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Abstract

We give an efficient NC algorithm for finding a clique separator decomposition of
an arbitrary graph, that is, a series of cliques whose removal disconnects the graph.
This algorithm allows one to extend a large body of results which were originally
formulated for chordal graphs to other classes of graphs. Our algorithm is optimal to
within a polylogarithmic factor of Tarjan’s O(mn) time sequential algorithm. The
decomposition can also be used to find NC algorithms for some optimization prob-
lems on special families of graphs, assuming these problems can be solved in NC'for
the prime graphs of the decomposition. These optimization problems include: find-
ing a maximum-weight clique, a minimum coloring, a maximum-weight independent
set, and a minimum fill-in elimination order. We also give the first parallel algo-
rithms for solving these problems by using the clique separator decomposition. Our
maximum-weight independent set algorithm applied to chordal graphs yields the
most efficient known parallel algorithm for finding a maximum-weight independent

set of a chordal graph.
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1 Introduction

Decompositions are often used in studying graph problems. Many times a graph has a
property if and only if the pieces it is decomposed into also have that property. Sev-
eral graph classes have been characterized by the structure of their clique separators,
among them chordal graphs [Di 61, HS 58], path graphs (the intersection graphs of
paths in a tree) [MW 86], and Gallai graphs (graphs where every odd cycle of length
five or more contains two non-crossing chords) [Ga 77]. One of the original motivations
for studying the clique separator decomposition is related to the problem of recogniz-
ing perfect graphs [Wh 84]. If X is a clique separator of G and removing X leaves
connected components with vertex sets Vi, V5, ... Vi, then G is perfect if and only if
GViUX),G(VaUX),...,G(VrUX) are all perfect. The clique separator decomposition

is a perfection-preserving decomposition.

Decompositions are also useful in designing graph algorithms. The two techniques
commonly used with decompositions are divide-and-conquer and dynamic programming.
We repeatedly decompose a graph into smaller pieces until we obtain graphs that can
no longer be decomposed. These graphs are called prime graphs or atoms. We solve
the problems on these atoms and combine the solutions to find the solutions on larger
and larger components until we have the solution for the original graph. Recently, this
paradigm has been used to design several efficient parallel and sequential algorithms for

graph classes with small separators [BLW 85, HY 88].
Suppose X is a clique separator of (G. Then there is a vertex partition A, B, X such

that no vertex in A is adjacent to one in B. We can then decompose into two components
G'=G(AUX) and " = G(B U X), and then recursively perform the decomposition on
G’ and G” in turn until only prime graphs result. We can represent the decomposition of
G into G' and GG" as a binary tree where the leaves are prime graphs and the internal nodes
are clique separators. Following Tarjan’s [Ta 85] terminology, we call such a tree a binary
decomposition tree. Throughout this paper we will assume that each clique separator is
a minimal clique separator, because this results in smaller separators and fewer atoms in

the decomposition.

Whitesides [Wh 84] designed the first polynomial time sequential algorithm for finding
a clique separator decomposition. Her algorithm ran in O(n*m) time. Tarjan found a
faster algorithm which ran in O(nm) time. Burlet and Fonlupt gave an O(n?) algorithm
which checked whether a graph had a universal clique separator S, one whose removal
left each component of the graph with a vertex that was adjacent to all the vertices of 5.
They used this algorithm to help recognize Meyniel graphs, a class of perfect graphs where
every odd cycle contains at least two chords. These algorithms are the main sequential

algorithms for performing the decomposition.

In the third section of the paper we show how to efficiently parallelize the sequential

algorithms for finding a clique separator decomposition. The fastest published sequential



algorithm is due to Tarjan [Ta 85], but the algorithm he gave is inherently sequential. This
algorithm runs in O(nm) time by first finding a special ordering of the vertices called
a minimal elimination order. Dahlhaus and Karpinski [DK 89] have given a parallel
algorithm finding the minimal elimination order of an arbitrary graph, but we use a
different elimination order that can be obtained more efficiently. We show how a tree
representation of the graph can be constructed in parallel, where the edges of the tree
correspond to clique separators. Our parallel algorithm runs in O(log” n) time with O(nm)
processors on a CREW PRAM. The processor-time product of our algorithm is nearly
optimal. Our algorithm is related to, but more processor-efficient than an earlier version

by Dahlhaus and Karpinski [DK 88a] that runs in O(log® n) time using O(n*) processors.

In Section 4 we show how the decomposition can be used to solve several optimization
problems for special graph classes. In particular we give NC' algorithms for finding a
maximum clique, graph coloring, maximum independent set, and a minimum fill-in order
of a graph, assuming these problems can be solved in NC for the prime graphs in the
special graph class. The number of processors used by our parallel algorithms is at most
O(n) times the best known sequential running times for these problems. All four of these
problems are normally NP-complete, but can be solved in polynomial time for chordal
graphs, because the only prime chordal graphs are cliques. Our algorithms first construct
a tree representation of the graph and then apply tree processing techniques such as
terminal branch removal [NNS 87] and parallel tree contraction [MR 85]. We can also
find the chromatic polynomial of a graph assuming it is easy to do this on the prime

graphs.

2 Definitions

We let ¢ = (V, F) denote a graph with vertex set V and edge set E. Let n and m
denote the number of vertices and edges respectively. In this paper we will assume that
(i is connected. If X is a subset of V, then GG(X) is the subgraph induced by X. When
G(V — X)) is disconnected we say that X is a separator of G. A clique of i is a subgraph
of G in which every pair of vertices is connected by an edge. We call X a clique separator
of GG if the vertices of X form a clique and X is also a separator of G. Furthermore, X
is a minimal cliqgue separator of GG if it is a clique separator of G and no proper subset of
X is a clique separator. A perfect graph is one where the maximum clique size equals the
chromatic number for every induced subgraph. A chord of a cycle is an edge connecting
two non-consecutive vertices of the cycle. Chordal graphs are graphs where every cycle of

length greater than three contains a chord.



3 Parallel Decomposition Algorithms

The fastest methods depend on properties of chordal graphs for their efficiency so we will
review the needed results. First, we define some of the terms used to talk about chordal
graphs. An elimination order m is a numbering of the vertices of GG from 1 to n. We define
the fill-in F, induced by the order 7w to be the following set of edges:

Fr =A{[v,w]|v # w,[v,w] € E, and there is a path

v =0v1,0z2,...,0, = w in G such that 7(v;) < min{m(v),7(w)}

fori=2,...,k—1}.

A perfect elimination order, often abbreviated to PEQ, is an elimination order with no
induced fill-in. In a PEO, the higher-numbered neighbors or a vertex form a clique. An
order m is minimum if no other elimination order has a smaller cardinality fill-in, and =
is minimal if there is not an elimination order ¢ such that F, is properly included in F;.
The fill-in graphs for 7 is the graph G = (V, EU Fy). Tarjan’s algorithm depends on the

following theorems he proved:
Theorem 3.1 Any order m is a PEO of G.,.
Theorem 3.2 G has a PEO if and only if G is chordal.

Theorem 3.3 Let m be a minimal order. For any decomposition by clique separators,

every edge [v,w| € Fy is such that a unique atom contains both v and w.
Our algorithm depends on the following theorem which we prove.

Theorem 3.4 Let m be a minimal order of G. If C is a clique separator of G containing
no fill-in edges, then C s also a clique separator of G. Conversely, if C' is a clique

separator of G, then it is also a clique separator of G.

Proof: The first half of this theorem follows immediately since if C' is a clique separator
for a graph, then it is a clique separator for any subgraph that contains €' and has the same
number of vertices as the original graph. The second half follows from the correctness of
Tarjan’s algorithm. His algorithm checks the cliques induced by a vertex of GG, and its
higher-numbered neighbors to determine if they form a clique separator of G. Clearly any
clique in (G is also a clique of GG;. Any clique separator this algorithm finds in G will also

be a clique separator of G since 7 is a PEO of G;. |

The tree representation we use to parallelize the algorithm is a generalization of the
notion of a clique tree of a chordal graph. A clique tree of a chordal graph G' = (V| F)
is a tree T' whose nodes are the maximal cliques of G and whose arcs are defined in such
a way that the set of maximal cliques containing v € V' form a connected subtree of T
Buneman [Bu 74] and Gavril [Ga 74] have shown that every chordal graph has a clique tree
representation. For an arbitrary graph G = (V, F) we define a simplicial tree to be a tree T
whose nodes are the atoms of G and whose arcs are defined so that the atoms containing

a vertex v € V form a subtree of T'. Efficient parallel algorithms exist for finding a



clique tree in parallel. We will show that the clique separator decomposition of (G can be
computed in parallel by giving an efficient algorithm for finding a simplicial tree of G.
Given the simplicial tree of (7, it is easy to find the clique separator decomposition because
the intersection of two adjacent atoms in the simplicial tree forms a clique separator of

G.

Our algorithm is composed of the following steps:

1. Compute a clique separator-preserving chordal extension G' = (V, KU F') of G.
(Remark: F' and E need not to be disjoint)

2. Find a PEO of G’. Use this to find a clique tree of G’, and then convert it to a
simplicial tree of (G. The intersection of neighboring atoms in the simplicial tree will

be a clique separator of G.

The succeeding subsections give a more detailed analysis of this algorithm.

3.5.1. An Outline of the Chordal-extension Algorithm.

Here we present a Clique Separator Decomposition algorithm which combines methods
introduced recently in [DK 88b] with certain extensions of P. Klein’s FOCS 88 [KI 88|
method for chordal graphs. The algorithm first computes a chordal extension ;' which
preserves clique separators, together with a perfect elimination order on GG'. The last step
is to check for each clique separator of ' = (V, E') := (V, E' U F), whether it is a clique
separator of ¢ (that means a complete subgraph).

We begin with the algorithm which computes an ascending sequence (Cy,---,C,,),
C; CV, of “convex” sets of (' (endsegments of a PEO of ') (see [FJ 86]), such that

i) Ci31\C; has only one element;

i) [z,y] € E'iff [x,y] € E or 2,y € C; and there is a connected component ' of

G(V\C;), such that x,y € N(C);

iii) each clique separator of (7 is also a clique separator of G.

Clearly this sequence (C;)", defines a perfect elimination order 7 for G' = (V, F U F).
Therefore G is chordal. All these C; are convex for GG in the sense of [FJ 86] (closed by
chordless paths).

By a procedure NONE, we compute “convex” sets (see [FJ 86]) Cy,Cy, such that
#C1, #(C\C1), #(V\Cy) < %#V Moreover, (V, F'U E) shall preserve clique separators.
The procedure REFIN FE computes for each “convex” set (' suitable “convex” sets (', (5,

such that €' C C; C Oy and #(C1\C), #(C1\C2), #(V\C3) < 2#(V\C). Let [2,y] € F,



iff x and y are adjacent to the same connected component of V\C’, where €' = () or

C = Cy, and let B := E U Fg.

Procedures NONFE and REFINE are based on P. Klein’s ([KI 88]) new technique
for chordal graphs.

Observation.

Whenever v and v € C;\C are in the same connected component with respect to E¢,,

they are in the same connected component of V\C' with respect to F, and vice versa.

3.5.2. The Fine Structure of the Chordal-Extension Algorithm.

Procedure NONE (G (V,E)).

Step 1
Step 2

Step 3

Step 4.1

Step 4.2

Step 4.3

Let D :={v €V : degree (v) > 24V}

If D is not complete, pick some z,y € D,[z,y] ¢ E and let ¢’ :=
{v|[v,z],[v,y] € E} be the common neighborhood of x and y. Make
C" a clique. (Comment: each u,v € C are on the cycle (z,u,y,v,x).
Therefore each new edge of €' is on a chordless cycle of G. That means

that this extension £ U F' preserves clique separators.)

Let C := (5 be some subset of C’, such that %#V < #HCO; < %#V
(Clearly #C" < 2#V.)

If D is complete and #D > %#V, then C' is some subset of D, s.t.

1 2
3#V S #C S S#V.

It #D < %#V, D is complete, and all connected components of V\D
have a size < %:

Let (Cq,--+,C)) be an enumeration of these connected components;
let for j = 0,---,k: C%:= DU Ci, Fo, = 0. (#(CI\C)) < 24V,
note that Cj = V).

Let €'y be some (7, such that #C% < %#V,#(V\C;) < 2#V. Set
Cy 1= CJ/‘+1

If D is complete or empty and there is a connected component C of
VAD, such that #(V\D) > 2#V:
Compute a spanning tree on ' and, using this spanning tree, compute

an enumeration (z;)™, of C', such that each initial segment C = A{aii <

J} is connected; let €% be the neighborhood of C and Cm—l—l =V.



Step 5.1  Pick up a #(CI\C!_)) > 1#V (if it exists, here C} := 0):
Set Cy := C}_; and Cy := (.

Step 5.2 Otherwise, if such €%, C?_; do not exist, there is a ('}, s.t.
1#V <#HCO! < 2#\/-
R L

pick up such a (7, set (' := Cy := (.

Step 6 Set NONE := (Cy,Cy).

End of Procedure NONF.

Now we proceed with the procedure REFINFE.

Procedure REFINE (G,C).

If for each connected component Ky, ---, K, of VA\C #K; < 24#(V\C).:
Let CZ = C U U]<2 I(Z
Otherwise: Let K; be the largest component; apply REFINE(C U Ky,C).

Assume V\C' is connected:

Procedure REFINE' (G,C).

Step 1 Let D :={x € G :dy\c(z) = #{y € V\C|ly,z] € E} < 2H#(V\C)}.
Let D’ be the union of all connected components of D touching C'.
Step 2.1  (Low degree extension):

Compute a spanning forest on D' and, using this, an enumeration ()7,

of D', such that for each initial segment u; := {z;}_,, u; U C' is con-

nected. Let C'j := N(u;)U C. Here N(u;) is the neighborhood of u;.
Step 2.1.1 If #(C,,\C) > L#(V\C), then

let ém—l—l := V and pick up a #(C’Hl\éj) > LA(V\C) (if it exists). Let

C) = C'j and Cy := éj+1-

Step 2.1.2 If such C'j, éj+1 do not exist,
let Cy be any C; s.t.

SH\C) < H(EAC) < S and €y = Cipn.

If #C,, < SH(V\C):  Let Cy := C (possibly Cy = C).
If 3z € C4, s.t. dy\e,(x) < %#(V\C): Let Cy :=Cy U N(a).



Step 2.2

Step 2.2.1

Step 2.2.2

Otherwise (High degree extension):

Let (z;)%, be an enumeration of all € (4, such that dy\¢,(z) # 0
and let F; :={x|[z,2;] € E foralli=1,---,5}. If for some j, #F; <
2L(V\C), set Cy:= Cy U F}.

Otherwise apply NONE to G(F},) with outputs C] and C%.

If #£(C)\CY) = 2#(V\C), et €y :=C,UC] and C; := CL UCY.

If #(F\CY) > 2 4(V\C), let Oy :=C, UCY,.

Otherwise Cy := Cy U C].

End of procedure REFINE.

The whole algorithm works as follows:

Algorithm Parallel Fill-In.

Input G = (V, F).
Let (C1,Cy) := NONE(G). Apply REC(Cy, Cy).

Procedure REC(Cy,---, ().

Step 1
Step 2

Step 3

Step 3.1

Step 3.2

Step 3.3

If #C1 = 1 and #(C;41\C1) = 1 for each 7, then STOP.

Compute new “convex” sets:

Let CY CY be the two C),C, arising from the application of
NONE(G(Cy)); let Ci,C4 be the two €, Cy arising from the appli-
cation of REFINFE(G(Ci41),C;)

Add new edges:

For C; and C;1; and each connected component K of Ci11\C;, let ax
be a vertex in C; adjacent to K, such that zx ¢ C' = C{\C; such that
(' maximal (2x is in a minimal number of old and new known “convex”

sets).

Join each vertex = of (; adjacent to K with zx by an edge
[,2K] € Fnew (hereby we have guaranteed that each x,y €
CA\CE,,C\CL,,C\C etc. respectively those which are in the same
connected component of V\C? | ..., resp. are also in the same con-
nected component of C;\C? ,, C;\CL |, C\C,_y,... etc. resp.):

Let K be a connected component of C;41\C? and z be again an x € C'?
contained in a minimal member of known “convex” sets C;, C/, and for

each x adjacent to K an edge [z, 2x] € Fnew.



Step 3.4 Do the same procedure also with the level C2\C!. (Hereby it is guar-
anteed that connectedness in 02\01 and V\C’l for each €, C 027 s.t.
Cy,Cy € {Cf,CHi=1...k,j =1,2}, are equivalent statements (com-
pare the observation)); £ := F'U Enew;
apply REC(Cy,C3,Cy,CL,CE ...

End of Procedure REC.
Output (V, E).

End of the Algorithm Parallel Fill-In.

3.5.3. Analysis of the Algorithm:

1) The recursion depth of REC is O(logn), since the maximum cardinality of levels
Ci+1\Ci goes down by at least 1#(Ciy1\C;) at each step.

2) as mentioned above, the following is valid for the output (V, E) in C; C C}, x,y €
C\C; : x,y in the same connected component of C;\C; <= z,y in the same
connected component of V\C;.

3) Let « < y if for some k : y € Cp but & ¢ Cj. For the corresponding chordal
extension F' of (V, E 1), [z.y] € F' <= [z,y] € I or z,y are adjacent to the same
connected component K of {v|v < x}. But for each such connected component K,
we have zx = z. But [y, 2] = [y, 2x] € Enew.

Therefore the output (V, E) is a chordal extension of G = (V,E ;). Moreover:
Output (V, E) = (V, F).

4) Old clique separators are preserved: We have to prove this statement for each step

of the application of NONF or REFINE.

NONE: Additional edges of common neighbors of z,y € D are in a cycle of length
four. Therefore clique separators are preserved. Let M be a connected subset of V' and
C' := M’ be the set of neighbors of M. Let x,y € M’ be adjacent to the same connected
component of VA\M’. Then x,y € M'\M. Consider a path x,y1,...,Yp, ¥y, s.t.91...9p
is chordless and p is minimal. But then there is also no chord [z,y] or [y;,y]. Let
x,71,...2,y be a chordless path, s.t. z;,---2, € M. But then the concatenation of these
two paths form a cycle. Hereby the application of the procedure NON E preserves clique
separators.

REFINEFE (Low degree extension): Assume any “convex” set C' := ()} is given. Assume
that vertices adjacent to the same connected component of V\C form a clique in an

extension F' of F preserving clique separators. Assume M is connected and intersects



C. Let M’ be defined as above and C' := M'"UC. Let x € M'\M and y € M'\M be
connected by a shortest path p in V\C’. Then by the same arguments as before [z, y] is
a chord of a chordless cycle, if [z,y] ¢ E.

Assume now y ¢ M'\M; that means y € C'. But y and M N C are adjacent to the
same connected component of V\C. But then we find a y" and a path P; C M, such that

(y,y', P1, 2, P) forms a chordless cycle in a clique separator preserving extension F' of E.

REFINE (High degree extension): Assume now V\C is connected, D C C and
C'=CU{y|Vx € D, [y,z] € E}. Then we may assume that D forms a clique in some
clique separator preserving extension F of £/. We have to prove that for 2,y € C’\C which
are adjacent to the same connected component of V\C’, we can join them by an edge and
no clique separator is destroyed. Let x € C'\C, y € C'\C and p = (x, 21,22, 23,...) be a
shortest (chordless) path C V\C” connecting @ and y. Let d € D and [d, 2], [d, z;] € F
but not [d,x] € F for i« < k < j. Then (d,2;,x;41,...,2,d) forms a chordless cycle.
Therefore [x;,x;] can be added, such that no clique separator is destroyed. Since each x;
is not adjacent to at least one d € D, it is possible to add a chord abbreviating p, such
that z; is not used and no clique separator is destroyed. Therefore an edge [z, y] can be

added, such that no clique separator of GG is destroyed.
Now let @ € C'\C, but y € C. Then the same argument to add an edge [z, y] works.

By these observations no edge of F'\ F destroys some clique separator.

3.1 Construction of the Simplicial Tree

We find the simplicial tree representation of GG by first obtaining a clique tree of GG, and
then converting it to a clique tree. We can find G’ by using the PEO we found for G’ to
calculate the fill it induces on (. Hafsteinsson’s [Ha 88| algorithm does this in O(logn)
time with O(n?) processors. Next we get a clique tree representation of ¢ in O(log n) time
using O(|E U F|) = O(n?) processors. Folklore says we can convert Klein’s elimination

tree into a clique tree within these bounds.

Then check if the intersection of two neighboring cliques in the clique tree contains

a fill-in edge takes O(logn) time on a CREW-PRAM using O(m + n) processors. We
find the vertices in the intersection of two cliques, say there are £ of them. If (5) > m,
then the intersection contains a fill-in edge. Otherwise, check each edge in this clique of
size k to determine if it is an edge in F. Any edge not in E is a fill-in edge. Performing
this computation for all cliques requires O(nm) processors since there are O(n) maximal
cliques in G. Merge the vertex sets of the two neighboring cliques if their intersection
contains fill-in. If there is no fill-in here, then their intersection is a clique separator of
(. The merging of cliques can also be done quickly. We are left after the merging with a

simplicial tree instead of a clique tree.

Theorem 3.5 Clique separator decomposition of an arbitrary graph can be computed in



O(log® n) time using O(mn) processors on a CREW-PRAM.

Proof: The analysis of the chordal extension step shows this step requires O(n?) pro-
cessors and O(log® n) time. The simplicial tree step uses O(mn) processors and O(log n)

time. Therefore, the entire algorithm can be implemented as claimed. |

4 Algorithms for Optimization Problems

Here we show that the clique separator decomposition can be used to find NC algorithms
for several graph problems. These problems are NP-complete for general graphs, but if
we can solve these problems efficiently for atoms, then we can solve them quickly for the

entire graph. In fact, our first three algorithms only use a linear number of processors.

4.1 Minimum Fill-in Orders

The problem of determining whether there is an elimination order of G that results in k
or fewer fill-in edges, is NP-complete if k is a problem parameter [Ya 81]. However, if we
can find a minimum fill-in order for each atom G; of (G, then we can also easily find a
minimum fill-in order of (G. Let F; be the fill induced by the order on atom ;. Tarjan
proved that G' = (V, EUU, F}) is chordal. A PEO for G’ would also give minimum fill-in
for GG by yielding minimum fill-in for each ;. We parallelize the algorithm by computing
the PEOs in parallel. Using Klein’s algorithm we can do this in O(log® n) time with O(m)

Processors.

4.2 Maximum Cliques

The maximum-weight clique of GG is the maximum of the maximum-weight cliques for
each atom of G. If; in parallel, we can find the maximum-weight clique of the atoms of G,

then we can also get the largest-weight clique in G in O(logn) time with O(m) processors.

4.3 Graph Coloring

Suppose there is an efficient parallel algorithm to color the atoms of (G. We can use this

algorithm to give a parallel algorithm for coloring G.

1. Find a minimum coloring for each atom of G.

2. Form a new graph H with vertex set V. For convenience, we will assume each vertex

has a unique number. If there is an atom of (G in which vertices v and w receive the

10



same color, and if w is the lowest numbered vertex of its color, then put edge [v, w]

in H.

3. After H has been formed, find its connected components. The vertices in a compo-

nent of H will be receive the same color in (.

4. Shrink G by contracting the components of H to single vertices in GG. Atoms of (¢
are transformed into cliques of the resulting quotient graph, but both graphs have
essentially the same clique separators. Therefore, the quotient graph is chordal since
each of its atoms is a clique. In NC| we can optimally color the quotient graph with

Klein’s coloring algorithm.

5. Finally, color GG by assigning each vertex in G the color of the corresponding vertex
in the quotient graph.

Theorem 4.1 Given an efficient algorithm for coloring the atoms of a graph, we can

color the entire graph in time O(log®n) using O(m) processors.

Proof:  This algorithm can be implemented in NC' with the number of processors
proportional to the sums of the sizes of the atoms. We can find the connected components
for step 3 in O(logn) time by using O(n) processors on an EREW-PRAM through the
use of Euler tour techniques [TV 80]. The total running time is bounded by the time
required to color a chordal graph, which is currently O(log®n) for Klein’s algorithm, but
is O(logn) for Ho and Lee’s algorithm [HL 88]. |

4.4 Chromatic Polynomial

For any graph G, the chromatic polynomial f(G, ) is defined to be the number of ways
we can color G where we have a choice of = different colors. The chromatic polynomial
of Ky isa(x —1)...(x —n+1). Suppose C is a clique whose removal leaves components
with vertex sets A and B. Then f(G,z) = f(G(AUC),2)f(G(BUC),x)/f(C,x). We
can color G(AUC) and G(B U C) independently of each other as long as C receives the
same color in both cases. Given the simplicial tree of (G and the chromatic polynomial of
each atom, we can compute the chromatic polynomial of (G by repeatedly using the above
formula at each clique separator of (. Thus the chromatic polynomial of (¢ is the product
of the chromatic polynomials of the atoms of & divided by the product of the chromatic
polynomials of the simplicial tree clique separators of G. This algorithm parallelizes easily

because we can find the clique separators easily in parallel.

4.5 Maximum Independent Sets

Given a graph G with integer weights on the vertices, the problem of deciding whether ¢

has an independent set of weight < w is NP-complete when w is a problem parameter.

11



Several authors [Ta 85, Wh 84] have noted that the clique separator decomposition can
help solve this problem in the following way. Suppose C' is a clique of G whose removal
leaves connected components induced by vertex sets A and B. Denote by wt([) the total

weight of vertex set I, and by N(v) the set of vertices adjacent to v.

1. For each v € C, find a maximum-weight independent set /(v) in G(B — N(v)). Also

find a maximum-weight independent set " in G/(B).

2. For each v € C, redefine the weight of v to be wt(v) 4+ wt(I(v)) — wt(l’). Find a
maximum weight independent set [ in G(A U C') with respect to the new weights.

3. Define I =1"Ul'if I"NC =0. Ifv e I” then define I = ["U I(v). In either case,
wt(l) = wt(I") + wt(I') and [ is the maximum weight independent set of .

Naor et al. suggest finding the maximum weight independent set of a chordal graph
by terminal branches (a leaf node together with a consecutive chain of ancestors with
only one child) of its clique tree, and finding the maximum weight independent set of the
remaining graph. We give a more efficient but similar algorithm, that also works for the
more general case of the clique separator decomposition. Let By, Bs, ..., By be branches
in the simplicial tree of (G consisting of leaf nodes plus their parents. We apply Miller and
Reif’s [MR 85] technique of parallel tree contraction. In a rake step, we

1. Find all vertices of G that only appear in leaf cliques of the simplicial tree.

2. For each vertex v that appears in a leaf atom and some other atom. For each such
atom compute the weight of the maximum independent set that does not contain
v or any vertices in N(v). Also compute the weight of the maximum independent
set that does not contain any vertices outside of the atom. Subtract the second of
these quantities from the first, and then decrease the weight of v by this amount. If
wt(v) is now non-positive, remove v from the graph. We decrease v’s weight once

for each leaf atom it is a part of.

3. Remove all the vertices that only appear in leaf atom.

The weight of the maximum independent set can be found by applying the idea of the
last paragraph at each terminal branch. The weight of the maximum independent set of
(7 is the weight of the maximum independent set of the graph after the rake step plus the

weight of the largest weight vertex in each clique that was raked away.

The other half of Miller and Reif’s method is the compress step. Here we compress a
parent-child pair of tree nodes into one node if both the parent and child nodes had only
one child. Let A denote the parent atom, and B denote its child in the simplicial tree.
Let S; denote the clique which separates atom A from its parent, S, denote the clique

which separates A from its child B, and S3 denote the clique which separates B from
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its child. We introduce two matrices My and Mp that denote the weights of maximum
independent sets in A and B. In particular, for every vertex u € 57 and vertex v € S;, we
let M 4[u,v] denote the maximum weight of an independent set in A that does not include

u or any vertex in N(u), but it does contain v. We extend this definition in three ways:

e by assigning to M4[—,v] the weight of the largest independent set of A that contains

v, but none of 5j.

e by assigning to M4[u,—] the weight of the largest independent set of A that does

not contain u, one of u’s neighbors, nor any vertex in 55.

e by assigning to M4[—, —] the weight of the largest independent set of A that does

not contain any vertex in S or 53.

We define Mp in a like manner with respect to vertices in Sy and S3. The goal of the

compress step is to compute a product matrix M4p defined on vertices in S; and Ss.

Theorem 4.2 The mazimum weight independent set algorithm runs in O(log®n) time
using O(n*) processors if we can find the mazimum weight independent set of each of the

atoms in O(log®n) time using O(n?) processors.

Proof: With an efficient algorithm for finding the atoms of G we can compute all the
initial M4 and Mp matrices. We need O(m) processors and O(logn) time to do all the
rakes at a given moment since we perform at most O(m) weight decrements, and we find
the new weight of any vertex in O(logn) time. We can do a compress in O(logn) time
by using O(n®) processors via the usual matrix multiplication algorithm in the (max, +)
ring. At most O(n) compresses are performed at once, implying that O(n*) processors
are sufficient for compress. Miller and Reif showed that O(logn) rakes and compresses
are enough to reduce a tree to a single node. Therefore, we can find the weight of the

maximum independent set in O(log®n) time using O(n*) processors. |

Even fewer processors are needed if G is chordal. The algorithm becomes:

1. For each terminal branch B; and every vertex v that appears in both B; and the rest
of the simplicial tree, find the largest independent set of B; that does not contain v

or its neighbors.

2. For each terminal branch find the largest independent set that contains no vertices

appearing outside of the terminal branch.

3. Compute the differences between the values in the last two steps, and decrease the

weight of vertex v accordingly.

Theorem 4.3 The mazimum weight independent set algorithm for chordal graphs can be

implemented to run in O(log®n) time using O(n®) processors.
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Proof: Each terminal branch induces an interval graph, the intersection graph of
intervals along the real line. We use Helmbold and Mayr’s [HM 86] algorithm for finding
the maximum weight independent set in an interval graph to perform steps one and two.
Their algorithm has the advantage that it not only finds the largest independent set in the
interval graph, but it also finds the largest set for each subportion of the interval graph
that contains one of its ends. Let |B| denote the number of vertices in terminal branch B
that do not appear elsewhere in G, and let |.S| be the number of vertices in the clique that
separates B from the rest of the graph. Using Helmbold and Mayr’s algorithm requires
time O(log? | B|) and O(|B|?> + |S]) processors for terminal branch B. Therefore, it takes
O(log® n) time and O(n®) processors to process all the terminal branches at once. This
running time is multiplied by a factor of O(log n) since there are a logarithmic number of

iterations. |
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