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1 IntroductionDecompositions are often used in studying graph problems. Many times a graph has aproperty if and only if the pieces it is decomposed into also have that property. Sev-eral graph classes have been characterized by the structure of their clique separators,among them chordal graphs [Di 61, HS 58], path graphs (the intersection graphs ofpaths in a tree) [MW 86], and Gallai graphs (graphs where every odd cycle of length�ve or more contains two non-crossing chords) [Ga 77]. One of the original motivationsfor studying the clique separator decomposition is related to the problem of recogniz-ing perfect graphs [Wh 84]. If X is a clique separator of G and removing X leavesconnected components with vertex sets V1; V2; : : : ; Vk, then G is perfect if and only ifG(V1 [X); G(V2 [X); : : : ; G(Vk [X) are all perfect. The clique separator decompositionis a perfection-preserving decomposition.Decompositions are also useful in designing graph algorithms. The two techniquescommonly used with decompositions are divide-and-conquer and dynamic programming.We repeatedly decompose a graph into smaller pieces until we obtain graphs that canno longer be decomposed. These graphs are called prime graphs or atoms. We solvethe problems on these atoms and combine the solutions to �nd the solutions on largerand larger components until we have the solution for the original graph. Recently, thisparadigm has been used to design several e�cient parallel and sequential algorithms forgraph classes with small separators [BLW 85, HY 88].Suppose X is a clique separator of G. Then there is a vertex partition A;B;X suchthat no vertex in A is adjacent to one in B. We can then decompose into two componentsG0 = G(A [X) and G00 = G(B [X), and then recursively perform the decomposition onG0 and G00 in turn until only prime graphs result. We can represent the decomposition ofG intoG0 and G00 as a binary tree where the leaves are prime graphs and the internal nodesare clique separators. Following Tarjan's [Ta 85] terminology, we call such a tree a binarydecomposition tree. Throughout this paper we will assume that each clique separator isa minimal clique separator, because this results in smaller separators and fewer atoms inthe decomposition.Whitesides [Wh 84] designed the �rst polynomial time sequential algorithm for �ndinga clique separator decomposition. Her algorithm ran in O(n3m) time. Tarjan found afaster algorithm which ran in O(nm) time. Burlet and Fonlupt gave an O(n4) algorithmwhich checked whether a graph had a universal clique separator S, one whose removalleft each component of the graph with a vertex that was adjacent to all the vertices of S.They used this algorithm to help recognize Meyniel graphs, a class of perfect graphs whereevery odd cycle contains at least two chords. These algorithms are the main sequentialalgorithms for performing the decomposition.In the third section of the paper we show how to e�ciently parallelize the sequentialalgorithms for �nding a clique separator decomposition. The fastest published sequential1



algorithm is due to Tarjan [Ta 85], but the algorithm he gave is inherently sequential. Thisalgorithm runs in O(nm) time by �rst �nding a special ordering of the vertices calleda minimal elimination order. Dahlhaus and Karpinski [DK 89] have given a parallelalgorithm �nding the minimal elimination order of an arbitrary graph, but we use adi�erent elimination order that can be obtained more e�ciently. We show how a treerepresentation of the graph can be constructed in parallel, where the edges of the treecorrespond to clique separators. Our parallel algorithm runs inO(log3 n) timewith O(nm)processors on a CREW PRAM. The processor-time product of our algorithm is nearlyoptimal. Our algorithm is related to, but more processor-e�cient than an earlier versionby Dahlhaus and Karpinski [DK 88a] that runs in O(log2 n) time using O(n4) processors.In Section 4 we show how the decomposition can be used to solve several optimizationproblems for special graph classes. In particular we give NC algorithms for �nding amaximum clique, graph coloring, maximum independent set, and a minimum �ll-in orderof a graph, assuming these problems can be solved in NC for the prime graphs in thespecial graph class. The number of processors used by our parallel algorithms is at mostO(n) times the best known sequential running times for these problems. All four of theseproblems are normally NP-complete, but can be solved in polynomial time for chordalgraphs, because the only prime chordal graphs are cliques. Our algorithms �rst constructa tree representation of the graph and then apply tree processing techniques such asterminal branch removal [NNS 87] and parallel tree contraction [MR 85]. We can also�nd the chromatic polynomial of a graph assuming it is easy to do this on the primegraphs.2 De�nitionsWe let G = (V;E) denote a graph with vertex set V and edge set E. Let n and mdenote the number of vertices and edges respectively. In this paper we will assume thatG is connected. If X is a subset of V , then G(X) is the subgraph induced by X. WhenG(V �X) is disconnected we say that X is a separator of G. A clique of G is a subgraphof G in which every pair of vertices is connected by an edge. We call X a clique separatorof G if the vertices of X form a clique and X is also a separator of G. Furthermore, Xis a minimal clique separator of G if it is a clique separator of G and no proper subset ofX is a clique separator. A perfect graph is one where the maximum clique size equals thechromatic number for every induced subgraph. A chord of a cycle is an edge connectingtwo non-consecutive vertices of the cycle. Chordal graphs are graphs where every cycle oflength greater than three contains a chord. 2



3 Parallel Decomposition AlgorithmsThe fastest methods depend on properties of chordal graphs for their e�ciency so we willreview the needed results. First, we de�ne some of the terms used to talk about chordalgraphs. An elimination order � is a numbering of the vertices of G from 1 to n. We de�nethe �ll-in F� induced by the order � to be the following set of edges:F� = f[v;w]jv 6= w; [v;w] 62 E; and there is a pathv = v1; v2; : : : ; vk = w in G such that �(vi) < minf�(v); �(w)gfor i = 2; : : : ; k � 1g:A perfect elimination order, often abbreviated to PEO, is an elimination order with noinduced �ll-in. In a PEO, the higher-numbered neighbors or a vertex form a clique. Anorder � is minimum if no other elimination order has a smaller cardinality �ll-in, and �is minimal if there is not an elimination order � such that F� is properly included in F�.The �ll-in graphs for � is the graph G� = (V;E [F�). Tarjan's algorithm depends on thefollowing theorems he proved:Theorem 3.1 Any order � is a PEO of G�:Theorem 3.2 G has a PEO if and only if G is chordal.Theorem 3.3 Let � be a minimal order. For any decomposition by clique separators,every edge [v;w] 2 F� is such that a unique atom contains both v and w.Our algorithm depends on the following theorem which we prove.Theorem 3.4 Let � be a minimal order of G. If C is a clique separator of G� containingno �ll-in edges, then C is also a clique separator of G. Conversely, if C is a cliqueseparator of G, then it is also a clique separator of G�.Proof: The �rst half of this theorem follows immediately since if C is a clique separatorfor a graph, then it is a clique separator for any subgraph that contains C and has the samenumber of vertices as the original graph. The second half follows from the correctness ofTarjan's algorithm. His algorithm checks the cliques induced by a vertex of G� and itshigher-numbered neighbors to determine if they form a clique separator of G. Clearly anyclique in G is also a clique of G�. Any clique separator this algorithm �nds in G will alsobe a clique separator of G� since � is a PEO of G�.The tree representation we use to parallelize the algorithm is a generalization of thenotion of a clique tree of a chordal graph. A clique tree of a chordal graph G = (V;E)is a tree T whose nodes are the maximal cliques of G and whose arcs are de�ned in sucha way that the set of maximal cliques containing v 2 V form a connected subtree of T .Buneman [Bu 74] and Gavril [Ga 74] have shown that every chordal graph has a clique treerepresentation. For an arbitrary graph G = (V;E) we de�ne a simplicial tree to be a tree Twhose nodes are the atoms of G and whose arcs are de�ned so that the atoms containinga vertex v 2 V form a subtree of T . E�cient parallel algorithms exist for �nding a3



clique tree in parallel. We will show that the clique separator decomposition of G can becomputed in parallel by giving an e�cient algorithm for �nding a simplicial tree of G.Given the simplicial tree of G, it is easy to �nd the clique separator decomposition becausethe intersection of two adjacent atoms in the simplicial tree forms a clique separator ofG. Our algorithm is composed of the following steps:1. Compute a clique separator-preserving chordal extension G0 = (V;E [ F ) of G:(Remark: F and E need not to be disjoint)2. Find a PEO of G0. Use this to �nd a clique tree of G0, and then convert it to asimplicial tree of G: The intersection of neighboring atoms in the simplicial tree willbe a clique separator of G:The succeeding subsections give a more detailed analysis of this algorithm.3.5.1. An Outline of the Chordal-extension Algorithm.Here we present a Clique Separator Decomposition algorithm which combines methodsintroduced recently in [DK 88b] with certain extensions of P. Klein's FOCS '88 [Kl 88]method for chordal graphs. The algorithm �rst computes a chordal extension G0 whichpreserves clique separators, together with a perfect elimination order on G0. The last stepis to check for each clique separator of G0 = (V;E 0) := (V;E [ F ), whether it is a cliqueseparator of G (that means a complete subgraph).We begin with the algorithm which computes an ascending sequence (C1; � � � ; Cn),Ci � V , of \convex" sets of G0 (endsegments of a PEO of G0) (see [FJ 86]), such thati) Ci+1nCi has only one element;ii) [x; y] 2 E 0 i� [x; y] 2 E or x; y 2 Ci and there is a connected component ~C ofG(V nCi), such that x; y 2 N( ~C);iii) each clique separator of G is also a clique separator of G0.Clearly this sequence (Ci)ni=1 de�nes a perfect elimination order � for G0 = (V;E [ F ).Therefore G0 is chordal. All these Ci are convex for G0 in the sense of [FJ 86] (closed bychordless paths).By a procedure NONE, we compute \convex" sets (see [FJ 86]) C1; C2, such that#C1;#(C2nC1);#(V nC2) � 23#V . Moreover, (V; F [E) shall preserve clique separators.The procedureREFINE computes for each \convex" set C suitable \convex" sets C1; C2,such that C � C1 � C2 and #(C1nC);#(C1nC2);#(V nC2) � 23#(V nC). Let [x; y] 2 FĈ4



i� x and y are adjacent to the same connected component of V nĈ, where Ĉ = C1 orĈ = C2, and let EĈ := E [ FĈ.Procedures NONE and REFINE are based on P. Klein's ([Kl 88]) new techniquefor chordal graphs.Observation.Whenever u and v 2 CinC are in the same connected component with respect to ECi,they are in the same connected component of V nC with respect to E, and vice versa.3.5.2. The Fine Structure of the Chordal-Extension Algorithm.Procedure NONE (G (V,E)).Step 1 Let D := fv 2 V : degree (v) � 23#V g.Step 2 If D is not complete, pick some x; y 2 D; [x; y] =2 E and let C 0 :=fvj[v; x]; [v; y] 2 Eg be the common neighborhood of x and y. MakeC 0 a clique. (Comment: each u; v 2 C are on the cycle (x; u; y; v; x).Therefore each new edge of C is on a chordless cycle of G. That meansthat this extension E [ F preserves clique separators.)Step 3 Let C1 := C2 be some subset of C 0, such that 13#V � #Ci � 23#V .(Clearly #C 0 < 13#V .)Step 4.1 If D is complete and #D � 13#V , then C is some subset of D, s.t.13#V � #C � 23#V:Step 4.2 If #D � 13#V , D is complete, and all connected components of V nDhave a size � 23 :Let ( ~C1; � � � ; ~Ck) be an enumeration of these connected components;let for j = 0; � � � ; k: C 0j := D [ Si�j ~Ci; F̂Ci := ;. (#(C 0j+1nC 0j) � 23#V ;note that C 0k = V ).Let C1 be some C 0j, such that #C 0j � 23#V;#(V nC 0j) � 23#V . SetC2 := C 0j+1.Step 4.3 If D is complete or empty and there is a connected component Ĉ ofV nD, such that #(V nD) � 23#V :Compute a spanning tree on Ĉ and, using this spanning tree, computean enumeration (xi)mi=1 of Ĉ, such that each initial segment Ĉj := fxiji �jg is connected; let C 0j be the neighborhood of Ĉj and Ĉm+1 := V .5



Step 5.1 Pick up a #(C 0jnC 0j�1) � 13#V (if it exists, here C 00 := ;):Set C1 := C 0j�1 and C2 := C 0j.Step 5.2 Otherwise, if such C 0j; C 0j�1 do not exist, there is a C 0j, s.t.13#V � #C 0j � 23#V ;pick up such a C 0j, set C1 := C2 := C 0j.Step 6 Set NONE := (C1; C2).End of Procedure NONE.Now we proceed with the procedure REFINE.Procedure REFINE (G;C).If for each connected component K1; � � � ;Kn of V nC #Ki � 23#(V nC).:Let Ci := C [ Sj<iKi.Otherwise: Let K1 be the largest component; apply REFINE(C [K1; C).Assume V nC is connected:Procedure REFINE0 (G;C).Step 1 Let D := fx 2 G : dV nC(x) := #fy 2 V nCj[y; x] 2 Eg � 23#(V nC)g.Let D0 be the union of all connected components of D touching C.Step 2.1 (Low degree extension):Compute a spanning forest on D0 and, using this, an enumeration (xi)mi=1of D0, such that for each initial segment uj := fxigji=1; uj [ C is con-nected. Let Ĉj := N(uj) [ C. Here N(uj) is the neighborhood of uj.Step 2.1.1 If #(ĈmnC) � 13#(V nC), thenlet Ĉm+1 := V and pick up a #(Ĉj+1nĈj) � 13#(V nC) (if it exists). LetC1 := Ĉj and C2 := Ĉj+1.Step 2.1.2 If such Ĉj; Ĉj+1 do not exist,let C1 be any Ĉj s.t.13#(V nC) � #(ĈjnC) � 23#Ĉj and C2 := Ĉj+1:If #Ĉm < 13#(V nC) : Let C1 := Ĉm (possibly C1 = C).If 9x 2 C1, s.t. dV nC1(x) � 23#(V nC): Let C2 := C1 [N(x).6



Step 2.2 Otherwise (High degree extension):Step 2.2.1 Let (xi)ki=1 be an enumeration of all x 2 C1, such that dV nC1(x) 6= 0and let Fj := fx j [x; xi] 2 E for all i = 1; � � � ; jg. If for some j; #Fj �23#(V nC), set C2 := C1 [ Fj.Otherwise apply NONE to G(Fk) with outputs C 01 and C 02.Step 2.2.2 If #(C 02nC 01) � 13#(V nC), let C1 := C1 [ C 01 and C2 := C1 [ C 02.If #(FknC 02) � 13#(V nC), let C2 := C1 [ C 02.Otherwise C2 := C1 [ C 01.End of procedure REFINE.The whole algorithm works as follows:Algorithm Parallel Fill-In.Input G = (V;E).Let (C1; C2) := NONE(G). Apply REC(C1; C2).Procedure REC(C1; � � � ; Ck).Step 1 If #C1 = 1 and #(Ci+1nC1) = 1 for each i, then Stop.Step 2 Compute new \convex" sets:Let C01 ; C02 be the two C1; C2 arising from the application ofNONE(G(C1)); let C i1; C i2 be the two C1; C2 arising from the appli-cation of REFINE(G(Ci+1); Ci)Step 3 Add new edges:Step 3.1 For Ci and Ci+1 and each connected component K of Ci+1nCi, let xKbe a vertex in Ci adjacent to K, such that xK =2 C = CjknCj such thatC maximal (xK is in a minimal number of old and new known \convex"sets).Step 3.2 Join each vertex x of Ci adjacent to K with xK by an edge[x; xK] 2 Enew (hereby we have guaranteed that each x; y 2CinC2i�1; CinC1i�1; CinC etc. respectively those which are in the sameconnected component of V nC2i�1; : : :, resp. are also in the same con-nected component of CinC2i�1; CinC1i�1; CinCi�1; : : : etc. resp.):Step 3.3 LetK be a connected component of Ci+1nC2i and xK be again an x 2 C2icontained in a minimal member of known \convex" sets Ci; Cji , and foreach x adjacent to K an edge [x; xK] 2 Enew.7



Step 3.4 Do the same procedure also with the level C2i nC1i . (Hereby it is guar-anteed that connectedness in ~C2n ~C1 and V n ~C1 for each ~C1 � ~C2, s.t.~C1; ~C2 2 fCi; C ii j i = 1 : : : k; j = 1; 2g, are equivalent statements (com-pare the observation)); E := E [ Enew;apply REC(C10 ; C20 ; C1; C11 ; C21 : : :).End of Procedure REC.Output (V;E).End of the Algorithm Parallel Fill-In.3.5.3. Analysis of the Algorithm:1) The recursion depth of REC is O(log n), since the maximum cardinality of levelsCi+1nCi goes down by at least 13#(Ci+1nCi) at each step.2) as mentioned above, the following is valid for the output (V;E) in Ci � Cj; x; y 2CjnCi : x; y in the same connected component of CjnCi () x; y in the sameconnected component of V nCi.3) Let x < y if for some k : y 2 Ck but x =2 Ck. For the corresponding chordalextension F of (V;Eold); [x; y] 2 F () [x; y] 2 E or x; y are adjacent to the sameconnected component K of fv j v < xg. But for each such connected component K,we have xK = x. But [y; x] = [y; xK] 2 Enew.Therefore the output (V;E) is a chordal extension of G = (V;Eold). Moreover:Output (V;E) = (V; F ).4) Old clique separators are preserved: We have to prove this statement for each stepof the application of NONE or REFINE.NONE: Additional edges of common neighbors of x; y 2 D are in a cycle of lengthfour. Therefore clique separators are preserved. Let M be a connected subset of V andC :=M 0 be the set of neighbors of M . Let x; y 2 M 0 be adjacent to the same connectedcomponent of V nM 0. Then x; y 2 M 0nM . Consider a path x; y1; : : : ; yp; y, s.t.y1 : : : ypis chordless and p is minimal. But then there is also no chord [x; yi] or [yj; y]. Letx; z1; : : : z; y be a chordless path, s.t. z1; � � � zp 2M . But then the concatenation of thesetwo paths form a cycle. Hereby the application of the procedure NONE preserves cliqueseparators.REFINE (Low degree extension): Assume any \convex" set C := Ci is given. Assumethat vertices adjacent to the same connected component of V nC form a clique in anextension F of E preserving clique separators. Assume M is connected and intersects8



C. Let M 0 be de�ned as above and C 0 := M 0 [ C. Let x 2 M 0nM and y 2 M 0nM beconnected by a shortest path p in V nC 0. Then by the same arguments as before [x; y] isa chord of a chordless cycle, if [x; y] =2 E.Assume now y =2 M 0nM ; that means y 2 C. But y and M \ C are adjacent to thesame connected component of V nC. But then we �nd a y0 and a path P1 �M , such that(y; y0; P1; x; P ) forms a chordless cycle in a clique separator preserving extension F of E.REFINE (High degree extension): Assume now V nC is connected, D � C andC 0 = C [ fy j 8x 2 D; [y; x] 2 Eg. Then we may assume that D forms a clique in someclique separator preserving extension F of E. We have to prove that for x; y 2 C 0nC whichare adjacent to the same connected component of V nC 0, we can join them by an edge andno clique separator is destroyed. Let x 2 C 0nC; y 2 C 0nC and p = (x; x1; x2; x3; : : :) be ashortest (chordless) path � V nC 0 connecting x and y. Let d 2 D and [d; xi]; [d; xj] 2 Ebut not [d; xk] 2 E for i < k < j. Then (d; xi; xi+1; : : : ; xj; d) forms a chordless cycle.Therefore [xi; xj] can be added, such that no clique separator is destroyed. Since each xiis not adjacent to at least one d 2 D, it is possible to add a chord abbreviating p, suchthat xi is not used and no clique separator is destroyed. Therefore an edge [x; y] can beadded, such that no clique separator of G is destroyed.Now let x 2 C 0nC, but y 2 C. Then the same argument to add an edge [x; y] works.By these observations no edge of FnE destroys some clique separator.3.1 Construction of the Simplicial TreeWe �nd the simplicial tree representation of G by �rst obtaining a clique tree of G0, andthen converting it to a clique tree. We can �nd G0 by using the PEO we found for G0 tocalculate the �ll it induces on G. Hafsteinsson's [Ha 88] algorithm does this in O(log n)time with O(n2) processors. Next we get a clique tree representation of G0 inO(log n) timeusing O(jE [ F j) = O(n2) processors. Folklore says we can convert Klein's eliminationtree into a clique tree within these bounds.Then check if the intersection of two neighboring cliques in the clique tree containsa �ll-in edge takes O(log n) time on a CREW-PRAM using O(m + n) processors. We�nd the vertices in the intersection of two cliques, say there are k of them. If �k2� > m,then the intersection contains a �ll-in edge. Otherwise, check each edge in this clique ofsize k to determine if it is an edge in E. Any edge not in E is a �ll-in edge. Performingthis computation for all cliques requires O(nm) processors since there are O(n) maximalcliques in G. Merge the vertex sets of the two neighboring cliques if their intersectioncontains �ll-in. If there is no �ll-in here, then their intersection is a clique separator ofG: The merging of cliques can also be done quickly. We are left after the merging with asimplicial tree instead of a clique tree.Theorem 3.5 Clique separator decomposition of an arbitrary graph can be computed in9



O(log3 n) time using O(mn) processors on a CREW-PRAM.Proof: The analysis of the chordal extension step shows this step requires O(n2) pro-cessors and O(log3 n) time. The simplicial tree step uses O(mn) processors and O(log n)time. Therefore, the entire algorithm can be implemented as claimed.4 Algorithms for Optimization ProblemsHere we show that the clique separator decomposition can be used to �nd NC algorithmsfor several graph problems. These problems are NP-complete for general graphs, but ifwe can solve these problems e�ciently for atoms, then we can solve them quickly for theentire graph. In fact, our �rst three algorithms only use a linear number of processors.4.1 Minimum Fill-in OrdersThe problem of determining whether there is an elimination order of G that results in kor fewer �ll-in edges, is NP-complete if k is a problem parameter [Ya 81]. However, if wecan �nd a minimum �ll-in order for each atom Gi of G, then we can also easily �nd aminimum �ll-in order of G. Let Fi be the �ll induced by the order on atom Gi. Tarjanproved that G0 = (V;E[Ski=1 Fi) is chordal. A PEO for G0 would also give minimum�ll-infor G by yielding minimum �ll-in for each Gi. We parallelize the algorithm by computingthe PEOs in parallel. Using Klein's algorithm we can do this in O(log2 n) time with O(m)processors.4.2 Maximum CliquesThe maximum-weight clique of G is the maximum of the maximum-weight cliques foreach atom of G. If, in parallel, we can �nd the maximum-weight clique of the atoms of G,then we can also get the largest-weight clique in G in O(log n) time with O(m) processors.4.3 Graph ColoringSuppose there is an e�cient parallel algorithm to color the atoms of G. We can use thisalgorithm to give a parallel algorithm for coloring G.1. Find a minimum coloring for each atom of G.2. Form a new graph H with vertex set V . For convenience, we will assume each vertexhas a unique number. If there is an atom of G in which vertices v and w receive the10



same color, and if w is the lowest numbered vertex of its color, then put edge [v;w]in H.3. After H has been formed, �nd its connected components. The vertices in a compo-nent of H will be receive the same color in G.4. Shrink G by contracting the components of H to single vertices in G. Atoms of Gare transformed into cliques of the resulting quotient graph, but both graphs haveessentially the same clique separators. Therefore, the quotient graph is chordal sinceeach of its atoms is a clique. In NC, we can optimally color the quotient graph withKlein's coloring algorithm.5. Finally, color G by assigning each vertex in G the color of the corresponding vertexin the quotient graph.Theorem 4.1 Given an e�cient algorithm for coloring the atoms of a graph, we cancolor the entire graph in time O(log2 n) using O(m) processors.Proof: This algorithm can be implemented in NC with the number of processorsproportional to the sums of the sizes of the atoms. We can �nd the connected componentsfor step 3 in O(log n) time by using O(n) processors on an EREW-PRAM through theuse of Euler tour techniques [TV 80]. The total running time is bounded by the timerequired to color a chordal graph, which is currently O(log2 n) for Klein's algorithm, butis O(log n) for Ho and Lee's algorithm [HL 88].4.4 Chromatic PolynomialFor any graph G, the chromatic polynomial f(G;x) is de�ned to be the number of wayswe can color G where we have a choice of x di�erent colors. The chromatic polynomialof Kn is x(x� 1) : : : (x� n+1). Suppose C is a clique whose removal leaves componentswith vertex sets A and B. Then f(G;x) = f(G(A [ C); x)f(G(B [ C); x)=f(C; x). Wecan color G(A [ C) and G(B [ C) independently of each other as long as C receives thesame color in both cases. Given the simplicial tree of G and the chromatic polynomial ofeach atom, we can compute the chromatic polynomial of G by repeatedly using the aboveformula at each clique separator of G. Thus the chromatic polynomial of G is the productof the chromatic polynomials of the atoms of G divided by the product of the chromaticpolynomials of the simplicial tree clique separators of G. This algorithm parallelizes easilybecause we can �nd the clique separators easily in parallel.4.5 Maximum Independent SetsGiven a graph G with integer weights on the vertices, the problem of deciding whether Ghas an independent set of weight � w is NP-complete when w is a problem parameter.11



Several authors [Ta 85, Wh 84] have noted that the clique separator decomposition canhelp solve this problem in the following way. Suppose C is a clique of G whose removalleaves connected components induced by vertex sets A and B. Denote by wt(I) the totalweight of vertex set I, and by N(v) the set of vertices adjacent to v.1. For each v 2 C, �nd a maximum-weight independent set I(v) in G(B�N(v)). Also�nd a maximum-weight independent set I 0 in G(B).2. For each v 2 C, rede�ne the weight of v to be wt(v) + wt(I(v))� wt(I 0). Find amaximum weight independent set I 00 in G(A [ C) with respect to the new weights.3. De�ne I = I 00 [ I 0 if I 00 \C = ;. If v 2 I 00, then de�ne I = I 00 [ I(v). In either case,wt(I) = wt(I 00) + wt(I 0) and I is the maximum weight independent set of G.Naor et al. suggest �nding the maximum weight independent set of a chordal graphby terminal branches (a leaf node together with a consecutive chain of ancestors withonly one child) of its clique tree, and �nding the maximum weight independent set of theremaining graph. We give a more e�cient but similar algorithm, that also works for themore general case of the clique separator decomposition. Let B1; B2; : : : ; Bk be branchesin the simplicial tree of G consisting of leaf nodes plus their parents. We apply Miller andReif's [MR 85] technique of parallel tree contraction. In a rake step, we1. Find all vertices of G that only appear in leaf cliques of the simplicial tree.2. For each vertex v that appears in a leaf atom and some other atom. For each suchatom compute the weight of the maximum independent set that does not containv or any vertices in N(v). Also compute the weight of the maximum independentset that does not contain any vertices outside of the atom. Subtract the second ofthese quantities from the �rst, and then decrease the weight of v by this amount. Ifwt(v) is now non-positive, remove v from the graph. We decrease v's weight oncefor each leaf atom it is a part of.3. Remove all the vertices that only appear in leaf atom.The weight of the maximum independent set can be found by applying the idea of thelast paragraph at each terminal branch. The weight of the maximum independent set ofG is the weight of the maximum independent set of the graph after the rake step plus theweight of the largest weight vertex in each clique that was raked away.The other half of Miller and Reif's method is the compress step. Here we compress aparent-child pair of tree nodes into one node if both the parent and child nodes had onlyone child. Let A denote the parent atom, and B denote its child in the simplicial tree.Let S1 denote the clique which separates atom A from its parent, S2 denote the cliquewhich separates A from its child B, and S3 denote the clique which separates B from12



its child. We introduce two matrices MA and MB that denote the weights of maximumindependent sets in A and B. In particular, for every vertex u 2 S1 and vertex v 2 S2, weletMA[u; v] denote the maximumweight of an independent set in A that does not includeu or any vertex in N(u), but it does contain v. We extend this de�nition in three ways:� by assigning toMA[�; v] the weight of the largest independent set of A that containsv, but none of S1.� by assigning to MA[u;�] the weight of the largest independent set of A that doesnot contain u, one of u's neighbors, nor any vertex in S2.� by assigning to MA[�;�] the weight of the largest independent set of A that doesnot contain any vertex in S1 or S2.We de�ne MB in a like manner with respect to vertices in S2 and S3. The goal of thecompress step is to compute a product matrix MAB de�ned on vertices in S1 and S3.Theorem 4.2 The maximum weight independent set algorithm runs in O(log2 n) timeusing O(n4) processors if we can �nd the maximum weight independent set of each of theatoms in O(log2 n) time using O(n2) processors.Proof: With an e�cient algorithm for �nding the atoms of G we can compute all theinitial MA and MB matrices. We need O(m) processors and O(log n) time to do all therakes at a given moment since we perform at most O(m) weight decrements, and we �ndthe new weight of any vertex in O(log n) time. We can do a compress in O(log n) timeby using O(n3) processors via the usual matrix multiplication algorithm in the (max;+)ring. At most O(n) compresses are performed at once, implying that O(n4) processorsare su�cient for compress. Miller and Reif showed that O(log n) rakes and compressesare enough to reduce a tree to a single node. Therefore, we can �nd the weight of themaximum independent set in O(log2 n) time using O(n4) processors.Even fewer processors are needed if G is chordal. The algorithm becomes:1. For each terminal branch Bi and every vertex v that appears in both Bi and the restof the simplicial tree, �nd the largest independent set of Bi that does not contain vor its neighbors.2. For each terminal branch �nd the largest independent set that contains no verticesappearing outside of the terminal branch.3. Compute the di�erences between the values in the last two steps, and decrease theweight of vertex v accordingly.Theorem 4.3 The maximum weight independent set algorithm for chordal graphs can beimplemented to run in O(log3 n) time using O(n3) processors.13



Proof: Each terminal branch induces an interval graph, the intersection graph ofintervals along the real line. We use Helmbold and Mayr's [HM 86] algorithm for �ndingthe maximum weight independent set in an interval graph to perform steps one and two.Their algorithm has the advantage that it not only �nds the largest independent set in theinterval graph, but it also �nds the largest set for each subportion of the interval graphthat contains one of its ends. Let jBj denote the number of vertices in terminal branch Bthat do not appear elsewhere in G, and let jSj be the number of vertices in the clique thatseparates B from the rest of the graph. Using Helmbold and Mayr's algorithm requirestime O(log2 jBj) and O(jBj3 + jSj) processors for terminal branch B. Therefore, it takesO(log2 n) time and O(n3) processors to process all the terminal branches at once. Thisrunning time is multiplied by a factor of O(log n) since there are a logarithmic number ofiterations.References[BLW 85] Bern, M.W., Lawler, E.L. and Wong, A.L. Why certain Subgraph Computa-tions require only linear time, Proc.26th FOCS (1985), pp. 117-125.[Bu 74] Buneman, P. A Characterization on Rigid Circuit Graphs, Discrete Mathe-matics 9 (1974), pp. 205-212.[DK 88a] Dahlhaus, E., and Karpinski, M. E�cient Parallel Algorithm for Clique Sepa-rator Decomposition, Research Report No. 8531-CS, University of Bonn 1988.[DK 88b] Dahlhaus, E., and Karpinski, M. Fast Parallel Decomposition by Clique Sep-arators, Research Report No. 8525-CS, University of Bonn 1988.[DK 89] Dahlhaus, E., and Karpinski, M. An E�cient Parallel Algorithm for the Mini-mal Elimination Ordering (MEO) of an Arbitrary Graph, Research Report No.TR-89-024, International Computer Science Institute, Berkeley (June 1989);Extended Abstract to appear in Proc. 30th IEEE FOCS (1989).'[Di 61] Dirac, A. On Rigid Circuit Graphs, Abhandlungen Mathematischer Seminareder Universit�at Hamburg 25 (1961), pp. 71-76.[FJ 86] Farber, M., and Jamison, R.E. Convexity in Graphs and Hypergraphs, SIAMJ. of Algebraic and Discrete Methods 7 (1986), pp. 433-444.[Ga 74] G�avril, F.The Intersection Graphs of Subtrees of Trees are exactly the ChordalGraphs, Journal of Combinatorical Theory, Series B 16 (1974), pp. 47-56.[Ga 77] G�avril, F. Algorithms on Clique Separable Graphs, Discrete Mathematics 19(1977), pp. 159-165. 14
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