not interfere with the shattering of  $\bar{S}_2^N$ , i.e

$$F(x_j) < x_i^N \cdot \delta_j$$
 for all  $(x_j, y_j) \in \bar{S}_2^N$ .

We can choose such an N since all the  $x_j$ 's have absolute value greater than 1 and N is even.

Let  $\bar{S}_1 = \{(x_i', y_i')\}_{i=1,\dots,d_1}$  with  $x_1' < \dots < x_{d_1}'$  and let  $\bar{S}_2^N = \{(x_j'', y_j'')\}_{j=1,\dots,d_2}$  with  $x_1'' < \dots < x_{d_2}''$ .

Let  $S = \bar{S}_1 \cup \bar{S}_2^N$ .  $S = \{(x_k, y_k)\}_{k=1,\dots,d_1+d_2}$  and  $x_1 < \dots < x_{d_1+d_2}$ . For  $\sigma \in \{+, -\}^{d_1+d_2}$  we define  $\sigma_1 \in \{+, -\}^{d_1}$  and  $\sigma_2 \in \{+, -\}^{d_2}$  by

$$\sigma_1(i) = \sigma(k)$$
 iff  $x_k = x_i'$  and  $\sigma_2(j) = \sigma(k)$  iff  $x_k = x_j''$ .

S is of size  $d_1+d_2$  and is shattered by the set of  $(t_1+t_2)$ -sparse polynomials  $\{h_\sigma\}_{\sigma\in\{+,-\}^{d_1+d_2}}$ , where  $h_\sigma=f_{\sigma_1}+x^Ng_{\sigma_2}$ . Hence the  $\mathrm{VC}_\geq$  dimension of the class of  $(t_1+t_2)$ -sparse polynomials is at least  $\mathrm{VC}_\geq(\mathcal{P}_{t_1})+\mathrm{VC}_\geq(\mathcal{P}_{t_2})$ .

We are now able to state our lower bound on the  $VC_{\geq}$  dimension of t-sparse polynomials.

**Lemma 5.** The  $VC_{\geq}$  dimension of t-sparse polynomials is at least 3t.

PROOF. By Lemma 4, we have  $VC_{\geq}(\mathcal{P}_t) \geq t \cdot VC_{\geq}(\mathcal{P}_1)$ . With Lemma 2 we have  $VC_{\geq}(\mathcal{P}_t) \geq 3t$ .

#### 2.2 Upper bounds on $VC_{>}(\mathcal{P}_t)$

In order to develop upper bounds on the  $VC_{\geq}$  dimension of t-sparse polynomials we make intensive use of upper bounds on the number of zeros of t-sparse polynomials.

Let  $f_t = \sum_{i=1}^t c_i x^{e_i}$  be a t-sparse polynomial over the real numbers.  $f_t$  is said to be axis symmetric (or even) iff  $f_t(x) = f_t(-x)$  (i.e.  $\forall i = 1, ..., t : e_i$  is even) and  $f_t$  is said to be point symmetric (or odd) iff  $f_t(x) = -f_t(-x)$  (i.e.  $\forall i = 1, ..., t : e_i$  is odd).

**Lemma 6.** Let  $f_t$  be a t-sparse polynomial over the real numbers. Let  $N(f_t)$  denote the number of real zeros of  $f_t$ .

- (1)  $N(f_t) \leq 2t 1$ . There are t-sparse polynomials with 2t 1 zeros.
- (2) Let  $N(f_t) = 2t 1$ . Then  $f_t$  is either odd or even.
- (3) Let  $N(f_t) = 2t 1$ . Then  $f_t$  changes sign on each of its zeros iff  $f_t$  is odd, and changes sign at each of its zeros except at the origin iff  $f_t$  is even.
- (4) If  $f_t = c$  has 2t solutions, c a constant, then  $f_t$  is even.

PROOF. We show the statements by induction on t.

The case t=1 is trivial. So assume Lemma 6 holds for all  $k \leq t-1$ .

Let 
$$f_t(x) = \sum_{i=1}^t c_i x^{e_i}$$
 with  $e_1 < e_2 < \ldots < e_t$ . Rewrite

$$f_t(x) = (\underbrace{\sum_{i=2}^t c_i x^{e_i - e_1}}_{g_{t-1}(x)} + c_1) \cdot x^{e_1}.$$

 $g_{t-1}$  is (t-1)-sparse, so is its derivation  $g'_{t-1}$ .  $g'_{t-1}$  has at most 2t-3 real zeros, therefore  $g_{t-1}+c_1$  has at most 2t-2 zeros. Hence the number of zeros of  $f_t$  is bounded by 2t-1. On the other hand there are polynomials  $g_{t-1}$  s.t.  $g_{t-1}+c_1$  has exactly 2t-2 zeros. Hence there are t-sparse polynomials with exactly 2t-1 real zeros. This proves the first statement.

Assume  $N(f_t) = 2t - 1$ . Then  $(g_{t-1}(x) + c_1)$  has to have 2t - 2 zeros, hence by (4)  $(g_{t-1}(x) + c_1)$  is even. This proves (2).

Since  $(g_{t-1}(x) + c_1)$  is even,  $(g_{t-1}(x) + c_1)$  changes sign at each of its zeros except at the origin. Hence  $f_t$  changes sign at each of its zeros iff  $e_1$  is odd, and changes sign at each of its zeros except at the origin iff  $e_1$  is even. This proves (3).

If  $f_t = c$  has 2t solutions then  $f'_t$  has 2t - 1 zeros and has to change sign on each of its zeros. Therefore  $f'_t$  is odd and  $f_t$  is even. This proves (4).

We now state the upper bound on the  $VC_{\geq}$  dimension of t-sparse polynomials over the real numbers.

**Lemma 7.** The  $VC_{\geq}$  dimension of t-sparse polynomials is at most 4t-1.

PROOF. First, we prove that  $VC_{>}(\mathcal{P}_t) \leq 4t$ .

Let  $d = \mathrm{VC}_{\geq}(\mathcal{P}_t)$  and  $S = \{(x_i, y_i)\}_{i=1,\dots,d}$ , where  $x_1 < x_2 < \dots < x_d$  be a set of points of size d shattered by t-sparse polynomials. Let  $f_1$  and  $f_2$  be t-sparse polynomials satisfying the two alternating labelings of the points in S. Then between each pair of points  $(x_i, y_i)$  and  $(x_{i+1}, y_{i+1})$  in S,  $f_1$  and  $f_2$  must intersect. That is,  $(f_1 - f_2)$  has at least d - 1 zeros. Since  $(f_1 - f_2)$  is 2t-sparse, the number of zeros is bounded by 4t - 1 by Lemma 6. That is,  $d \leq 4t$ , proving that  $\mathrm{VC}_{\geq}(\mathcal{P}_t) \leq 4t$ .

Now, we show that there is no set of 4t points shattered by t-sparse polynomials.

Assume that  $VC_{\geq}(\mathcal{P}_t)=4t$ . Let  $S=\{(x_i,y_i)\}_{i=1,\dots,4t}$  where  $x_1 < x_2 < \dots < x_{4t}$  be a set of points shattered by t-sparse polynomials. Let  $f_1$  and  $f_2$  be t-sparse polynomials satisfying the two alternating labelings  $\sigma_1=(+,-,+,-,\cdots,+,-)$  and  $\sigma_2=(-,+,-,+,\cdots,-,+)$ .  $f_1$  and  $f_2$  have 4t-1 intersection points at  $z_1 < z_2 < \dots < z_{4t-1}$ , and  $(f_1-f_2)$  has to change its sign at each of its zeros. Hence, by Lemma 6 (3),  $(f_1-f_2)$  is odd, therefore both  $f_1$  and  $f_2$  are point symmetric.

We define regions  $R_i$  to be the set of points between two neighboring intersection points and bounded by  $f_1$  and  $f_2$ , i.e. (let  $z_0 = -\infty$ ,  $z_{4t} = +\infty$ )

$$R_i := \{ (x,y) \mid x \in [z_{i-1}, z_i], y \in [\min(f_1(x), f_2(x)), \max(f_1(x), f_2(x))] \}, \quad i = 1, \dots, 4t.$$

We note that  $(x_i, y_i) \in R_i$ .  $R_i$  is point-symmetric to  $R_{4t-i}$   $(R_i = \{(-x, -y) | (x, y) \in R_{4t-i}\})$ .

Consider the labelings  $\gamma_1$  and  $\gamma_2$  on S:

$$\gamma_{1} = (\underbrace{-, +, -, +, \dots, -, +}_{2t}, \underbrace{+, -, +, -, \dots, +, -}_{2t}),$$

$$\gamma_{2} = \gamma_{1}^{-1} = (\underbrace{+, -, +, -, \dots, +, -}_{2t}, \underbrace{-, +, -, +, \dots, -, +}_{2t}).$$

We prove that there are no t-sparse polynomials satisfying  $\gamma_1$  and  $\gamma_2$  on S. For purpose of contradiction assume that  $g_1$ ,  $g_2$  are t-sparse polynomials satisfying  $\gamma_1$  and  $\gamma_2$  on S.

 $g_1$  and  $g_2$  have at least 4t-2 intersection points. Let  $c_1$ ,  $c_2$  be the constant terms of  $g_1$ ,  $g_2$ ,  $G = g_1 - g_2 - (c_1 - c_2)$  and  $c = c_2 - c_1$ .

Assume  $c_1 \neq 0$  and  $c_2 \neq 0$ . Then G is (2t-2)-sparse. Hence by Lemma 6, G = c holds for at most 4t-4 points, contradicting the assertion that  $g_1$  and  $g_2$  have at least 4t-2 intersection points.

Assume  $c_1=0$  and  $c_2\neq 0$ . Then G is (2t-1)-sparse, and G=c has to hold for at least 4t-2 points. Hence by Lemma 6 G is even, so both  $g_1$  and  $g_2$  are axis symmetric. Let  $v_1< v_2< \ldots < v_{2t-1}< v_{2t+1}< \ldots < v_{4t-1}$  be the intersection points of  $g_1$  and  $g_2$ . We define regions  $T_i$ , similar to the definition of the regions  $R_i$ , to be the set of points between two neighboring intersection points of  $g_1$  and  $g_2$  bounded by  $g_1$  and  $g_2$ , i.e. (let  $v_0=-\infty$ ,  $v_{2t}=0$ ,  $v_{4t}=+\infty$ )

$$T_j := \{ (x, y) \mid x \in [v_{j-1}, v_j], y \in [\min(g_1(x), g_2(x)), \max(g_1(x), g_2(x))] \}, \quad j = 1, \dots, 4t.$$

(We divided the region between  $v_{2t-1}$  and  $v_{2t+1}$  into two regions because of numbering reasons.)  $T_j$  is axis symmetric to  $T_{4t-j}$   $\{(-x,y)|(x,y)\in T_{4t-j}\}$ ).

We note that  $(x_i, y_i) \in T_i$ . Since  $(x_i, y_i) \in R_i$ , the intersection  $R_i \cup T_i \neq \emptyset$  for  $i = 1, \ldots, 4t$ . Suppose  $R_i \cap \{y = 0\} = \emptyset$ . Then  $T_i \cap \{y = 0\} \neq \emptyset$  since the set  $R_i$  is point symmetric to  $R_{4t-i}$  and the region  $T_i$  is axis symmetric to  $T_{4t-i}$ .

For each  $1 \leq i \leq 4t$ ,  $R_i \cap \{y=0\} \neq \emptyset$  forces  $f_1$  or  $f_2$  to have at least two zeros in  $[z_{i-1}, z_i]$ . Therefore by Lemma 6, there are at least 2t+2 regions  $R_i$  such that  $R_i \cap \{y=0\} = \emptyset$ . By a similar counting argument there are at most 2t-2 regions such that  $T_i \cap \{y=0\} \neq \emptyset$  contradicting that for each i with  $R_i \cap \{y=0\} = \emptyset$  we have  $T_i \cap \{y=0\} \neq \emptyset$ . Hence we contradicted the assumption  $c_1 = 0$  and  $c_2 \neq 0$ . The case  $c_1 \neq 0$  and  $c_2 = 0$  is symmetric to this case.

Now assume both  $c_1 = 0$  and  $c_2 = 0$ . For i = 1, ..., 4t we define

$$R_i^+ := \{ (x,y) \mid (x,y) \in R_i, y \ge g_1(x) \}$$
 and  $R_i^- := \{ (x,y) \mid (x,y) \in R_i, y < g_1(x) \}.$ 

Since  $g_1$  is point symmetric to the origin,  $R_i^+$  is point symmetric to  $R_{4t-i}^-$ . We show that  $R_i^+, R_i^- \neq \emptyset$ . Assume  $R_i^+ = \emptyset$ . Then  $\gamma_1(i) = -$ . Furthermore  $R_{4t-i}^- = \emptyset$  and  $\gamma_1(4t-i) = +$  contradicting the construction of  $\gamma_1$ .

We define for  $g_2$  the sets  $\bar{R}_i^+$  and  $\bar{R}_i^-$  similar to  $R_i^+$  and  $R_i^-$ . As above,  $\bar{R}_i^+, \bar{R}_i^- \neq \emptyset$ . Analogously, since  $\gamma_2 = \gamma_1^{-1}$ , the intersections  $R_i^* \cap \bar{R}_i^*$  may not be empty. Hence  $g_1$  and  $g_2$  have to intersect in each region  $R_i$ , i.e.  $(g_1 - g_2)$  has to have at least 4t zeros which contradicts the assumption that  $g_1$  and  $g_2$  are t-sparse.

Therefore there are no t-sparse polynomials satisfying  $\gamma_1$  and  $\gamma_2$  on S. Hence there is no set of 4t points shattered by t-sparse polynomials.

We note that the bounds derived in this section remain valid when restricted to t-sparse polynomials over the rational numbers and t-sparse polynomials over the integers.

Let  $\mathcal{P}_t^+$  denote the class of t-sparse polynomials over the positive real numbers. Then, following the proofs in this section we can derive the exact  $VC_{\geq}$  dimension of the class  $\mathcal{P}_t^+$ :

$$VC_{\geq}(\mathcal{P}_t^+) = 2t.$$

Furthermore our results can be transferred to sparse rational functions. Let  $\mathcal{R}_t$  denote the class of real rational functions with t-sparse numerator and t-sparse denominator. Following the proof of Lemma 7, we derive the upper bound

$$VC_{>}(\mathcal{R}_t) \leq 4t^2$$
.

Because of the finiteness of the VC<sub> $\geq$ </sub> dimension of the classes  $\mathcal{P}_t$  and  $\mathcal{R}_t$ , we can state the following theorem without explicitly giving learning algorithms for these classes ([BEHW 87]):

**Theorem 8.** The classes of sparse polynomials and sparse rational functions are uniformly learnable.

### 3 Approximating Polynomial Regression

One of the central problems in computational regression theory is the problem of determining the number of terms in an arranged system of functions. The most important case of this problem is the approximation of polynomial regression (cf. [Vap 82], pp. 254–258). For underlying definitions and terminology see [Po 84], [Vap 82].

The classical scheme of approximating polynomial regression, which involves the determination of the true degree n of regression and the expansion in a system of n orthogonal polynomials of degree  $1, 2, \ldots, n$ , can be successfully implemented only when large samples are used. The reason for this is the (possibly) large degree of regression and therefore the large  $\epsilon$ -VC dimension (capacity) of the class of polynomials of degree n. The problem for small samples remained open. Here we are giving solution to this problem.

Hence this problem reduces to the determination of the  $\epsilon$ -VC dimension (capacity) of sparse polynomials (independent of the degree). We prove linear bounds on the  $\epsilon$ -VC dimension of t-sparse polynomials, and, as a direct consequence, derive the surprising result that the regression function can be approximated uniformly by sparse polynomials.

First, we bound the  $\epsilon$ -VC dimension of the class  $\mathcal{P}_t$ . As a remark, we note that  $\epsilon$ -VC( $\mathcal{P}_t$ ) is independent of  $\epsilon$ , i.e.

$$\epsilon_1$$
-VC( $\mathcal{P}_t$ ) =  $\epsilon_2$ -VC( $\mathcal{P}_t$ ),  $\epsilon_1, \epsilon_2 > 0$ .

PROOF. Let  $d = \epsilon_1\text{-VC}(\mathcal{P}_t)$  and  $S_{\epsilon_1} = \{(x_i, y_i)\}_{i=1,\dots,d}$  be a set of points shattered (in  $\epsilon_1$ -sense) by the set of t-sparse polynomials  $\{f_\sigma\}_{\sigma\in\{+,-\}^d}\subset\mathcal{P}_t$ , i.e.

$$\forall i = 1, \dots, d \ \forall \sigma \in \{+, -\}^d : |f_{\sigma}(x_i) - y_i| \begin{cases} \leq \epsilon_1 & \sigma(i) = + \\ > \epsilon_1 & \sigma(i) = - \end{cases}.$$

Hence

$$\forall i = 1, \dots, d \ \forall \sigma \in \{+, -\}^d : \left| \frac{\epsilon_1}{\epsilon_2} f_{\sigma}(x_i) - \frac{\epsilon_1}{\epsilon_2} y_i \right| \left\{ \begin{array}{l} \leq \epsilon_2 & \sigma(i) = + \\ > \epsilon_2 & \sigma(i) = - \end{array} \right.,$$

therefore the set  $S_{\epsilon_2} = \{(x, \frac{\epsilon_1}{\epsilon_2}y) \mid (x, y) \in S_{\epsilon_1}\}$  of size d is shattered (in  $\epsilon_2$ -sense) by the set of t-sparse polynomials  $\{\frac{\epsilon_1}{\epsilon_2}f_\sigma\}_{\sigma\in\{+,-\}^d} \subset \mathcal{P}_t^{\mathcal{P}}$ . Hence  $\epsilon_2\text{-VC}(\mathcal{P}_t) \geq \epsilon_1\text{-VC}(\mathcal{P}_t)$  and vice versa.

Lemma 9.

$$\epsilon$$
-VC( $\mathcal{P}_t$ )  $\geq$  VC>( $\mathcal{P}_t$ ).

PROOF. Let  $d = VC_{\geq}(\mathcal{P}_t)$  and  $S_{\geq} = \{(x_i, y_i)\}_{i=1,\dots,d}$  be a set of points shattered (in  $\geq$ -sense) by the set of t-sparse polynomials  $\{f_{\sigma}\}_{{\sigma}\in\{+,-\}^d}\subset \mathcal{P}_t$ , i.e.

$$\forall i = 1, ..., d \ \forall \sigma \in \{+, -\}^d : f_{\sigma}(x_i) - y_i \begin{cases} \leq 0 & \sigma(i) = + \\ > 0 & \sigma(i) = - \end{cases}$$

Let  $\epsilon$  be defined by

$$\epsilon = \max_{i=1,...,d} \max_{\sigma,\sigma(i)=+} y_i - f_{\sigma}(x_i).$$

Then

$$\forall i = 1, \dots, d \ \forall \sigma \in \{+, -\}^d : |f_{\sigma}(x_i) - (y_i - \epsilon)| \begin{cases} \leq \epsilon & \sigma(i) = + \\ > \epsilon & \sigma(i) = - \end{cases}.$$

Hence the set  $S_{\epsilon} = \{(x, y - \epsilon) \mid (x, y) \in S_{\geq}\}$  of size d is shattered (in  $\epsilon$ -sense) by the set of t-sparse polynomials  $\{f_{\sigma}\}_{{\sigma} \in \{+,-\}^d} \subset \mathcal{P}_t$ . Hence  $\epsilon$ -VC $(\mathcal{P}_t) \geq$  VC $_{\geq}(\mathcal{P}_t)$ .

We introduce the following lemma to derive an upper bound on  $\epsilon$ -VC( $\mathcal{P}_t$ ).

**Lemma 10.** Let  $S = \{(x_i, y_i)\}_{i=1,\dots,4}$  where  $x_1 < x_2 < x_3 < x_4$  be a set of points and let  $\sigma_1 = (+, -, -, +)$ ,  $\sigma_2 = (-, +, +, -)$ ,  $\sigma_3 = (+, -, +, -)$ ,  $\sigma_4 = (-, +, -, +)$  be labelings on S. Let  $\{f_i\}_{i=1,\dots,4}$  be continuous functions satisfying  $\sigma_i$  on S (in  $\epsilon$ -sense). Then there is an intersection of either  $(f_1, f_2)$  or  $(f_1, f_3)$  or  $(f_1, f_4)$  or  $(f_3, f_4)$  in the interval  $(x_1, x_4)$ .

PROOF. Consider the 2<sup>8</sup> cases for  $f_i(x_j) > y_j + \epsilon$  or  $f_i(x_j) < y_j - \epsilon$  if  $\sigma_i(j) = -$ .

**Lemma 11.** The  $\epsilon$ -VC dimension of t-sparse polynomials is at most 48t-9.

PROOF. Let  $d = \epsilon \text{-VC}(\mathcal{P}_t)$  and  $S = \{(x_i, y_j)_{i=1,...,d} \text{ where } x_1 < x_2 < ... < x_d \text{ be a set of points of size } d \text{ shattered by } t\text{-sparse polynomials.}$  Consider the labelings  $\sigma_1 = \epsilon$ 

 $(+,-,-,+,-,-,+,-,-,\dots), \sigma_2 = (-,+,+,-,+,+,-,+,+,\dots), \sigma_3 = (+,-,+,-,+,-,\dots)$  and  $\sigma_4 = (-,+,-,+,-,+,\dots)$ . Let  $f_1,\ldots,f_4$  be t-sparse polynomials satisfying  $\sigma_1,\ldots,\sigma_4$ . Then, by Lemma 10 there are two polynomials with at least d/12 intersections and with Lemma 6 we conclude that  $d \leq 12(4t-1) + 3 = 48t-9$ .

Now we state our main theorem, solving the problem of Vapnik [Vap 82].

**Theorem 12.** The polynomial regression can be approximated uniformly by sparse polynomials for small samples.  $\Box$ 

#### Acknowledgements

We thank Manuel Blum, Allan Borodin, Sally Floyd, Les Valiant and Manfred Warmuth for the number of interesting conversations. The discussion with Vladimir Vapnik has led us to the solution of the problem of the polynomial regression function.

#### References

- [BT 88] Ben-Or, M., Tiwari, P., A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation, Proc. 20<sup>th</sup> ACM STOC (1988), pp. 301–309.
- [BEHW 87] Blumer, A., Ehrenfeucht, A., Hausler, D., Warmuth, M., Learnability and the Vapnik-Chervonenkis Dimension, UC Santa Cruz, Tech. Rep. UCSC-CRL-87-20, 1987.
- [BT 89] Borodin, A., Tiwari, P., On the Decidability of Sparse Univariate Polynomial Interpolation, IBM Research Report RC 14923 (#66763), Sep. 1989.
- [Fl 89] Floyd, S., Space-Bounded Learning and the Vapnik-Chervonenkis Dimension, Manuscript, International Computer Science Institute, Berkeley, 1989.
- [GK 87] Grigoriev, D.Yu., Karpinski, M., The Matching Problem for Bipartite Graphs with Polynomially Bounded Permannets Is in NC, Proc. 28<sup>th</sup> IEEE FOCS (1987), pp. 166–172.
- [GKS 88] Grigoriev, D.Yu., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields, University of Bonn, Research Report No. 8523-CS, 1988.
- [Ha 89] Hausler, D., Generalizing the PAC Model: Sample Size Bounds From Metric Dimension-based Uniform Convergence Results, Proc. 30<sup>th</sup> IEEE FOCS (1989), pp. 40–45.

- [KV 89] Kearns, M., Valiant, L.G., Cryptographic Limitations on Learning Boolean Formulae and Finite Automata, Proc. 21<sup>st</sup> ACM STOC (1989), pp. 433–444.
- [Po 84] Pollard, D., Convergence of Stochastic Processes, Springer-Verlag, 1984.
- [Val 84] Valiant, L.G., A Theory of the Learnable, Comm. ACM, 27(11), 1984, pp. 1134–1142.
- [Vap 82] Vapnik, V.N., Estimation of Dependences Based on Empirical Data, Springer-Verlag, 1982.
- [Vap 89] Vapnik, V.N., Inductive Principles of the Search for Empirical Dependences (Methods Based on Weak Convergence of Probability Measures), Proc. of the 2<sup>nd</sup> Workshop on Computational Learning Theory, 1989.
- [VC 71] Vapnik, V.N., Chervonenkis, A.Y., On the Uniform Convergence of Relative Frequencies of Events and their Probabilities, Th. Prob. and its Appl., 16(2), 1971, pp. 264–280.