
An E�cient Parallel Algorithmfor the 3MIS Problem 1Elias Dahlhaus � Marek Karpinski yAbstractThe paper considers the problem of computing a maximal indepen-dent set in hypergraphs (see [Karp, Ramachandran 88] and [Beame,Luby 89]). We present an e�cient deterministic parallel algorithm forthe case when the maximal cardinality of any hyperedge is 3. The al-gorithm works in O(log4 n) parallel time with O(n+m) processors ona CREW PRAM and is optimal up to a polylogarithmic factor.Keywords: Design of algorithms, parallel algorithms, combi-natorial algorithms, computational complexity.�Department of Computer Science, University of BonnyDepartment of Computer Science, University of Bonn, and International ComputerScience Institute, Berkeley, California. Supported in part by Leibniz Center for Researchin Computer Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E682971We were informed recently, that Pierre Kelsen obtained independently the same result[Ke 90]. 1

0 Introduction.Given a hypergraph H= (V;H) with H a collection of subsets of V . TheMaximal Independent Set Problem (cf. [KR 88], [BL 89]) in a Hypergraph(HMIS) is the problem of �nding an inclusion maximal subset V 0 � V suchthat for no hyperedge h 2H, h � V 0 (called a maximal independent set ofH). Generally a set V 0 � V is called independent i� for no h2H;h�V 0.While the e�cient NCalgorithms for the maximal independent set prob-lem restricted to graphs are known (see [KW 84], [GS 87], [Lu 85]), the fastparallel solution for the HMIS remains open. Here we present an e�cientNCalgorithm for HMIS restricted to hypergraphs H= (V;H) such that eachh 2 H has cardinality at most 3, in short the 3MIS.This algorithm uses similar ideas as [GS 87]. We refer also to [BL 89],where a probabilistic parallel algorithm for 3MIS is also presented.In the �rst section we give the necessary terminology of the paper. Thesecond section formulates the main result. The third section describes theglobal strategy of the algorithm. We describe a coloring of the vertices suchthat each color forms an independent set. The fourth section explains, howto unify two such colors. The �fth section shows, how to compute a "largeenough" independent set. The sixth section gives a correctness analysis ofthe algorithm and the last section of the paper gives the complexity analysisof the algorithm.1 Notation.By a hypergraph wemean a pairH= (V;H) such thatH is a set of subsetsof V . V is the set of vertices and H is the set of hyperedges. The maximal size2

of a hyperedge h 2 H is called the dimension of H. For example the graphsare hypergraphs of dimension two.An independent set of a hypergraph H= (V;H) is de�ned as a subset V 0of V such that no hyperedge h 2 H is a subset of V 0 (cf. [KR 88]). Note thatin the case of graphs this notion of an independent set coincides with theusual notion of an independent set.By amaximal independent set wemean an inclusion maximal independentset.In the whole paper, n will denote the number of vertices n = #V , and mthe number of hyperedges, m = #H.Since we consider only hyperedges of dimension 3, each hyperedge can bedescribed by a data structure of size O(n +m).The computation model used in the paper is a CREW PRAM ([KR 88]).We assume, that an arithmetic operation on two numbers of length k needsO(log k) time and O(k) processors. (Since we operate here only on numbersof length O(log n) the processor exponent of an arithmetic operation is notrelevant for a processor analysis of the whole algorithm).2 The Main Result.We shall prove the followingTheorem: There exists an algorithm for computing a maximal indepen-dent set in hypergraphs of dimension 3 running in O(log4 n) parallel timeand O(n +m) processors on a CREW-PRAM.We note that the algorithm is optimal in processor-time product up to apolylogarithmic factor. 3

3 Global Description.We shall adopt the technique of [GS 87] to compute iteratively at everystep an independent set C such that for W (C) := fx j 9h2H hnC = x gthe set C [W (C) has cardinality at least c0 klog k , where k is the number ofvertices of the hyperedge in the actual step. Afterwards W (C)[C is deletedfrom the vertex set.In the whole algorithm we have to repeat this procedure O(log2 n) times(until only one vertex remains).Also to compute such a set C, we proceed similarly as in [GS 87], that wehave disjoint independent sets C1; : : : ; Cp and compute an edge coloring onthe complete graph of fC1 : : :Cpg. We select a color with the smallest 'loss'and paste the independent sets Ci; Cj together which are joined by an edgeof this color.4 Pasting two colors Ci; Cj together.Given a hypergraph H= (V;H) and a set fC1 : : :Cpg of colors.1. Let C 0ij := Cj n fx j 9h2H h�Ci[Cj ^ h \ Cj = fxg g(Set of vertices x of Cj , whose addition to Ci make Ci[fxg dependent)2. Let C 0ji := Ci n fxj9h 2 H h � Ci [C 0j ^ h \ Ci = fxgg3. Set Cij := C 0i [C 0j (Cij is independent).Lemma: Cij is independent.Proof of the Lemma: Let h be some hyperedge ofH such that h � Ci[Cj.Since h has a cardinality of at most 3, h \Ci or h \Cj has a size of at mostone. In the second case the x 2 h \ Cj does not belong to C 0ij . Therefore ifh � Ci [C 0ij , then h \ Ci has a size of at most one. But then the x 2 h \ Cidoes not belong to C 0ji . 4

End of the proof of the LemmaThe loss of i and j, denoted by l(i; j) = l(Ci; Cj) is #((Ci [Cj) n Cij).W (Ci) := fx 62 Ci j 9h2H hnCi = fxg gis the set of vertices, whose addition to Ci generate a non independent set.It is easily seen that Xi;j l(i; j) � Xi #W (Ci):The deciding step is computing an independent set such that#(C [W (C)) � c0 klog kwhere k is the number of vertices.5 Computing the independent set C.1. Let V = fv1 : : : vkg.Ci := fvig for each i = 1; : : : ; k; p = k.2. Repeat log k times:2.1. Color the edges of f[Ci; Cj] : i; j = 1; : : : ; pg minimally such thatno adjacent edges have the same color:If p is odd, color the edge [Ci; Cj] by i+ j mod p;if p is even, color [Ci; Cj] for i; j = 1; � � � p � 1 by i + j mod p � 1and [Ci; Cp] by 2imod p � 1 (see also [GS 87]).Let Dl be the set of [Ci; Cj] colored by l. (Note, that in the case,that p is even, we have q := p� 1 colors and in the case of an oddp we have p colors. It is easily seen that no adjacent edges havethe same color.)2.2. Select a color Dl such thatXfl(Ci; Cj) : [Ci; Cj] 2 Dlgis minimal;apply the pasting procedure of two colors for any [Ci; Cj] 2 Dl5

and unify Cij to a new color.Decolor all vertices in Ci [Cj n Cij.3. C is the remaining color.6 Correctness Analysis.Assume, for all colors in each step W (Ci) < C0klogk :Then for each step(p� 1) �Xfl(Ci; Cj) : [Ci; Cj] 2 Dlg� � Xi;j=1:::p l(Ci; Cj)� Xi W (Ci)< p � c0klog kTherefore we can assumeX f l(Ci; Cj) : [Ci; Cj] 2 Dl g < c00klog kfor some constant c00. But then at most c00klogk � log k = c00k vertices aredecolored after leaving the repeat loop (Step 2.). Therefore C must containat least (1� c00)k vertices. This is a contradiction.7 Complexity Analysis.Our computational model is the CREW PRAM.1. Computing W (Ci) :Let h = fx1; x2; x3g or h = fx1; x2g.For xi let C ih be the Cj such that xi 2 Cj.6

If Cj appears #h � 1 times as some C ik, then the xh 2 h n Cj is setto be in W (Cj). This can be done by O(n+m) processors in O(log n)time.2. C 0ij for i < j :For h 2 H such that Cj appears once delete h \ Cj from C 0ij (whichwas initialized as Cj).That can be done by O(n+m) processors and O(log n) time.3. We get the same analysis for C 0ij and j < i.4. The computation of the color of an edge f[Ci; Cj] : i; j = 1 : : : pg needsone processor and O(log n) time, since we only use an arithmetic oper-ation + on i and j, which are bounded by n (the lengths are boundedby log n). (see [GS 87]).5. Computing the losses of each coloring needs O(n+m) processors andO(log n) time, since we only have to compute losses and colors of pairsof old colors, where there are hyperedges contained in its union:Let Cx be the Ci such that x 2 Ci. Then we have to compute for eachhyperedge h and each pair x; y 2 h the losses and the colors of [Cx; Cy].The number of such [Cx; Cy] is bounded by 3n.6. Selecting the color of smallest loss needs O(k) processors and O(log n)time.7. The repeat loop needs O(log n) time. Therefore computing the inde-pendent set C needs O(log2) time.8. The algorithm for computing C must be repeated log2 n times to com-pute a maximal independent set (compare also [GS 87]).Therefore computing 3MIS needs O(n + m) processors and O(log4 n)time. �7

References[BL 89] Beame, P. and Luby, M. Parallel Search for Maximal Independencegiven Minimal Independence, Technical Report #TR-89-003, Inter-national Computer Science Institute, Berkeley, (1989); in Proc. 1stACM SIAM SODA (1990), pp. 212-218.[GS 87] Goldberg, M. and Spencer, T. A New Parallel Algorithm for theMaximal Independent Set Problem, 28th FOCS (1987), pp. 161-165[KR 88] Karp, R.M. and Ramachandran, V. A Survey of Parallel Al-gorithms for Shared-Memory Machines, Research Report No.UCB/CSD88/407, University of California, Berkeley (1988); inHandbook of Theoretical Computer Science A, MIT Press (1990),pp. 869-941.[KW 84] Karp, R. and Widgerson, A. A Fast Parallel Algorithm for theMaximal Independent Set Problem, 16th STOC (1984), pp. 266-272[Ke 90] Kelsen, P., An E�cient Parallel Algorithm for Finding a MaximalIndependent Set in Hypergraphs of Dimension 3, private commu-nication.[Lu 85] Luby, M. A Simple Parallel Algorithm for the Maximal Indepen-dent Set Problem 17th STOC (1985), pp. 1-10
8

