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1 IntroductionThe paper studies the problem of computational identi�cation (learnability) of sparse realpolynomials and rational functions.In [Val 84], Valiant introduced a model of learning concepts from examples taken from anunknown distribution. In this model, a concept c from a class C is a subset of an instancespace X . Let C be a class of concepts from X . A labeled example < x;+ > or < x;� > of atarget concept c is an element of X , along with a label '+' or '�', indicating whether x is amember of the set c. In the Valiant model of learning, each example is drawn independentlyfrom a �xed but unknown distribution P on X . Each example is labeled either as a positiveor as a negative example, consistently with the unknown target concept c.The goal of the learning algorithm is to compute a good uniform approximation of thetarget concept, with high probability. Upper and lower bounds on the sample complexityfor learning various concept classes have been given in [VC 71], [BEHW 87], [Fl 89]. Thesebounds are based on the Vapnik-Chervonenkis (VC) dimension of a class C.For the corresponding problem of interpolation of polynomials over �elds of characteristiczero cf. [GK 87], [BT 88] and over �nite �leds cf. [GKS 88].De�nition 1. For a concept class C on X and for S � X , let �C(S) be the set ofsubsets T of S such that T = S \ c for some concept c in C. Thus �C(S) is the restriction ofconcept class C to the set S. If �C(S) = 2S , then the set S is shattered by C. The Vapnik-Chervonenkis dimension (VC dimension) of the class C is the largest integer d such that someset S � X of size d is shattered by C.This paper explores the VC dimension of the concept class Pt consisting of the t-sparsepolynomials over the real numbers, i.ePt = f f j f 2 IR[x]; f is t-sparse g:Valiant's model of learning can be thought of as learning the border between positive andnegative examples. In this situation we consider f0; 1g-valued indicator functions ([Vap 82]).Hence, in the context of the Problem of Pattern Recognition [Vap 82], we de�ne examples(x; y) from the instance space X = (IR; IR) to be labeled positive if the point (x; y) lies'above' the t-sparse polynomial f (f 2 Pt the unknown target concept), and vice versa, i.e.< (x; y);+> () y � f(x) and < (x; y);�> () y < f(x):Let S � (IR; IR) be the set of points f(xi; yi)gi=1;:::;d of size d for x1 < x2 < : : : < xd. At-sparse polynomial f is said to satisfy a labeling � 2 f+;�gd on S if the points (xi; yi) arepositive examples for f if �(i) = +, and negative examples for f if �(i) = �. The set S is2



shattered by the class of t-sparse polynomials Pt, i� for each labeling � 2 f+;�gd there existsa t-sparse polynomial f� satisfying � on S. We denote the VC dimension of the set Pt in thiscontext by VC�(Pt).Several generalizations of the standard PAC-model have been considered (cf. [Ha 89],[Vap 89]) in order to deal with real-valued functions instead with the indicator functionsimplied by the class Pt as above. We will use the notion proposed in [Ha 89].Here for each f 2 Pt, an indicator function I(f) is de�ned byI(f)(x; y; �) = ( 1 if jf(x)� yj � �0 otherwise ;where � is any positive real number.We de�ne �-VC(Pt) = VC(I(Pt)). Examples (x; y) from the instance space X = (IR; IR)are labeled positive if the point (x; y) lies within �-distance from the unknown target function,and vice versa.This paper is organized as follows.Section 2 gives lower and upper bounds on the VC� dimension of sparse polynomials,proving that the class of sparse polynomials is uniformly learnable (cf. [BEHW 87]). Fur-thermore, upper and lower bounds on the sample complexity for learning sparse polynomialscan be derived ([Fl 89], [Ha 89]). The more complete discussion of underlying algorithms andtheir analysis will be given in a full version of this paper.Section 3 generalizes these bounds for the �-VC dimension of t-sparse polynomials. Apply-ing results of Vapnik ([Vap 82]), we prove the existence of algorithms that approximate theregression function uniformly by sparse polynomials.2 Lower and Upper Bounds on VC�(Pt)2.1 Lower bounds on VC�(Pt)We start with a lower bound on the VC� dimension of 1-sparse polynomials.Lemma 2. The VC� dimension of 1-sparse polynomials is at least 3.Proof. We show that for each labeling � 2 f+;�g3 there is a 1-sparse polynomial f�satisfying � on the set S = f(�1; 0); (1; 2); (4; 14)g of size 3. Choose for example3



� f� � f�� � � 15 + � � 5x� � + 3 + � + 3x� + � x2 + + � x3� + + 1 + + + -1 2Remark 3. Let a set S of size d be shattered by the class of t-sparse polynomials.Then there is a set Z = f(xi; yi)gi=1;:::;d and constants �i > 0, i = 1; : : : ; d, such that every setS 0 = f (�xi; �yi) j j(�xi; �yi)� (xi; yi)j � �i gi=1;:::;d is shattered by t-sparse polynomials.Proof. For each � 2 f+;�gd there is a t-sparse polynomial f� satisfying � on S. Fori = 1; : : : ; d we de�ne the regionsMi = f (x; y) j 8� 2 f+;�gd : ( y � f� if �(i) = +y < f� if �(i) = � ) g:Since S is shattered by ff�g�2f+;�gd there exists a point (xi; yi) and a constant �i > 0such that the ball B�i(xi; yi) = f (x; y) j j(x; y)� (xi; yi)j � �i gis a prober subset of Mi, hence every set S 0 de�ned as above is shattered by the t-sparsepolynomials ff�g�2f+;�gd . 2Given a set shattered by t1-sparse polynomials and a set shattered by t2-sparse polynomialswe construct a set shattered by (t1 + t2)-sparse polynomials.Lemma 4. VC�(Pt1+t2) � VC�(Pt1) + VC�(Pt2).Proof. Let d1 = VC�(Pt1) and d2 = VC�(Pt2). Then there are sets of points S1 andS2 of size d1, d2 that are shattered by t1-sparse polynomials and t2-sparse polynomials, resp..Let S1 = f(x(1)i ; y(1)i )gi=1;:::;d1 and S2 = f(x(2)j ; y(2)j )gj=1;:::;d2 . For a labeling �(1) 2f+;�gd1 let f�(1) satisfy �(1) on S1, and for a labeling �(2) 2 f+;�gd2 let g�(2) satisfy �(2) onS2. In order to show that VC�(Pt1+t2) � d1 + d2, we modify the sets S1 and S2 (and thecorresponding polynomials shattering S1 and S2), such that the union of these modi�ed setsis shattered by polynomials derived by adding some of the modi�ed polynomials.First, we pull the sets S1, S2 apart, such that the points in S1 have an absolute x-coordinateof at most 1=2 and the points in S2 have an absolute x-coordinate of at least 2.4



So let c1 > 2 � max(xi;yi)2S1fjxijg and c2 < 12 � min(xj ;yj)2S2fjxj jg:By Remark 3, we can assume that c2 > 0.Then the set�S1 = f(�xi; �yi)gi=1;:::;d1 with (�xi; �yi) = ( 1c1xi; yi); (xi; yi) 2 S1is of size d1 and is shattered by the set of t1-sparse polynomials f �f�(1)g�(1)2f+;�gd1 , where�f�(1)(x) = f�(1)(c1x).Similarly the set�S2 = f(�xj ; �yj)gj=1;:::;d2 with (�xj ; �yj) = (c2xj ; yj); (xj ; yj) 2 S2is of size d2 and is shattered by the set of t2-sparse polynomials f�g�(2)g�(2)2f+;�gd2 , where�g�(2)(x) = g�(2)(c2x).�S1 and �S2 satisfy the conditions claimed above, i.e. 8(x; y) 2 �S1 : jxj < 1=2 and 8(x; y) 2�S2 : jxj > 2.Let �i be the minimal distance of the point (xi; yi) 2 �S1 to some shattering polynomial inf �f�(1)g, i.e. �i = minf2f �f�(1)g jf � yij:Similarly let �j be de�ned for each point (xj ; yj) 2 �S2 by�j = ming2f�g�(2)g jg � yj j:Again, by Remark 3 we can assume that �i; �j > 0.Our goal is to unite the two sets so that their union is shattered by polynomials derivedby adding two polynomials shattering the two single sets, i.e. the polynomial shattering the�rst set of the union may not interfere with the shattering of the second set and vice versa.We de�ne a polynomial F (x) to be an upper bound on the shattering polynomials for �S1in the region according to �S2, i.e.F (x) > maxf(x)2f �f�(1)g jf(x)j for all jxj � 2;in order to have an upper bound on the in
uence of the polynomials shattering �S1 on theshattering of the set �S2. 5



For some even integer N we transform the set �S2 into the set �SN2 by(xj ; yj) 2 �S2 =) (xj ; xNj � yj) 2 �SN2 :Since N is even, the set �SN2 is shattered by the set of t2-sparse polynomials fxN � �g�(2)g andthe minimal distance of the point (xj ; yj) 2 �SN2 to some shattering polynomial in fxN �g�(2)g isxNj � �j .We choose the parameter N to be large enough so that the following two conditions aresatis�ed:� The polynomials fxN � �g�(2)g may not interfere with the shattering of �S1, i.exNi � �g�(2) < �i for all (xi; yi) 2 �S1 and for all �(2) 2 f+;�gd2 ;i.e. let G be the maximum of the absolute values of the polynomials f�g�(2)(x)g forjxj � 1=2 and � the maximum over all �i. Then we choose N according toG � (12)N < �; i.e. N > log2(G� ):� The polynomials f �f�(1)g may not interfere with the shattering of �SN2 , i.eF (xj) < xNj � �j for all (xj ; yj) 2 �SN2 :We can choose such an N since all the xj 's have absolute value greater than 1 and N iseven.Let �S1 = f(x0i; y0i)gi=1;:::;d1 with x01 < : : : < x0d1 and let �SN2 = f(x00j ; y00j )gj=1;:::;d2 withx001 < : : : < x00d2 .Let S = �S1 [ �SN2 . S = f(xk; yk)gk=1;:::;d1+d2 and x1 < : : : < xd1+d2 . For � 2 f+;�gd1+d2we de�ne �1 2 f+;�gd1 and �2 2 f+;�gd2 by�1(i) = �(k) i� xk = x0i and �2(j) = �(k) i� xk = x00j :S is of size d1+d2 and is shattered by the set of (t1+t2)-sparse polynomials fh�g�2f+;�gd1+d2 ,where h� = f�1+xN g�2 . Hence the VC� dimension of the class of (t1+ t2)-sparse polynomialsis at least VC�(Pt1) + VC�(Pt2). 2We are now able to state our lower bound on the VC� dimension of t-sparse polynomials.Lemma 5. The VC� dimension of t-sparse polynomials is at least 3t.Proof. By Lemma 4, we have VC�(Pt) � t � VC�(P1). With Lemma 2 we haveVC�(Pt) � 3t. 26



2.2 Upper bounds on VC�(Pt)In order to develop upper bounds on the VC� dimension of t-sparse polynomials we makeintensive use of upper bounds on the number of zeros of t-sparse polynomials.Let ft = tXi=1cixei be a t-sparse polynomial over the real numbers. ft is said to be axissymmetric (or even) i� ft(x) = ft(�x) (i.e. 8i = 1; : : : ; t : ei is even) and ft is said to bepoint symmetric (or odd) i� ft(x) = �ft(�x) (i.e. 8i = 1; : : : ; t : ei is odd).Lemma 6. Let ft be a t-sparse polynomial over the real numbers. Let N(ft) denotethe number of real zeros of ft.(1) N(ft) � 2t� 1. There are t-sparse polynomials with 2t� 1 zeros.(2) Let N(ft) = 2t� 1. Then ft is either odd or even.(3) Let N(ft) = 2t� 1. Then ft changes sign on each of its zeros i� ft is odd, and changessign at each of its zeros except at the origin i� ft is even.(4) If ft = c has 2t solutions, c a constant, then ft is even.Proof. We show the statements by induction on t.The case t = 1 is trivial. So assume Lemma 6 holds for all k � t � 1.Let ft(x) = tXi=1cixei with e1 < e2 < : : : < et. Rewriteft(x) = ( tXi=2 cixei�e1| {z }gt�1(x) +c1) � xe1 :gt�1 is (t� 1)-sparse, so is its derivation g0t�1. g0t�1 has at most 2t� 3 real zeros, thereforegt�1 + c1 has at most 2t� 2 zeros. Hence the number of zeros of ft is bounded by 2t� 1. Onthe other hand there are polynomials gt�1 s.t. gt�1 + c1 has exactly 2t� 2 zeros. Hence thereare t-sparse polynomials with exactly 2t � 1 real zeros. This proves the �rst statement.Assume N(ft) = 2t � 1. Then (gt�1(x) + c1) has to have 2t � 2 zeros, hence by (4)(gt�1(x) + c1) is even. This proves (2).Since (gt�1(x) + c1) is even, (gt�1(x) + c1) changes sign at each of its zeros except at theorigin. Hence ft changes sign at each of its zeros i� e1 is odd, and changes sign at each of itszeros except at the origin i� e1 is even. This proves (3).7



If ft = c has 2t solutions then f 0t has 2t � 1 zeros and has to change sign on each of itszeros. Therefore f 0t is odd and ft is even. This proves (4). 2We now state the upper bound on the VC� dimension of t-sparse polynomials over thereal numbers.Lemma 7. The VC� dimension of t-sparse polynomials is at most 4t � 1.Proof. First, we prove that VC�(Pt) � 4t.Let d = VC�(Pt) and S = f(xi; yi)gi=1;:::;d, where x1 < x2 < : : : < xd be a set of pointsof size d shattered by t-sparse polynomials. Let f1 and f2 be t-sparse polynomials satisfyingthe two alternating labelings of the points in S. Then between each pair of points (xi; yi) and(xi+1; yi+1) in S, f1 and f2 must intersect. That is, (f1 � f2) has at least d � 1 zeros. Since(f1� f2) is 2t-sparse, the number of zeros is bounded by 4t� 1 by Lemma 6. That is, d � 4t,proving that VC�(Pt) � 4t.Now, we show that there is no set of 4t points shattered by t-sparse polynomials.Assume that VC�(Pt) = 4t. Let S = f(xi; yi)gi=1;:::;4t where x1 < x2 < : : : < x4t be a setof points shattered by t-sparse polynomials. Let f1 and f2 be t-sparse polynomials satisfyingthe two alternating labelings �1 = (+;�;+;�; � � � ;+;�) and �2 = (�;+;�;+; � � � ;�;+). f1and f2 have 4t � 1 intersection points at z1 < z2 < : : : < z4t�1, and (f1 � f2) has to changeits sign at each of its zeros. Hence, by Lemma 6 (3), (f1 � f2) is odd, therefore both f1 andf2 are point symmetric.We de�ne regions Ri to be the set of points between two neighboring intersection pointsand bounded by f1 and f2, i.e. (let z0 = �1, z4t = +1)Ri := f (x; y) j x 2 [zi�1; zi]; y 2 [min(f1(x); f2(x));max(f1(x); f2(x))] g; i = 1; : : : ; 4t:We note that (xi; yi) 2 Ri. Ri is point-symmetric to R4t�i (Ri = f(�x;�y)j(x; y) 2R4t�ig).Consider the labelings 
1 and 
2 on S:
1 = (�;+;�;+; : : : ;�;+| {z }2t ;+;�;+;�; : : : ;+;�| {z }2t );
2 = 
�11 = (+;�;+;�; : : : ;+;�| {z }2t ;�;+;�;+; : : : ;�;+| {z }2t ):We prove that there are no t-sparse polynomials satisfying 
1 and 
2 on S. For purposeof contradiction assume that g1, g2 are t-sparse polynomials satisfying 
1 and 
2 on S.8



g1 and g2 have at least 4t � 2 intersection points. Let c1, c2 be the constant terms of g1,g2, G = g1 � g2 � (c1 � c2) and c = c2 � c1.Assume c1 6= 0 and c2 6= 0. Then G is (2t� 2)-sparse. Hence by Lemma 6, G = c holds forat most 4t�4 points, contradicting the assertion that g1 and g2 have at least 4t�2 intersectionpoints.Assume c1 = 0 and c2 6= 0. Then G is (2t � 1)-sparse, and G = c has to hold for atleast 4t� 2 points. Hence by Lemma 6 G is even, so both g1 and g2 are axis symmetric. Letv1 < v2 < : : : < v2t�1 < v2t+1 < : : : < v4t�1 be the intersection points of g1 and g2. Wede�ne regions Ti, similar to the de�nition of the regions Ri, to be the set of points betweentwo neighboring intersection points of g1 and g2 bounded by g1 and g2, i.e. (let v0 = �1,v2t = 0, v4t = +1)Tj := f (x; y) j x 2 [vj�1; vj ]; y 2 [min(g1(x); g2(x));max(g1(x); g2(x))] g; j = 1; : : : ; 4t:(We divided the region between v2t�1 and v2t+1 into two regions because of numbering reasons.)Tj is axis symmetric to T4t�j (Tj = f(�x; y)j(x; y) 2 T4t�jg).We note that (xi; yi) 2 Ti. Since (xi; yi) 2 Ri, the intersection Ri[Ti 6= ; for i = 1; : : : ; 4t.Suppose Ri\fy = 0g = ;. Then Ti\fy = 0g 6= ; since the set Ri is point symmetric to R4t�iand the region Ti is axis symmetric to T4t�i.For each 1 � i � 4t, Ri\fy = 0g 6= ; forces f1 or f2 to have at least two zeros in [zi�1; zi].Therefore by Lemma 6, there are at least 2t + 2 regions Ri such that Ri \ fy = 0g = ;. Bya similar counting argument there are at most 2t � 2 regions such that Ti \ fy = 0g 6= ;contradicting that for each i with Ri \ fy = 0g = ; we have Ti \ fy = 0g 6= ;. Hence wecontradicted the assumption c1 = 0 and c2 6= 0. The case c1 6= 0 and c2 = 0 is symmetric tothis case.Now assume both c1 = 0 and c2 = 0. For i = 1; : : : ; 4t we de�neR+i := f (x; y) j (x; y) 2 Ri; y � g1(x) g and R�i := f (x; y) j (x; y) 2 Ri; y < g1(x) g:Since g1 is point symmetric to the origin, R+i is point symmetric to R�4t�i. We show thatR+i ; R�i 6= ;. Assume R+i = ;. Then 
1(i) = �. Furthermore R�4t�i = ; and 
1(4t � i) = +contradicting the construction of 
1.We de�ne for g2 the sets �R+i and �R�i similar to R+i and R�i . As above, �R+i ; �R�i 6= ;.Analogously, since 
2 = 
�11 , the intersections R�i \ �R�i may not be empty. Hence g1 and g2have to intersect in each region Ri, i.e. (g1�g2) has to have at least 4t zeros which contradictsthe assumption that g1 and g2 are t-sparse.Therefore there are no t-sparse polynomials satisfying 
1 and 
2 on S. Hence there is noset of 4t points shattered by t-sparse polynomials. 29



We note that the bounds derived in this section remain valid when restricted to t-sparsepolynomials over the rational numbers and t-sparse polynomials over the integers.Let P+t denote the class of t-sparse polynomials over the positive real numbers. Then,following the proofs in this section we can derive the exact VC� dimension of the class P+t :VC�(P+t ) = 2t:Furthermore our results can be transferred to sparse rational functions. Let Rt denote theclass of real rational functions with t-sparse numerator and t-sparse denominator. Followingthe proof of Lemma 7, we derive the upper boundVC�(Rt) � 4t2:Because of the �niteness of the VC� dimension of the classes Pt and Rt, we can state thefollowing theorem without explicitly giving learning algorithms for these classes ([BEHW 87]):Theorem 8. The classes of sparse polynomials and sparse rational functions are uni-formly learnable.3 Approximating Polynomial RegressionOne of the central problems in computational regression theory is the problem of deter-mining the number of terms in an arranged system of functions. The most important case ofthis problem is the approximation of polynomial regression (cf. [Vap 82], pp. 254{258). Forunderlying de�nitions and terminology see [Po 84], [Vap 82].The classical scheme of approximating polynomial regression, which involves the deter-mination of the true degree n of regression and the expansion in a system of n orthogonalpolynomials of degree 1; 2; : : : ; n, can be successfully implemented only when large samples areused. The reason for this is the (possibly) large degree of regression and therefore the large�-VC dimension (capacity) of the class of polynomials of degree n. The problem for smallsamples remained open. Here we are giving solution to this problem.Hence this problem reduces to the determination of the �-VC dimension (capacity) of sparsepolynomials (independent of the degree). We prove linear bounds on the �-VC dimensionof t-sparse polynomials, and, as a direct consequence, derive the surprising result that theregression function can be approximated uniformly by sparse polynomials.First, we bound the �-VC dimension of the class Pt. As a remark, we note that �-VC(Pt)is independent of �, i.e. �1-VC(Pt) = �2-VC(Pt); �1; �2 > 0:10



Proof. Let d = �1-VC(Pt) and S�1 = f(xi; yi)gi=1;:::;d be a set of points shattered (in�1-sense) by the set of t-sparse polynomials ff�g�2f+;�gd � Pt, i.e.8i = 1; : : : ; d 8� 2 f+;�gd : jf�(xi)� yij( � �1 �(i) = +> �1 �(i) = � :Hence 8i = 1; : : : ; d 8� 2 f+;�gd : j�1�2 f�(xi)� �1�2 yij( � �2 �(i) = +> �2 �(i) = � ;therefore the set S�2 = f(x; �1�2 y) j (x; y) 2 S�1g of size d is shattered (in �2-sense) by the set oft-sparse polynomials f �1�2 f�g�2f+;�gd � PPt . Hence �2-VC(Pt) � �1-VC(Pt) and vice versa.2 Lemma 9. �-VC(Pt) � VC�(Pt):Proof. Let d = VC�(Pt) and S� = f(xi; yi)gi=1;:::;d be a set of points shattered (in�-sense) by the set of t-sparse polynomials ff�g�2f+;�gd � Pt, i.e.8i = 1; : : : ; d 8� 2 f+;�gd : f�(xi)� yi ( � 0 �(i) = +> 0 �(i) = � :Let � be de�ned by � = maxi=1;:::;d max�;�(i)=+ yi � f�(xi):Then 8i = 1; : : : ; d 8� 2 f+;�gd : jf�(xi)� (yi � �)j( � � �(i) = +> � �(i) = � :Hence the set S� = f(x; y� �) j (x; y) 2 S�g of size d is shattered (in �-sense) by the set oft-sparse polynomials ff�g�2f+;�gd � Pt. Hence �-VC(Pt) � VC�(Pt). 2We introduce the following lemma to derive an upper bound on �-VC(Pt).Lemma 10. Let S = f(xi; yi)gi=1;:::;4 where x1 < x2 < x3 < x4 be a set of points andlet �1 = (+;�;�;+), �2 = (�;+;+;�), �3 = (+;�;+;�), �4 = (�;+;�;+) be labelings onS. Let ffigi=1;:::;4 be continuous functions satisfying �i on S (in �-sense). Then there is anintersection of either (f1; f2) or (f1; f3) or (f1; f4) or (f3; f4) in the interval (x1; x4).Proof. Consider the 28 cases for fi(xj) > yj + � or fi(xj) < yj � � if �i(j) = �. 2Lemma 11. The �-VC dimension of t-sparse polynomials is at most 48t� 9.Proof. Let d = �-VC(Pt) and S = f(xi; y)gi=1;:::;d where x1 < x2 < : : : < xd bea set of points of size d shattered by t-sparse polynomials. Consider the labelings �1 =11



(+;�;�;+;�;�;+;�;�; : : :), �2 = (�;+;+;�;+;+;�;+;+; : : :), �3 = (+;�;+;�;+;�; : : :)and �4 = (�;+;�;+;�;+; : : :). Let f1; : : : ; f4 be t-sparse polynomials satisfying �1; : : : ; �4.Then, by Lemma 10 there are two polynomials with at least d=12 intersections and withLemma 6 we conclude that d � 12(4t� 1) + 3 = 48t� 9. 2Now we state our main theorem, solving the problem of Vapnik [Vap 82].Theorem 12. The polynomial regression can be approximated uniformly by sparsepolynomials for small samples. 2AcknowledgementsWe thank Manuel Blum, Allan Borodin, Sally Floyd, Les Valiant and Manfred Warmuthfor the number of interesting conversations. The discussion with Vladimir Vapnik has led usto the solution of the problem of the polynomial regression function.References[BT 88] Ben-Or, M., Tiwari, P., A Deterministic Algorithm for Sparse Multivariate Poly-nomial Interpolation, Proc. 20th ACM STOC (1988), pp. 301{309.[BEHW 87] Blumer, A., Ehrenfeucht, A., Hausler, D., Warmuth, M., Learnability and theVapnik-Chervonenkis Dimension, UC Santa Cruz, Tech. Rep. UCSC-CRL-87-20,1987.[BT 89] Borodin, A., Tiwari, P., On the Decidability of Sparse Univariate PolynomialInterpolation, IBM Research Report RC 14923 (#66763), Sep. 1989.[Fl 89] Floyd, S., Space-Bounded Learning and the Vapnik-Chervonenkis Dimension,Manuscript, International Computer Science Institute, Berkeley, 1989.[GK 87] Grigoriev, D.Yu., Karpinski, M., The Matching Problem for Bipartite Graphs withPolynomially Bounded Permannets Is in NC, Proc. 28th IEEE FOCS (1987), pp.166{172.[GKS 88] Grigoriev, D.Yu., Karpinski, M., Singer, M., Fast Parallel Algorithms for SparseMultivariate Polynomial Interpolation over Finite Fields, University of Bonn,Research Report No. 8523-CS, 1988.[Ha 89] Hausler, D., Generalizing the PAC Model: Sample Size Bounds From MetricDimension-based Uniform Convergence Results, Proc. 30th IEEE FOCS (1989),pp. 40{45. 12
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