
An E�cient Parallel Algorithm for theMinimal Elimination Ordering (MEO)of an Arbitrary Graph �Elias Dahlhaus y,Dept. of Computer Science,University of BonnD-5300 Bonn 1dahlhaus@cs.su.oz.auMarek Karpinski zDepartment of Computer Science,University of Bonn,D-5300 Bonn 1andInternational Computer Science InstituteBerkeley, Californiamarek@icsi.berkeley.eduAbstract. We design the �rst e�cient parallel algorithm for computing the min-imal elimination ordering (MEO) of an arbitrary graph.The algorithm works in O(log3 n) parallel time and O(nm) processors on a CREWPRAM, for an n-vertex, m-edge graph, and is optimal up to a polylogarithmic factorwith respect to the best sequential algorithm of Rose, Tarjan and Lueker ([RTL 76]).The MEO problem for arbitrary graphs arises in a number of combinatorial opti-mization problems, as well as in database applications, scheduling problems, and the�An Extended Abstract has appeared in [DK 89].ypresent address: Basser Department of Computer Science, University of Sydney, NSW 2006,AustraliazResearch partially supported by the Leibniz Center for Research in Computer Science, by the DFGGrant KA 673/4-1, and by the SERC Grant GR-E 68297.1



sparse Gaussian elimination on symmetric matrices. It was believed before to be in-herently sequential, and strongly resisting sublinear parallel time (sublinear sequentialstorage) algorithms.As an application, this paper gives the �rst e�cient parallel solutions to the prob-lem of minimal �ll-in for arbitrary graphs and connected combinatorial optimizationproblems (see [RTL 76], [Ta 85], for example), and to the problem of the Gaussian elim-ination of sparse symmetric matrices ([Ro 70], [Ro 73]). (The problem of computing aminimum �ll-In is known to be NP-complete, [Ya 81].)The method of solution involves a development of new techniques for solving con-nected minimal set system problem, and combining it with some new divide-and-conquermethods.0 IntroductionThe theory of elimination orderings is used in a number of combinatorial optimiza-tion and database applications, as well as in scheduling and general divide-and-conquertechniques ([Ro 73], [Ta 85]). Elimination orderings also arise in Gaussian eliminationon sparse symmetric matrices ([Ro 73], [RTL 76]).The minimal elimination problem (MEO) for arbitrary graphs (cf. [Ro 73], [RTL 76],[Ta 85], [DK 88a], [No 88]) is the following.Let G = (V;E) be any graph and < be an ordering on V given as an enumeration ofV . De�ne E< to be the chordal extension of G related to <, i.e. the minimal extensionE 0 of E such that if x < y; x < z and xy; then xz 2 E 0 implies yz 2 E 0. The setF< = E< n E is called the �ll-in of < [Ta 85].The problem is to compute, for any given graph G = (V;E), an ordering < on V suchthat E< is (inclusion) minimal.We call such an ordering a minimal elimination ordering(MEO) of G ([RTL 76], [Ta 85]). An MEO algorithm is an algorithm computing for anarbitrary input graph G = (V;E) an ordering on V such that E< is (inclusion) minimal.MEO Algorithm (I/O)Input: A graph G = (V;E).Output: An ordering < on V such that E<is inclusion minimal.2



F< = f vw j v 6= w; vw 62 E; 9 p a path p = v1v2 : : : vk in G such thatv1 = v; vk = w; and vi < minfv;wg for i = 2; : : : ; k � 1 g:In the case the ordering < satis�es E = E<, (V;E) is chordal and the ordering < iscalled a perfect elimination ordering (PEO).It is known that the computation of a minimum (cardinality) chordal extension orminimum cardinality �ll-in is NP-complete ([Ya 81]). Rose, Tarjan and Lueker haverelativized this problem to the computation of an MEO E< of a given graph. Theirsequential algorithm works in O(nm) time and O(n +m) storage ([RTL 76]).There are e�cient parallel algorithms to recognize chordal graphs and to computethe perfect elimination ordering for chordal graphs ([Ed 87], [NNS 87], [DK 86], [DK 87],[Kl 88]).In this paper we give a parallel solution to the MEO Problem by designing analgorithm computing an MEO for any given graph which works in O(log3 n) paralleltime and O(nm) processors on a CRCW PRAM.The MEO algorithm of this paper directly entails recent results on existence ofNC-algorithms for Clique Separator Decomposition ([DK 88b], [DK 88a], [DKN 89])and for the �rst time provides a parallel technique of computing the minimal �ll-in(cf. [Ta 85]) for arbitrary graphs, and combining our algorithm with the Cholesky factor-ization algorithm of Gilbert and Hafsteinsson ([GH 88]), an e�cient parallel algorithmfor the Gaussian elimination on sparse symmetric matrices (cf. [Ro 73]).The paper is organized as follows.In Section 1, the notational and fundamental concepts of this paper are introduced.Section 2 describes the global strategy which is a divide-and-conquer strategy.Section 3 presents the simple case of a graph G being the disjoint union of two cliquesC1 and C2. In this case the problem is equivalent to the following set system problem:Given a set V and a set S of subsets of V , compute an ordering (S1 < : : : < Sn) ofS such that for i = 1; : : : ; n, Si n Sj<i Sj is inclusion minimal in fSk n Sj<i Sj j k � ig.In Section 4 we complete the algorithm using the special case of Section 3.1 Basic Concepts and NotationsThroughout the whole paper, graphs are undirected, without loops and multiple edges.3



A graph G = (V;E) consists of a vertex set V and an edge set E. The edge joiningx and y is denoted by xy.De�ne N(x) := NG(x) = fxg [ fy j xy 2 Eg as the neighborhood of the vertex x inG (including x). For M � V , de�ne also N(M) := NG(M) = Sx2M N(x).The subgraph of G induced by a subset V 0 of the vertex set V of G is denoted byGjV 0. Generally we call an edge-preserving subgraph an induced subgraph.A connected subset of G is a subset V 0 of its vertex set such that GjV 0 is connected.An inclusion maximal connected subset is called a connected component.A spanning tree of the connected graph G = (V;E) is a tree T with vertex set Vand an edge set E 0 � E.A spanning forest of any graph consists of spanning trees for its connected compo-nents.Given a set A, we de�ne #A to be the cardinality of A.The computation models are the concurrent-read concurrent-write parallel randomaccess machine (CRCWPRAM) and the concurrent read exclusive write parallel randomaccess machine (CREW-PRAM) (cf. e. g. [FW 78], [Co 85], [KR 88]). Note that eachCREW-PRAM working in T time using P processors is also a CRCW-PRAM working inthe same time bounds. Vice versa, a CRCW-PRAMworking in T time using P processorscan be simulated by a CREW-PRAM in time O(T log P ) using O(P ) processors. Forexample, a CRCW-PRAM, working in O(log n) time using O(n+m) processors can besimulated by a CREW-PRAM working in O(log2 n) time using O(n +m) processors.We assume that each arithmetic operation needs one time unit and one processorunit.In general, n is the number of vertices of G = (V;E), and m is the number of edges.We assume that the reader is familiar with the following results in parallel compu-tation.Theorem 1 (i) (see [SV 82])The connected components and a spanning tree of any graph can be computed inO(log n) CRCW-time and O(n+m) processors and therefore in O(log2 n) CREW-time using O(n +m) processors.(ii) (see [Co 86])n numbers can be sorted in O(log n) CREW-time and O(n) processors.4



Let T = (VT ; ET ) be a tree with a root r. We can de�ne the unique direction~T = (VT ; Ar) or (y; x) of any edge xy of T to the root r. If (x; y) 2 Ar, then x isa child of y and y is the parent of x. For each vertex x of T let fyx1 ; : : : ; yxd(x)g be the setof its children. The edge yxi x is labelled by i, l(yxi x) = i.Let Px := (e1 : : : eP ) be the sequence of the edges of the unique path from r to x(that means e1 = ry1; eP = yP�1x). Then l�(x) := (l(e1); : : : ; l(eP )).The preorder � is de�ned as follows:For x; y 2 VT , x � y i� l�(x) is a subsequence of l�(y) or l�(x) is lexicographicallysmaller than l�(y).Theorem 2 (see for example [TV 85]) A preorder can be computed in O(log n)CREW-time and O(n) processors. For a tree T and a `root' r 2 VT an ordering (num-bering) such that each initial segment induces a subtree containing r can be computed inO(log n) CREW-time and by O(n) processors.A graph is called chordal i� it has no induced cycle of length > 3 (each cycle oflength > 3 has an edge joining nonconsecutive vertices).For a tree T and a collection S of subtrees of T the vertex intersection graph of Tand S is de�ned as follows:(i) The vertex set is S.(ii) S1; S2 2 S are joined by an edge i� they have a common vertex of T .Chordal graphs can be characterized as follows (cf. [Ga74], [Ta 85]):Theorem 3 The following statements are equivalent:(i) G = (V;E) is chordal.(ii) G = (V;E) has a perfect elimination erdering <, i.e. if x < y, x < z and xy,xz 2 E, then yz 2 E.(iii) G = (V;E) is the vertex intersection graph ([Ga74], [Bu 74]) of a collection SGof subtrees of some tree T . That means SG is of the form fSv : v 2 V g and, forvertices v;w 2 V , vw 2 E i� Sv and Sw have at least one common vertex of T .We call (T;SG) a subtree representation of G.5



Remark. It is easily seen that the number of maximal cliques of a chordal graph isbounded by n = #V .Suppose that G is the vertex intersection graph of the collection SG of subtrees ofT . For v 2 V let Sv be the corresponding subtree in SG. For t 2 VG let ct be the setfS 2 SG j t 2 Sg. We may assume that the maximal cliques of G are exactly the setsĉt := fv j Sv 2 ctg ([Ga 72],[Bu 74]).Klein proved the following result ([Kl 88]):Theorem 4 There is a parallel algorithm for computing for each chordal graph G aperfect elimination ordering and the subtree representation (TG;SG) in time O(log2 n)and O(n+m) processors on a CRCW PRAM.Consider any ordering < on the vertex set V of the graph G = (V;E). Then thechordal extension E< of G and < is the smallest extension of E such that < is a perfectelimination ordering, i.e. F< is the smallest set F such that1. E � F and2. if xy 2 F , xz 2 F , x < y, and x < z, then yz 2 F .Theorem 5 [Ya 81] The computation of an ordering < such that its chordal extensionis minimal by cardinality, is NP-complete.In contrast, Rose, Tarjan, and Lueker proved:Theorem 6 For any graph G = (V;E), an ordering < can be computed in sequentialtime of O(nm) such that F< is minimal by inclusion.De�nition 1 An ordering < on the vertex set V of a graph G = (V;E) is called aminimal elimination ordering (MEO) if there is no ordering <0 such that F<0 �6= F< (F<is minimal with respect to inclusion).Obviously an MEO is an ordering < such that its chordal extension is an inclusionminimal extension of G to a chordal graph.An MEO can also be characterized as follows.Lemma 1 ([RTL 76]) < is an MEO of (V;E) i�, for all e 2 F< nE, (V; F< nfeg) hasan induced cycle of four vertices (and edges).This result is essential in the whole paper. 6



2 The Global StrategyWe introduce the notion of an endsegment of an MEO:A subset V0 of the vertex set V of a graph G is called an endsegment of an MEOi� there is a minimal elimination ordering < for G and a vertex v 2 V0 such thatV0 = fw 2 V j v = w or v < wg.First, in a similar way as in the procedure NONE in Klein's perfect eliminationordering (PEO) algorithm ([Kl 88]) , we shall compute an endsegment V0 � V .1. We add new edges to GjV0 which are necessarily in the �ll in of each ordering,having V0 as endsegment, i.e. those pairs xy of vertices of V0 which are adjacent tothe same connected component of Gj(V n V0). We denote the resulting extensionof GjV0 by G0 = (V0; E0). This will be done by the procedure ENDSEGMENT.2. We consider the connected components V1; : : : ; Vk of Gj(V n V0). We computerecursively in parallel MEOs and their corresponding chordal extensions for G1 =GjV1; : : : ; Gk = GjVk, and for G0.3. Using the MEOs for G0; : : : ; Gk and their corresponding chordal extensions, wecompute an MEO for G and its corresponding chordal extension.The key for the computation of G0 is the following result:Theorem 7 Let G = (V;E) and V0 be a subset of V . Let Vi be a connected componentof Gj(V nV0). Let x; y 2 V0, x0; y0 2 Vi, and xx0; yy0 2 E. Then xy belongs to the chordalextension of any ordering <, having V0 as an endsegment.Proof: We use the following result in [Ta 85]:Lemma 2 Given an arbitrary graph G = (V;E) and an ordering < on V , the Fill-InF< of G under ordering < is the set of edges de�ned as follows (cf. [Ta 85]):F< = f vw j v 6= w; vw 62 E; 9 p a path p = v1v2 : : : vk in G such thatv1 = v; vk = w; and vi < minfv;wg for i = 2; : : : ; k � 1 g:Consider x and y, x0 and y0, and V0 as stated in the theorem. Then there is a path fromx0 to y0 in G, using only vertices in V n V0. Consider any ordering <, having V0 as anendsegment. Then all these vertices of the path are smaller than x and y. Since xx0 and7



yy0 are in E, we can add x at the beginning and y at the end of this path. All verticesdi�erent from x and y are smaller than x and y. Therefore there is a path from x to ysuch that all vertices di�erent from x and y are smaller than x and y.We determine G0 from V0 as follows:1. For any connected component Vi of Gj(V nV0), we determine the neighborhood ofVi in V0 (N(Vi) \ V0).2. We set xy 2 E0 i� x and y are in V0 and xy 2 E or x; y 2 N(Vi) for some connectedcomponent Vi of Gj(V n V0), i.e. N(Vi) \ V0 is made complete.A remark to step 2): To guarantee a logarithmic recursion depth, G0 has to becomplete or the size of V0 may not exceed 2=3]V . Moreover, all connected componentsVi of Gj(V n V0) must have a size of at most 2=3]V . In the case that G0 is complete, wecan order V0 in any way.A remark to step 3): The idea of step 3) is to compute an MEO <i for each graphĜi consisting of the vertex set V̂i = Vi[ (N(Vi)\V0) and of the edge set Êi = fxyjx; y 2V̂i and (xy 2 E or x; y 2 N(Vi)g. N(Vi) \ V0 is an end segment of <i for each i. Thiswill be done with the help of an MEO for Gi = GjVi. Let <0 be an MEO for G0. Then< is set to be the concatenation of all <i jVi and and <0 at last. To guarantee that < isreally an MEO independently which orderings <i are chosen, we introduce the notionof a good endsegment:De�nition 2 Let V0 be an endsegment of an MEO and V1; : : : ; Vk be the connectedcomponents of Gj(V n V0). Let Ĝi = (V̂i; Êi) and G0 be de�ned as above. Then V0 is agood endsegment i�, for all MEOs <i for Ĝi with N(Vi) \ V0 as an end segment andeach MEO <0 on G0, the concatenation of <1 jV1, ... , <k jVk, and <0 at last is anMEO.In the rest of this section we consider the problem how to compute such a set V0 . Notethat in Klein's PEO-algorithm, the fact is used that the neighborhood of a connectedsubset of a chordal graph is an endsegment of a PEO. An analogous result for MEOs isthe following.Theorem 8 Let M be a connected subset of V . Then N(M) is a good endsegment.8



Proof Let V0 = N(M) and V1 : : : Vk be the connected components of V nN(M).Let~Ci := N(Vi) \ N(M) for i = 1; : : : ; k:Let V̂i := Vi [ ~Ci and let G0 := (V0; E0) where E0 arises from E by completing all ~Ci.Let Ĝi := (V̂i; Êi) where Êi arises from E restricted to V̂i by completing ~Ci.Let (V̂i; E 0i) and (V0; E 00) be inclusion minimal chordal extensions of (V̂i; Êi) and (V0; E0)resp.Claim 1 G0 := (V;E 00 [[i E 0i) is a minimal chordal extension.Proof of Claim 1 First we show that G0 is chordal. Consider any cycle C of G0. Aslong as C is only in one Vi, it has a chord or is of length three, because, by construction,G0jVi is chordal. Suppose C passes more than one Vi. If C passes Vi and some other Vj ,then it must pass N(Vi) \ V0. Suppose C passes only Vi and N(Vi) \ V0. Then it has achord or is of length three, because G0j(Vi [ (N(Vi) \ V0)) is chordal by construction.Suppose now that C leaves also N(Vi) \ V0. Then it must also return via N(Vi) \ V0.Therefore at least two vertices of C are in N(Vi)\ V0. These two vertices are a chord inG0. To prove that G0 is a minimal chordal extension of G, we have only to show thateach edge xy 2 E 0i n E; x; y 2 ~Ci forms an induced cycle after its deletion.Since x; y are adjacent to the same connected component Vi, one �nds a path x; y1 : : : yl; ysuch that yi 2 Vi. This forms a cycle in G0.Since G0 is chordal, there is a yi which is adjacent to x and y in G0.Since x; y 2 N(M) and M is connected, one �nds a path xm1 : : :mly such that allmi 2M .Since also xm1 : : : y forms a cycle and G0 is chordal, one �nds an mj which is adjacentto x and y.By the construction of G0 ( vi vi; x;mj; y; vi ) forms an induced cycle of length fourafter the deletion of xy. (Claim)We complete the proof of theorem 8: Let <i be MEOs for Ĝi and <0 be an MEO forG0. Moreover, for each i = 1; : : : k let N(Vi)\V0 be an end segment of <i. Since the setsN(Vi)\V0 are complete in Ĝi, we can order N(Vi)\V0 in any way, and each <i remainsan MEO. Let for each i = 0; : : : ; k let Fi be the corresponding chordal extension of <i.By the claim, the union E 0 of all Fi is a minimal chordal extension of G.Let < be the concatenation of <1; : : : ; <k, and at last <0. Then < is a PEO forG0 = (V;E0) and therefore an MEO: 9



Suppose xy and xz are in E0 and x < y and x < z. If x 2 V0, then also y and z are inV0, and x <0 y; z. If x 2 Vi, then y; z 2 Vi [ (N(Vi) \ V0) Suppose x < y < z. If z 2 Vi,then y 2 Vi, because V0 is an endsegment of <. Then x <i y <i z and yz 2 Fi � E0,because <i is a PEO for Fi. Suppose y 2 Vi, but z 2 V0. Then still y <i z, becauseN(Vi) \ V0 is an endsegment of <i. By the same argument as in the case that y and zare in Vi, yz 2 E 0. Suppose y 2 V0. Then also z 2 V0, because V0 is an endsegment of<. That means y and z are both in the complete set N(Vi)\ V0 and therefore joined byan edge in E 0.Last theoremwill be used in the "low degree re�nement" part of the ENDSEGMENTprocedurei, i.e. if there is a large connected subset of low degree vertices.For the "high degree re�nement" part of the ENDSEGMENT procedure, the follow-ing result is useful.Theorem 9 Let G = (V;E) be any graph and x 2 V . Let W be a connected componentof Gj(V nN(W )). Then fxg [ (N(x) \N(W )) is a good endsegment.Proof By previous theorem, N(x) is a good endsegment. By theorem 7, N(x)\N(W )is complete in any chordal extension of an ordering, having N(x) as an endsegment.Moreover,N(x)\N(W ) is also complete in any chordal extension of an ordering, havingV0 = fxg [ (N(x) \ N(W )) as an endsegment. Consider the connected componentsV1; : : : ; Vk ofGj(V nV0). Then one of the Vi isW . As in the previous theoremwe �x MEOs<i on the graphs Ĝi which arise fromGj(Vi[(N(Vi)\V0)) by making V0\N(Vi) complete.As in the previous theorem, we also concatenate all <i jVi and at last any ordering <0 onV0 to an ordering<. Now V0 is made complete only bymaking V0\N(W ) = N(x)\N(W )complete.When we restrict < to V0[W , V0 is a good endsegment of Gj(V0[W ), becauseit is the neighborhood of x. Since all other Vi have neighbors only in V0 and V0 is madecomplete by W alone, the removal of any �ll-in edge in V0, i.e. of any edge that appearsin the chordal extension but not in the original graph, induces a chordless cycle of lengthfour. All other �ll-in edges not in E, are �ll-in edges of some Ĝi which are also nonedgesin Ĝi.Now we are able to compute a set V0 in parallel which is a good endsegment.We compute the set D1 of sparse vertices and the set D2 of \dense" vertices. Here\sparse" means that the degree is at most 2=3 of the number n of vertices. A vertex is\dense" i� it is not sparse.In the case that there are two nonadjacent dense vertices x and y, their commonneighborhood N(x) \N(y) is at least 1=3 of the number of vertices of the whole graph10



G = (V;E). Let W be the connected component of Gj(V n N(x)), y belongs to. ThenV0 is set to be fxg [ (N(x) \ N(W )).Now we consider the case that the set of dense vertices is complete. Trivially theset D2 of dense vertices can be taken as an endsegment of an MEO. In the case thatall connected components of GjV nD2 have a cardinality of at most 2=3 of the number ofvertices, we are done and set V0 = D2. Otherwise we consider the connected componentC1 of sparse vertices whose size is greater than 2=3 of the number of vertices of thewhole graph. We can compute on this connected component C1 a spanning tree T1. Asa root we choose a sparse vertex r of maximal degree. If the degree of r is between 1=3and 2=3 of the number of vertices of the whole graph, then we are done, since we onlyhave to take the neighborhood of r as an endsegment. This is a good endsegment byTheorem 8.It remains the case that the degrees of all sparse vertices of C1 are less than 1=3of the number of vertices. But then we can compute an enumeration (v1; : : : ; vp) of thesparse connected component C1 such that each initial segment (v1; : : : ; vl) is a subtreeof the above spanning tree T1. Since all neighborhoods N(vi) are less than 1=3 of thenumber of vertices and the size of C1 is greater than 2=3 of the number of vertices, we�nd an initial segment fv1; : : : ; vlg such that the size of its neighborhood lies between1=3 and 2=3 of the number of vertices of the whole graph. It also is a good endsegmentby Theorem 8.The computation of a good end segment satisfying above requirements consists ofthe computation of connected components and spanning trees, neighborhoods of initialsegments, and of common neighborhoods. Therefore we get the same time and processorbound as in the procedure NONE of the perfect elimination algorithm of Klein [Kl].Theorem 10 For any graph G = (V;E), we can compute a good endsegment V0, suchthat #V0 � 23#V or V0 is complete in each chordal extension of an ordering, having V0as an end segment, and, for each connected component C of V n V0, #C � 23#V , inCREW-time O(log2 n) and O(n +m) � O(n2) processors.How to make the neighborhood of each connected component of GjV nV0 a completesubgraph, will be discussed in a later section.3 A Simple CaseWe assume in this Section that the vertex set V of G = (V;E) is the disjoint union oftwo complete subsets V 0 and W 0 with additional edges between V 0 andW 0. This appearsas an essential subprocedure of the general case.11



For v 2 W 0, let N 0(v) := N(v) \ V 0 be the set of neighbors of the vertex v0 whichare in V 0.For the development of an MEO-algorithm for the simple case, the following struc-tural result is useful.Lemma 3 G is chordal i� for v1; v2 2 W 0, N 0(v1) and N 0(v2) are comparable withrespect to inclusion (compare also [NNS 87]).Proof\)": Suppose w1 2 N 0(v1) nN 0(v2) and w2 2 N 0(v2) nN 0(v1).Then v1v2w2w1 forms a chordless cycle of length four.\(": We assume that G is not chordal.Then a chordless cycle must be of the form v1v2w1w2 such that v1; v2 2 W 0 andw1; w2 2 V 0. Longer chordless cycles are not possible. But then N 0(v1) and N 0(v2) arenot comparable by inclusion. This is a contradiction.For the case that G is not chordal, we compute an MEO < with V 0 as an endsegment.Since V 0 is complete, we can V 0 order in any way. It remains the problem how to orderW 0.We compute an enumeration (ui)i of W 0, whose corresponding ordering is the restrictionof a minimal elimination ordering to W 0. The chordal extension E 0 de�ned by (ui)i isE0 = E [ fuiv : v 2 V 0 and there is an j � i; ujv 2 Eg. De�ne N 00(ui) = fv 2 V 0 : uiv 2 E 0g = [j�iN 0(uj) and G0 := (V;E 0). N 00(ui) is alsocalled the extended neighborhood of ui.Clearly, by Lemma 3, G0 is a chordal extension of G. Our aim is to compute a minimalchordal extension G0, that means we would like to compute an enumeration (ui)i suchthat the following minimality condition which we call PropertyM (minimality property)is satis�ed:If uiv 2 E0 n E then there is a uj with j < i and a w 2 V 0 such that ujv 2 E,uiw 2 E, and ujw 62 E0.It is easily seen that the deletion of the edge uiv induces a 4-cycle uiwvuj.We also can describe the minimality property in terms of neighborhoods.12



If v 2 N 00(ui) but v 62 N 0(ui), then there is a uj; j < i; and a w 2 N(ui) such thatv 2 N 0(uj) and w 2 N 0(ui) nN 00(uj).We shall show that an enumeration (ui)i satisfying the Property M ever exists. Thefollowing result proves the existence of such an enumeration and gives also a hint howto compute it.Lemma 4 If, for each i, N 0(ui) n Sj<iN 0(uj) is inclusion minimal infN 0(uk) n [j<iN 0(uj) j k � igthen (ui)i satis�es the Property M .Proof. Consider any v 2 N 00(ul) nN 0(ul). Then l 6= 1. Let i be the minimum such thatv 2 N 0(ui).Since N 0(ui) n Sj<iN 0(uj) is minimal forfN 0(uk) n [j<iN 0(uj)with respect to inclusion, and N 0(ui+1) n Sj<iN 0(uj) 6= N 0(ul) nSj<iN 0(uj) (they di�erby v), there is a w 2 N 0(ul) nN 00(ui) which is not in N 00(ui+1).To compute a sequence (ui)i satisfying the assumption of Lemma 3 is clearly equiv-alent to the following computation problem on set systems:Given a set system (family of sets) � � P (V ), compute an enumeration Ai of � whichsatis�es the following Property I (inclusion property):I : Ai+1 n [j�iAj is inclusion minimal in fAk n [j�iAj : k > ig:Theorem 11 Under the assumption that � is presented as the bipartite graph consistingof V [ � as the vertex set and the membership relation as the edge set with n verticesand m edges, an enumeration satisfying the Property I can be computed in CREW-timeO(log2 n) by O(n+m) processors. 13



Proof We shall state a recursive divide-and-conquer algorithm computing an enumer-ation satisfying Property I:Here we divide the sets in � into small and large sets, that means sets Ai with a sizesmaller than 1=3 of the size of the ground set V and sets Ai with a size at least 1=3 ofthe size of the ground set. Our aim is to divide the problem to smaller ground sets V 0and V 00. V 0 is the union of some small sets in �. If the small ground sets cover at least1=3 of the whole ground set V then we can take V 0 as the union of some small sets suchthat the size of V 0 is between 1=3 and 2=3 of the size of V . The V 00 is taken to be thecomplement of V 0. Clearly the size of V 00 also lies between 1=3 and 2=3 of the size of V .We divide the sets in � by the following way:If Ai 2 � is a subset of V 0 then it belongs to the part of V 0.Otherwise A0i := Ai n V 0 is taken to the part of V 00.We continue recursively the procedure to V 0 and all Ai � V 0 and to V 00 and all A0isuch that Ai 6� V 0. We concatenate the sequence of all Ai belonging to V 0 and afterwardsthe sequence of Ai belonging to V 00.In the case that the small sets Ai cover less than 1=3 of V , we also take V 0 as theunion of all small sets in �. But we cannot de�ne V 00 as in the case before. To make V 00not too large, we choose a large Ai, say A0 such that Ai n V 0 is minimal. Let V 00 be thecomplement of A0 [ V 0.We recursively apply the procedure to V 0 and all subsets Ai of V 0 and to V 00 and allA0i := Ai nA0 n V 0 = Ai \ V 00. Here we �rst concatenate the sequence of Ai belonging toV 0. Afterwards we take the one Ai = A0, and then we take the sequence of Ai belongingto V 00 (that means Ai is not A0 and is not a subset of V 0).Formally we proceed as in Algorithm 2.The correctness of Algorithm 2 can be shown as follows:Let J1 be the set of i such that Ai � V 0, J2 be the set of i such that AinV 0 = V 00nV 0,and J3 be the set of remaining i 2 I (as de�ned in the procedure Property I).Let < i1 : : : ; ik > be an enumeration of J1 satisfying the property I and <j1; : : : ; jk0 > be an enumeration of J3 such that (Bji)i = 1k0 satis�es the property I.Since all Ai with i 62 J1 are no subsets of V 0, Ail n Sl�1j=1Aij is an inclusion minimalset of all Aj n Slj=1Aij with j 2 I n fi1; : : : ; il�1g. For i 2 J2, the minimality conditionsare preserved by construction and the fact that V 0 = Si2J1 Ai.Let P3 =< j1 : : : jk0 > de�ned as above. Then Bji n Sl<iBjl = Aji n (Sl�iAjl [Sj2J1[J2 Aj) : 14



PROCEDURE Property I (fAi j i 2 Ig, V , P )Input Parameter: A family fAi : i 2 Ig of subsets of VOutput Parameter: Sequence P := (i1 : : : iI ) which enumerates IBEGIN1) Let I1 := fij#Ai < 1=3 #V g; I2 := fij#Ai � 1=3 #V g;a) If #Si2I1 Ai � 2=3 #V , then select I 01 � I1 such that1=3#V � # [i2I01Ai � 2=3 #V ; V 0 := [i2I01Ai ; V 00 := V n V 0:b) If #[i2I1Ai 2 [1=3#V; 2=3#V ] thenV 0 := [i2I1Ai ; V 00 := V n V 0:c) If #[i2I1Ai < 1=3#V then V 0 := [i2I1Ai:Let A be an i2 2 I2 such that #Ai n V 0 is minimal; let V 00 := V n V 0 nA.2) LetJ1 := fi : Ai � V 0g;J2 := fi 2 I n J1 : Ai [Si2I1 Ai = V n V 00g;J3 := I n (J1 [ J2);fBi : i 2 J1g := fAi : i 2 J1g;fBi : i 2 J3g := fAi n V 00 : i 2 J3g ;3) Property I (fBi : i 2 J1g; V 0; P1) (if J1 > 1)Property I (fBi : i 2 J3g;W 0; P1) (if J3 > 1)Let P2 be any injective sequence enumerating J2.P := P1 _ P2 _ P3 is the concatenation of P1; P2 and P3;END. Algorithm 215



This completes the correctness proof.The computation of all #Ai needs O(log n) CREW-time and O(n +m) processors.The same is true for the computation of I1 and I2. Therefore the preface of 1) can beexecuted in O(log n) CREW-time by O(n+m) processors.The selection of I 01 as in 1a) can be done as follows:Sort I 01 with respect to #Ai in decreasing order I 01 := fi1 : : : ipg;Compute, for each v, the least j, say j(v) such that v 2 Aij and letsj := #fv : j(v) = jg; Sj := #(Aij n [j0<jAij)):Compute by bisection a k such that Pj�k Sj 2 [13#V; 23#V ] (this exists, since for eachj, Sj < 13#V ).It is easily seen that each step needs at most O(log n) CREW-time and O(n +m) processors. Therefore 1a) can be executed in O(log n) CREW-time by O(n + m)processors.Since Si2I1 Ai can be computed in constant CRCW-time by O(n+m) processors, 1b)and the �rst part of 1c) can be computed in constant CRCW-time by O(n+m) proces-sors. #Ai2 n V 0 can be computed in O(log n) CREW-time and by O(n+m) processors.Therefore 1c) can be executed in O(log n) CREW-time and O(n +m) processors.Since V 0 is a �xed set, the it can be checked for all i simultaneously in constantCRCW-time with O(n+m) processors, whether Ai � V 0. By the same arguments as inthe computation of V 0; J2; J3; fBi : i 2 J1g; fBi : i 2 J3g can be computed in constantCRCW-time and O(n +m) processors.Therefore part 1) and part 2) of the procedure Property I have a processor boundof O(n +m) and a time bound of O(log n) on a CREW-PRAM.Since V 0 and V 00 are constructed such that #V 0 � 23#V and V 0 n V 00 � 23#V therecursion depth as in 3) is O(log n). Therefore the whole procedure needs O(log2 n)CREW-time and O(n +m) processors. Note that J1 and J3 are disjoint, therefore theprocessor number needed for the procedure Property I is the sum of the processornumbers O(n1 +m1) and O(n2 +m2) needed forProperty I (fBi : i 2 J1g; V 0; P1),Property I (fBi : i 2 J3g; V 0 n V 00; P3), respectively.But n1 + n2 � n and m1 +m2 � m, since J1 \ J2 = ; and V 0 \ (V n V 00) = ;.16



The procedure SIMPLE CASE is nothing else than the computation of an enumer-ation (ui)ki=1 of W 0 such that (N 0(ui))ki=1 satis�es property I.4 The General CaseIn Section 2 we computed a good endsegment V0 � V of an MEO. For each connectedcomponent Vi of GjV nV0, we made N(Vi) \ V0 a complete subgraph. We de�ned E0 asthe set of edges in V0, which are in E or arise as edges after N(Vi) \ V0 has been madea complete subgraph. We de�ned G0 = (V0; E0) and Gi = (Vi; EjVi), for i = 1; : : : ; k.Now MEO is applied recursively to all Gi with i = 0; : : : ; k. We get orderings <0and <01; : : : ; <0k of V0 and V1; : : : ; Vk respectively. We denote the chordal extensions ofGi with respect to <0 and <0i, i = 1; : : : k by ~G0; : : : ; ~Gk.The goal is to �nd perfect elimination orderings <1; : : : ; <k, such that the concate-nation < of <1; : : : ; <k and at last <0 is an MEO.It is su�cient to �nd perfect elimination orderings <i such that any extension of <ito an ordering <00i on Vi [ (N(Vi) \ V0), with N(Vi) \ V0 as an end segment, is an MEOof the graph (Vi [ (N(Vi) \ V0); Ej(Vi [ (N(Vi) \ V0)) [ fxyjx; y 2 N(Vi) \ V0g). Thensince V0 is a good endsegment, < is an MEO of G.Lemma 5 The chordal extension F< of < consists of the edges in ~G0; : : : ; ~Gk and ofadditional edges between Gi and G0.That means, all �ll-in edges inside Vi are just edges of ~Gi and there are no �ll-inedges joining any x 2 Vi and y 2 Vj with i; j � 1 and i 6= j.Proof of lemma. Suppose x < y and xy 2 F<. Then xy 2 E or there is a path P inG from x to y, such that all internal vertices are smaller than x.Suppose x 2 V0. Suppose x0 and y0 are vertices of P such that all vertices betweenx0 and y0 are not in V0, but x0; y0 2 V0. Then x0y0 2 E0, because x0 and y0 are adjacentto the same connected component. Therefore we can replace P by a path P0 in G0 suchthat all internal vertices are smaller thatn x. Since <0=< jV0 is a perfect eliminationordering of ~G0, xy is an edge of ~G0.Suppose x 62 V0 and y 2 V0. Then we are done.Suppose x 2 Vi and y 2 Vj . Then i = j, because, for all v < x and therefore for allinternal vertices v of P , v 62 V0 and every path in G joining vertices in di�erent Vi must17



<i <i <i<0 <0V0Figure 1pass V0. By the same argument, also all internal vertices of P are in Vi. Therefore forall internal vertices v of P , v <i x. Since <i is a perfect elimination ordering on ~Gi, xyis an edge in ~Gi.As shown by the following counterexample in �gure 1, we cannot take each perfectelimination ordering on ~Gi. Edges of the original graph are denoted by continuous lines.Fill-in edges are assigned by broken lines.To get a better feeling on the structure of perfect elimination orderings and thepossibility to �nd the right perfect elimination ordering of ~Gi, we introduce the notionof a cut . For vertices v;w of a graph G a v-w-cut is an inclusion minimal v and wseparating set of vertices. A cut of G is a v-w-cut of some two vertices v and w of G.For chordal graphs we know the following about cuts [Di 76]:Theorem 12 Each cut c of a chordal graph G = (V;E) is complete. Moreover, it is theintersection of two maximal cliques (and therefore the intersection of the neighborhoodof two nonadjacent vertices in di�erent connected components of GjV nc).We also introduce the notion of a saturated connected component of Gj(V n c) of acut c of G: A connected component D of Gj(V n c) is a saturated connected componentof the cut c i� each x 2 c is adjacent to some y 2 D.Corollary 1 Each cut has at least two saturated connected components.18



Proof. Suppose c is an x� y-cut. Let D1 be the connected component of Gj(V n c), xbelongs to and D2 be the connected component of Gj(V n c), y belongs to. Then D1 andD2 are both saturated connected components of c: If z 2 c is not adjacent to a vertexof D2 or not adjacent to a vertex of D2 then c n fzg still separates x and y. That is acontradiction to the minimality condition.Lemma 6 Each cut of a chordal graph G = (V;E) with a perfect elimination ordering< is of the form cx = fy : x < y ^ xy 2 Eg:Proof We use the fact that each cut c is the intersection of the neighborhoods of twononadjacent vertices x and y of G. Consider the subgraph of G induced by c [ fx; yg.Then one of the vertices x and y is the smallest in c[ fx; yg with respect to the perfectelimination ordering <, since only x and y have a simplicial neighborhood in c [fx; yg.We may assume that x is the smallest element. We also may assume that x and y are indi�erent connected components of GjV nc. Therefore for at least one of these connectedcomponents D and all z 2 D adjacent to all vertices of c, z < w, for all w 2 c. Fromthis connected component we choose a largest z adjacent to all vertices of c. But thenthe complete set fy : zy 2 E ^ z < yg is exactly c.Corollary The number of cuts of a chordal graph is bounded by the number n of itsvertices.Theorem 13 (Klein) The cuts of any chordal graph G can be computed by a CRCWin O(log2 n) time by O(n +m) processors. Moreover, if a perfect elimination orderingof G is known then we get a CREW-time bound of O(log n).We return to the computation of <i.We compute the set Cuti of all cuts of the chordal extension ~Gi of Gi. This canbe done immediately, for each Vi, by O(#Vi + # ~E) processors and O(log n) time by aCREW-PRAM ([Kl 88]). Therefore the overall complexity of computing all cuts of any~Gi consists of a CREW-time bound of O(log n) and a processor bound of O(n2). Thisbound remains true also in each recursion step of the MEO-algorithm.19



We begin with an overview of the procedure Minchord that computes, for eachi, the right perfect elimination ordering of ~Gi. Note that for any perfect eliminationordering <i of ~Gi and any cut c of Gi, for all but one connected components D of~GijVinc, all vertices in D are smaller than all vertices in c. By some criteria, we �ndout that connected component D that does not satisfy above requirement with respectto the still unknown perfect elimination ordering that satis�es the minimal eliminationordering requirements. We shall call this connected component the dominator of c andall other connected compontents of ~GijVinc are called non dominating. We replace anyedge xy such that x appears in a non dominating connected component of some cutthat contains y by a directed edge x!i y. This partial orientation can be seen as a �rstapproximation of the required perfect elimination ordering <i of ~Gi. The next step isto compute a pre-�ll-in, i.e. for x 2 V0 and y 2 Vi, xy is a pre-�ll-in edge i� there is ay0 such that xy0 2 E and (y0; y) is in the transitive closure !�i of !i. We shall �nd outthat those edges that remain undirected de�ne an equivalence relation on the vertices,i.e. they form a disjoint union of cliques. For each such clique, we apply the SIMPLECASE procedure.To get an algorithm with a processor bound of O(n3) and a time bound of O(log3 n)is quiet straightforward. The di�culty is to get a processor bound of O(nm) in eachrecursion step of the MEO procedure.4.1 How to �nd out the dominator of a cutFor each c 2 Cuti and each saturated connected component D of ~GijVi n c, we computethe number num(D) := #(NG(D) \ V0), the cardinality of the neighborhood of D in V0with respect to the original graph G.The dominator of c 2 Cuti is the only saturated connected component of ~Gj(Vi n c)such that num(D) is maximal. If there is more than one such saturated component thenit is the unique connected component D such that num(D) and #D are maximal, ifsuch a unique connected component exists. Otherwise c has no dominator.A saturated connected componentD is a nondominating connected component of c i�D is not the dominator of c. We denote the set of nondominating connected componentsof any cut c of ~Gi by NDi.We give an example: Figure 7 shows a graph G with the complete set V0 as a goodendsegment. Moreover, here G is constructed in such a way that GjV nV0 is connectedand chordal. In this example Vi = V n V0, Gi = ~Gi, and G0 = GjV0.The cuts of ~Gi = GjV nV0 are c1; : : : ; c3 as shown in �gure 8.20
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The dominating connecting component of c1 is D := fv2; v3; w3g, it has the greatestnumber of neighbors in V0.The dominating connected component of c3 is fv2; w2; v1g, for the same reasons.The connected components of ~GijVi n c both have the same maximal number ofneighbors in V0.Since fv1; v3; w1g has the greatest own cardinality, it is the dominating connectedcomponent belonging to c2.4.2 The orientation of edges and the clique structure of nonoriented edgesTo determine <i, we introduce the following relation !i.If xy is in ~Ei (the edge set of ~Gi), y is in c 2 Cuti, and x is in a nondominatingsaturated connected component of Gij(Vi n c) then we set x!i y.The following result justi�es that the transitive closure!�i of !i can be interpretedas a �rst approximation of a minimal elimination ordering.Theorem 14 (i) !i is cycle free.(ii) If x!i y and x!i z then yz 2 ~Ei.(iii) If x!i y, y !i z and xz 2 ~Ei, then x!i z.(iv) Let �i be the following relation: x �i y i� xy 2 ~Ei and not x !i y or y !i x.Then �i is an equivalence relation.Proof Let x !i y and x !i z. Let c1 and c2 be cuts such that y 2 c1, z 2 c2and such that x is in a nondominating saturated connected component of c1 and in anondominating saturated connected component of c2.Claim 2 At least one of the vertices y; z is in c1 \ c2.22



Proof of the Claim Assume that y 2 c1 n c2 and z 2 c2 n c1. Let D1 be a saturatedconnected component of ~Gj(Vi n c1) not containing x and D2 be a saturated connectedcomponent of Gj(Vi n c2) not containing x. Then D1 and D2 are disjoint, and moreover,D1 \ c2 = ; and D2 \ c1 = ;. Otherwise y is a neighbor of a vertex of D2 or z is aneighbor of D1, and therefore x 2 D2 or x 2 D1.Note that D2 [ fxg is contained in a saturated connected component of c1 and viceversa.Suppose x!i y and x!i z. Then we �nd saturated connected components D1 andD2 of c1 and c2 respectively which do not contain x with the additional property that#(NG(D1) \ V0) and #(NG(D2) \ V0) are maximal. Therefore#(NG(D1) \ V0) � #(NG(D2 [ fxg) \ V0) � #NG((D2) \ V0):But also the other direction of the inequation is true by the same argument and thusthe equality. Moreover, one �nds such D1;D2 such that #D1 � #D2 [ fxg and #D2 �#D1 [ fxg. That means #D1 � #D2+1 and #D2 � #D1+1. This is a contradiction.(Claim)Since cuts are complete, (ii) follows from Claim 2.Now we consider the case x !i y, y !i z: Let c1 be a cut such that y 2 c1 and xis in a nondominating saturated component of ~Gij(Vi n c1) and let c2 be a cut such thatz 2 c2 and y is in a nondominating saturated component of ~GijVinc2.Claim 3 Each path from x to some vertex of c2 must pass a vertex of c1.Proof of the Claim We assume that the Claim is not true. Let D1 be a saturatedconnected component of ~Gij(Vi n c1 not containing x and D2 be a saturated connectedcomponent of ~Gij(Vi n c2) not containing y. Since we assume that there is a path fromx to c2 not passing c1, all vertices of c2 n c1 and x are in the same (saturated) connectedcomponent of ~GijVinc1. Moreover, also D2 is in this saturated connected component.Since y 2 c1 n c2, D1 and y are in one saturated connected component of ~Gij(V n c2).If we assume again that D1 and D2 satisfy the maximality conditions with respect to#(NG(Di)\ V0) and their own cardinality we get the same contradiction as in Claim 2.(Claim)By Claim 3, zy 2 c1 \ c2 if xz 2 ~Ei. Therefore also x!i z, (iii) has been proved.We are now able to prove (i): Consider any chain x1 !i x2 !i x3 � � � xk. Then we�nd cuts c2; : : : ; ck such that for all i � k : xi 2 ci, xi�1 62 xi and all paths from xi to23



ci+2 pass ci+1. Therefore also xi 62 ci+2. Otherwise ci+2 is reachable from xi not passingci+1 (by a path of length 0).By induction one can prove that xi 62 ci+k, for any k > 0: For k = 1; 2 this is justshown. Assume xi 2 ci+k+1. Then there is a path xi+k�1xi+k�2 : : : xi from xi+k�1 toci+k+1 not passing ci+k. This is a contradiction.Therefore it is impossible that x1 = xk. Therefore the cycle freeness of !i has beenproved.To prove (iv) we proceed as follows: If xy, yz 2 ~Ei but xz 62 ~Ei then there is a cutc between x and z. y is in this cut c. x and y must be in di�erent saturated connectedcomponents of ~Gij(Vinc). But only one connected component can be a dominator.Therefore x!i y or z!i y is satis�ed. (*)If xy 2 ~Ei, yz 2 ~Ei and x!i z, then x!i y or y !i z. (**)Let c be a cut such that z 2 c and x is in a nondominating saturated connectedcomponent of ~Gij(Vi n c). Then in the case that y 62 c, y is also in the same nondominatingconnected component as x, and therefore y � z.If y 2 c we have x!i y. By (*) and (**), �i is an equivalence relation.Moreover, we get the following extended result.Theorem 15 x!i y, z �i x implies z !i y.Proof If x �i z, then xz 2 E. Since x !i y, zy 2 E. Otherwise z !i y, by (*).Therefore, by Theorem 14, z!i y.We determine the right <i is as follows:Let !�i be the transitive closure of !i. Then for x 2 Vi and y 2 V0, we setxy 2 E0i i� there is an x0 !�i such that x0y 2 E.E0i is also called the pre-�ll-in of !i.For each �i-equivalence class A, we apply the procedure SIMPLE CASE to thesubgraph GA, consisting of the complete sets A (of ~Gi) and N(Vi) \ V0 (of G0) and ofthe edges of E 0i which join each a vertex of A and a vertex of N(Vi) \ V0. We denote24



the resulting ordering on A by <A and the resulting chordal extension by ÊA. Êi is theunion of all ÊA such that A is an equivalence class of �i.<i is a total ordering on Vi which exceeds !�i and, for each �i-equivalence class A,the ordering <A.Let < be the concatenation of all <i and of <0 at last.Lemma 7 1. <i is a perfect elimination ordering of ~Gi.2. The chordal extension F< of < is ~E0 [ ~E1 [ : : : [ ~Ek [ Ski=1 Êi.Proof. The �rst statement is proved as follows.Let x <i y and x <i z. If x!i y and x!i z, then, by theorem 14, yz 2 ~Ei.Suppose x <A y and y !i z. Then x �i y, and therefore y !i z, by theorem 15.If x <A y and x <A z then, by y �i x � z, y �i z, and therefore yz 2 ~Ei.The second statement of this lemma follows immediately from the �rst statement ofthis lemma, by lemma 5.4.3 The MEO-Property of <iTheorem 16 ~G := (V; ~E) is a minimal chordal extension of G = (V;E).Proof Since ~GjVi = ~Gi and ~GjV0 are minimal chordal extensions of Gi and of G0 itremains to prove that, in ~G, the deletion of any edge between V0 and Vi not being in Eforces a cycle of length four.To check the minimality of ~G as a chordal extension, we proceed as follows:Let yv 2 ~E nE, y 2 Vi, and v 2 V0. Then one of the following two statements is true.1. There is an x0 such that x0 and y are in the same �i-equivalence class A, x0 <A y,and x0v 2 E 0i. Since <A is an MEO of the graph GA consisting of the completesets V0 \ N(Vi and A and the edges of E 0i between A and N(Vi) \ V0, yv 2 E 0i orthe deletion of y0v causes a chordless cycle of length four.25



2. yv 2 E 0i n E. Then there is an x00 !�i y, such that x00v 2 E. Therefore we �nd anx0 !i y, such that x0v 2 E0i.It remains to consider the second case.Then there is a cut c such that y 2 c and x0 is in a saturated component of ~Gij(Vi n c).But then there is also a saturated component D0 of c not containing x0 and #(N(D)\V0) � #(N(D0)\V0)). Therefore one �nds a vertex v0 2 N(D0)\V0 not being inN(D)\V0or v 2 N(D0) \ V0 = N(D) \ V0.In the next paragraphs v is any vertex of N(D0) \ V0 and v0 is any vertex inN(D0) \ V0 nN(D) if N(D0) \ V0 nN(D) 6= ; and v0 = v if N(D0) \ V0 = N(D) \ V0.Let ~x 2 D0 and ~xv0 2 E. Let ~x = x1x2 : : : xkxk+1 = y be a shortest path in ~Gi joining~x and y such that all xi are in D0. Such a path exists since D0 is a saturated connectedcomponent.First we consider the case that D0 is not the dominator of c. Then xk !i y.Moreover, xk�1 !i xk; � � � x0 ! x1 and therefore ~x!�i xk !i y:This can be proved by backward induction. Since xj�1xj 2 ~Ei, xj�1 �i xj or xj !ixj�1 or xj�1 !i xj. We know that xj ! xj+1 and that xj�1xj+1 62 ~Ei (we chose a shortestpath). Then, by theorem 15, xj � xj�1 is excluded, and, by theorem 14, xj !i xj�1 isexcluded.For the case that v0 2 N(D0) n N(D) we get a cycle (yv0vx0y) after deletion of theedge yv (see �gure 3, continuous lines are edges, dashed lines �ll-in edges. The cyclewithout an arrow shows a cycle of length four.)
v0 vxk 2 D0 y x0 2 D

Figure 326



For the case that v0 = v we get a cycle (xkyx0vxk) (see �gure 3a, dashed lines betweenpoints denote edges of the original graph. The non-dashed cycle arises from deleting theedge zv. The dashed cycle arises from the deletion of yv0.)
vxk y x0

Figure 3aNow we consider the case that D0 is the dominator. Again we consider the shortestpath ~x = x1 : : : xky.If y !i xk then also xkv 2 E0i, and we get the cycle xkyx0vxk after the deletion of yv(see �gure 4).
vxk y x0

Figure 4If not y !i xk then xk ! y or xk �i y. In the �rst case we can proceed as in thecase that D0 is not the dominator.Also in the second case, xk�1 !i xk, because xk�1y 62 ~Ei, �i equivalence classes formcomplete sets, and xk ! xk�1 cannot be the case, by theorem 15. Therefore xj !i xj+1,for all j < k, by the same argument as in the case that D0 is not the dominator.Therefore xkv0 2 E 0i, since x!�i xk. If v0 = v then again, after deletion of yv, a cycleof length four arises (see �gure 5). 27



vxk 2 D0 y x0 2 D
Figure 5If v 6= v0, we can use the fact that xk �i y, and xkv 2 ~E or yv0 2 ~E (see �gure 6).2 ~E n E 0iFigure 6In both cases the deletion of the edge yv causes a chordless cycle of length four.Therefore the Theorem is proved.4.4 Structural Properties of Nondominating ComponentsWe continue with a lemma which is useful for an e�cient parallel algorithm that com-putes <i.Lemma 8 For each vertex x 2 Vi the setDx := fD : D is a nondominating connected component of some cut of ~Gi and x 2 Dgis totally ordered by inclusion. 28



Proof Let D1 and D2 be nondominating connected components for cuts c1 and c2respectively. Let x 2 D1 \D2. Then each path from x to c1 must pass c2 or vice versa,otherwise, as in the proof of Claim 2 of Theorem 14, one of the components D1 or D2 isdominating. But then clearly D1 � D2 if each path from x to c2 passes c1 or vice versa.Corollary 2 For all nondominating connected components D1 and D2, D1 and D2 arecomparable by inclusion or are disjoint.Lemma 9 Let Dx be the unique smallest D 2 Dx. Then1. x!i y i� xy 2 ~Ei and y 62 Dx.2. Dx = fy : 9x0 �i x y !�i x0 or y �i xg.Proof. The �rst part can be seen as follows. x !i y is equivalent to the statementthat there is a nondominating saturated connected component D of some cut c suchthat x 2 D and y 2 c. On the other hand, c is exactly the set of neighbors of D outsideD. Therefore, for xy 2 ~Ei, x ! y i� there is a saturated connected component of anycut such that x 2 D and y 62 D. Therefore for xy 2 ~Ei, x ! y i� x 2 Dx and y 62 Dx,because Dx is the inclusion minimal saturated connected component of some cut whichcontains x.The second statement can be seen as follows:Dx is a saturated connected componentof some cut c. Suppose y !�i x. Then no y0 on the !i-chain from y to x can be in c(otherwise the!i-symbol would be turned). Therefore all elements of the!i-chain fromy to x is in Dx. Suppose y �i x. Then y 62 c and therefore y 2 Dx.Suppose vice versa that y 2 Dx. Then there is a path from y to x, say y = y0; : : : ; yl =x such that all yj on this path are not in c. By theorem 14, we may abbreviate this pathin such a way that yj !i yj�1 and yj !i yj+1 cannot be the case simultaneously.Moreover, by theorem 15, we can abbreviate this path in such a way, that the followingsituation cannot happen: yj �i yj+(�)1 !i yj+(�)2. Moreover, the following situation isexcluded:x = yl ! yl�1. Otherwise yl�1 2 c.Therefore the following possibility remains: The sequence y = y0; : : : ; yl = x has aninitial segment of !i (which may be empty) and an end segment of �i.Corollary 3 Let Dx be de�ned as in the previous lemma. Then for xy 2 ~Ei,29



1. x!i y i� #Dx < #Dy and2. x �i y i� Dx = Dy i� #Dx = #Dy.We go back to our example:We get Dv1 := fv1g, Dv2 := fv2g and Dv3 := fv3g, and the following direction!i asin �gure 9.
v2 w2 v1w3 w1v3

Figure 9The pre-�ll-in E0i consists of the following additional edges:w3v2, w3u1, w3u3, w2u2, w2u3, w2u4, w1u4, and w1u1 (see �gure 10). Note that w1 �iw2 �i w3.Note that w1, w2, and w3 are not in any proper nondominating and therefore Dw1 =Dw2 = Dw3 = Vi.If we apply the SIMPLE CASE procedure to W = fw1; w2; w3g and V0 as completesets and edges of E0i between W and V0 then (w1; w2; w3) is a suitable enumeration, andwe get a �ll-in as in �gure 12.For complexity considerations, the following result is useful.Lemma 10 The number of saturated connected components of all cuts is bounded byO(#Vi). 30
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Proof. Suppose D is a nondominating connected component. Then D is of the formDx. Therefore the number of nondominating components is bounded by the numberof vertices in Vi. The number of dominating connected components is bounded by thenumber of cuts and therefore bounded by the number of vertices.Corollary 4 Assume the set NDi of nondominating saturated connected componentsof all cuts is known. Then Dx and �i, can be computed in O(log n) CREW-time usingO(n2) processors.Proof. Dx is computed by the computation of the #D with x 2 D of minimalcardinality. �i is computed by comparing #Dx and #Dy.Remark: We could compute!i with the same amount of complexity. But we neverwill use ! explicitely in the algorithm.We still have to compute the pre-�ll-in E0i, for each �i-equivalence class A, theordering <A, and from these both results, the overall MEO < and its chordal extension.If we would go straightforward, we had to compute !�i . To compute !�i , we wouldneed O(n3) processors.To compute E 0i e�ciently, we use the following simple fact:Lemma 11 For x 2 Vi and v 2 V0, xv 2 E0i i� xv 2 E or there is a y !i x such thatv 2 N(Dy) \ V0. (Remember that Dy is the smallest nondominating component whichcontains y).Proof. Suppose xv 62 E. Then xv 2 E0i is equivalent to the statement that there is ay0 such that y0 = y0 !i y1 !i : : :!i yl !i x and y0v 2 E. Then by lemma 9, y0 2 Dyland v 2 N(Dyl). Vice versa let v 2 N(Dy), for some y !i x. Then, by lemma 9, thereare a y00 such that y � y00 and y00v 2 E or a y0 such that y0v 2 E and y00 !�i y0. ByTheorem 15, y00 !�i x and therefore xv 2 E0i.For purposes of e�ciency, we consider, for each x 2 Vi, only those y !i x such thatDy is maximal by inclusion. Moreover, we are not interested in y itself, but in Dy .Set y !0i x i� Dy !0i x i� y is a y !i x such that Dy is maximal by inclusion.32



Since the set NDi of nondominating connected components is of the property thateach pair is disjoint or comparable with respect to inclusion, for each Dy 2 NDi, thereis at most one inclusion minimal D0y 2 NDi such that Dy �6= D0y. If no such D0y existsthen we set D0y = Vi.We can compute these D0y by computing, for D = Dx, the second smallestD0x 2 NDiwhich contains x.Lemma 12 For each Dy 2 NDi, let D0y the unique inclusion minimal set in NDi[fVigsuch that Dy �6= D0y. Then Dy !0i x i� x 2 D0y nDx and yx 2 ~Ei.Proof. Suppose y0 ! x, y0 2 Dy , and y0 !i x. Then there is a y00 with Dy = Dy00and y0 !�i y00 or y00 = y0. By iterative application of theorem 14, for all vertices z on the!i-chain from y0 to y00, zx 2 ~Ei, and therefore z !i x. Therefore y00 !i x. By Theorem15, y !i x.Therefore y !i x is equivalent to the statement that there is a y0 2 Dy such thaty0 !i x.Therefore Dy !0i x i� y !i x and there is no Dy0 such that Dy �6= Dy0 and y0 ! x,i� y !i x and x 2 D0y i� x 2 D0y nDy and yx 2 ~Ei.Corollary 5 For v 2 V0 and x 2 Vi, xv 2 E 0i i� xv 2 E or there is a Dy !0i x suchthat v 2 N(Dy) \ V0.Corollary 6 Suppose the number of pairs (Dy; x) such that Dy !0i x is bounded bymi � #Vi. Suppose NDi and, for each D 2 NDi, N(D) \ V0 is known. Then thepre-�ll-in E 0i can be computed in O(log n) CREW-time using O(nmi) processors.Proof. For all x 2 Vi, we compute Dx simultaneously in O(log n) CREW-time usingO(#V 2i ) processors. For each D 2 NDi, we select a representative x = xD such thatD = Dx in O(log(#Vi) CREW-time using O(#Vi) processors. D0 = D0x is the secondsmallest D00 2 NDi which contains xD. That can be computed in O(log #Vi) CREW-time using O(#V 2i ) processors. We set Dy !0i x i� x 2 D0y nDy and yx 2 ~Ei. Last can bechecked in constant CREW-time using O(#V 2i ) processors. We set E 0i = fxvjx 2 Vi; v 2V0; such that xv 2 E or there is a D 2 NDi with D !0i x and v 2 N(D)g. Then E0ican be computed in O(log n) CREW-time using nmi processors.33



PROCEDURE MEO(G = (V;E); <;E<)Input Parameter: GOutput Parameter: <;E<BEGIN1. If G is complete then < is any ordering on V .2. Apply Endsegment(G; V0)3. Compute the connected components V1; : : : ; Vk of Gj(V n V0)4. For i = 1; : : : ; k compute Ni := fy 2 V0 : 9x 2 Vixy 2 Eg,E0 := fxy : x; y 2 V0; xy 2 E or 9i : xy 2 Nig.5. Apply MEO((V0; E0); <0; ~E0) and for each i = 1; : : : ; k, MEO(GjVi; <0i; ~Ei)6. Apply for each i = 1; : : : ; k: MinChord((Vi; ~Ei); Ej(Ni [Vi); Ni; <i; Êi) (to compute the right<i and the corresponding chordal extension Êi)7. < is the concatenation of <i and of <0, E< := Ski=1(Êi) [ ~E0END. Algorithm 4The whole recursive MEO-procedure is described in Algorithm 4.The procedure Minchord, as described in Algorithm 5, computes <i and the corre-sponding chordal extension Êi.To check the complexity of MEO, we still have to �ll out the steps of MEO andMinChord which are written in italics. We have to do it in such a way, that a processorbound of O(nm) is preserved in all recursion steps.We computed a good endsegment V0 and the connected components V1; : : : ; Vk ofthe complement. We let G1 = (V1; E1); : : : ; Gk = (Vk; Ek) be GjV1; : : : ; GjVk, and G0 =(V0; E0) arises from GjV0 by making each neighborhood of any Vi complete.Generally, we de�ne graphs Gi1;:::;iq = (Vi1;:::;iq ; Ei1;:::;iq), where Gi1;:::;iq�1;0 isthe graph corresponding to G0, if we apply MEO to Gi1;:::;iq�1, and, for j 6= 0,Gi1 ;:::;iq�1;j is Gi1 ;:::;iq�1jVi1;:::;iq�1;j, where Vi1;:::;iq�1;j is the jth connected component ofGi1 ;:::;iq�1j(Gi1 ;:::;iq�1 n Vi1;:::;iq�1;0).Obviously we get a subtree representation on all the Gi1;:::;ip. The parent of Gi1 ;:::;ipis Gi1 ;:::;ip�1. Obviously, the vertex set of any Gi1;:::;ip is a subset of the vertex set of itsparent. Obviously, the children of the same parent are disjoint. Therefore we get:Lemma 13 Gi1;:::;iq and Gi1;:::;ip have nondisjoint vertex sets i� Gi1;:::;iq is an ancestorof Gi1;:::;ip or vice versa. 34



PROCEDURE MinChord( ~Gi = (Vi; ~Ei); Ej(Ni [ Vi); N;<i; Êi)Input Parameter: ~Gi := (Vi; ~Ei); Ni; Ej(Ni [ Vi)Output Parameter: <i; ÊiBEGIN1. Compute Cuti := set of cuts of (Vi; ~Ei)2. Compute the saturated connected components: Compute for each c 2 Cuti, the setDc of connected components of Gij(Vi n c);for each c 2 Cuti and each D 2 Dc, compute the set ND = N (D) \ c of neighbors of D in c;erase those D from Dc such that #ND < #c.3. Compute for each D 2 Sc2Cuti Dc, the set N (D) \ V0 = fv 2 N : 9w 2 D vw 2 Eg;set Num(D) = #N (D) \ V0;set Num'D := #D.4. D 2 Dc is dominating i� (Num(D);Num0(D)) is maximal with respect to the lexicographicorder and D is the unique maximal element of Dc.NDi := Sc2Cut(i)fD 2 Dc : D is not dominating g5. For all x 2 Vi : Dx is the D 2 NDi such that x 2 D and #D is minimal;for each D 2 NDi, set XD = fx : Dx = Dg; xD is a distinguished x 2 XD;for each D 2 NDi, D0 is the second largest D00 2 ND \ fVig, such that xD 2 D00.6. Compute the pre-�ll-in E0i:E' 1 For each D 2 NDi and each y 2 D0 nD with xDy 2 ~Ei, set D !0i y;E' 2 For each x 2 Vi and each v 2 V0, set xv 2 E0i i� xv 2 E or there is a D 2 NDi suchthat D !0i x and v 2 N (D) \ V0.7. Apply SIMPLE CASE for �i-equivalence classes:A 1 for each D 2 NDi, let AD = fx : Dx = Dg and AVi = Vi nSD2NDi D be the set ofthose vertices, appearing in no D 2 NDi.A 2 for each D 2 ND, apply SIMPLE CASE to GD = (AD [ (N (Vi) \ V0); E0ij(AD [ V0) [~EijAD [ ~E0j(N (Vi) \ V0)) with N (Vi \ V0) as an end segment, <D as the resultingordering on AD, and ÊD as the resulting chordal extension.8. Compute <i:S 1 Sort all D 2 NDi with respect to #D to an ordering <NDi ;S 2 for x; y 2 V0, let x <i y i� Dx <NDi Dy or Dx = Dy and x <Dx y.S 3 Êi = SD2NDi[fVig ÊDEND. Algorithm 535



We introduce some notions which will be useful to compute connected componentsin any Gi1;:::;iq .De�nition 3 If i1; : : : ; ip; 0 is an initial segment of i1; : : : ; iq (i1; : : : ; ip; 0 and i1; : : : ; iqmay be equal), then Gi1;:::;ip;0 is called a zero ancestor of Gi1;:::;iq .Gi1;:::;iq ;j is called a nonzero sibling of Gi1;:::;iq ;0, if j 6= 0.We denote by V 0i1;:::;iq the set of all vertices of V which appear in a nonzero siblingof some zero ancestor Gi1;:::;ip;0 of Gi1;:::;iq .The key for an nm processor bound of the procedure MEO in all recursion steps isthe following:Theorem 17 xy is an edge in Gi1;:::;ip i� there is a path from x to y in GjV 0i1;:::;ip.Proof.We prove the theorem by induction on p. For p = 1, we are done, by de�nitionof G0 and G1; : : : ; Gk.Suppose, p > 1. Then we consider the cases ip = 0 and ip 6= 0.Suppose, ip = 0. Then xy is an edge in Gi1 ;:::;ip i� xy is an edge in Gi1;:::;ip�1 or thereis a nonzero sibling Gi1;:::;ip�1;j and vertices x0 and y0 of Gi1 ;:::;ip�1;j, such that xx0 andyy0 are edges in Gi1;:::;ip�1 .By construction, Gi1;:::;ip�1;j consists only of edges in Gi1;:::;ip�1. Note that, by con-struction, Gi1;:::;ip�1;j is connected. Hence there is an edge xy in Gi1;:::;ip�1;0 i� xy is anedge in Gi1 ;:::;ip�1 or there is a nonzero sibling Gi1;:::;ip�1;j of Gi1;:::;ip�1;0, such that thereis a path from x to y in Gi1;:::;ip�1 j(Vi1;:::;ip�1;j [fx; yg. By the induction hypothesis, eachedge in Gi1;:::;ip�1 can be replaced by a path in G consisting of vertices in V 0i1 ;:::;ip�1 andvertices of Vi1;:::;ip�1;j, j 6= 0.Therefore xy is an edge in Gi1;:::;ip�1;0 i� there is a path from x to y in GjV 0i1;:::;ip�1;0 =Gj(V 0i1;:::;ip�1 [ Sj>0 Vi1;:::;ip�1;j).Now we consider the case that ip 6= 0. Then all edges in Gi1;:::;ip are edges in Gi1;:::;ip�1 .By the induction hypothesis, we are done.Also the following theorem is useful: 36



Theorem 18 For any cut c of the chordal extension F< of an MEO < the graph G =(V;E), the (saturated) connected components of Gj(V nc) and of (V; F<)j(V nc) coincide.Proof Clearly each connected component of (V; F<)j(V nc) is the disjoint union ofconnected components of GijV n c. Let D1;D2; : : : ;Dk be connected components ofGj(V n c) and D1[D2[ : : :Dk be a connected component of (V; F<)j(Vi n c). Then afterdeletion of all edges between di�erent components Di;Dj the the graph remains chordal,since no induced (chord free) cycle of the remaining graph can act in di�erent connectedcomponents Di;Dj since they are separated by the complete set c. Therefore for anyminimal chordal extension (V; F<) of G, each connected component of (V; F<)j(V n c) isalso one connected component of Gj(V n c).Also saturatedness is preserved. It is caused by the fact that for any connectedcomponent D of (V; F<)j(V n c) and for any vertex x 2 c which is in the neighborhoodof D with respect to F< but not in the neighborhood of D with respect to G, we onlyhad to erase all edges between x and D, and the the graph remains chordal: a cycle ofF< becoming chordless after the deletion of all edges between x and D can have onlytwo vertices of c (c is complete) and must pass x. This is a contradiction, because x 2 cand the cycle must leave c via x. Therefore the neighborhoods of D in c with respect toE and with respect to F< coincide.Corollary 7 1. For each x 2 Vi1;:::;ip;0, there is an edge to a vertex y 2 Vi1;:::;ip;j inGi1;:::;ip i� there is an edge of G from x to a vertex y0 in the connected componentV 00i1;:::;ip;j of Gj((Vi1;:::;ip [ V 0i1;:::;ip) n Vi1;:::;ip;0, Vi1;:::;ip;j belongs to.2. Let c be a cut of the minimal chordal extension ~Gi1;:::;ip of Gi1;:::;ip. Let D0c be the setof connected components of Gj((Vi1;:::;ip[V 0i1 ;:::;ip)nc) and Dc be the set of connectedcomponents of Gi1;:::;ipj(Vi1;:::;ipnc). Then the sets D and fD0\Vi1;:::;ip 6= ;jD0 2 D0cgcoincide.3. Let c be a cut of the minimal chordal extension ~Gi1 ;:::;ip of Gi1;:::;ip. Let D0 be aconnected component of Gj(Vi1;:::;ip[V 0i1;:::;ip) and D = D0\Vi1;:::;ip its correspondingconnected component of Gi1;:::;ipj(Vi1;:::;ip n c). Then x 2 c is a neighbor of a vertexv 2 D with respect to Gi1;:::;xp i� x is a neighbor of a vertex v 2 D0 with respect toG.4. Let c be a cut of the minimal chordal extension ~Gi1;:::;ip of Gi1;:::;ip. Let D0 bea connected component of Gj((Vi1;:::;ip [ V 0i1;:::;ip) n c) and D = D0 \ Vi1;:::;ik itscorresponding connected component of Gi1;:::;ipj(Vi1;:::;ip n c). Moreover, assume thatip 6= ;. Then a vertex x 2 Vi1 ;:::;ip�1;0 is adjacent to some vertex of D with respectto Gi1 ;:::;ip�1 i� x is adjacent to some vertex in D0 with respect to G.37



Proof.1 : There is an edge of Gi1;:::;xp from x to a vertex y 2 Vi1;:::;xp;j i� xy 2 E or there isa path P from x to y of G such that all internal vertices of P are in V 0i1;:::;xp. Let y0 bethe �rst internal vertex of P . Then y0 2 V 00i1;:::;xp;j, because y0 and y can be joined by apath using only internal vertices from V 0i1;:::;xp and therefore no vertices from Vi1;:::;xp;0.Then x is adjacent to a vertex of V 00i1;:::;xp;j in G.Vice versa, let x be adjacent to y0 2 V 00i1;:::;xp;j. One possibility is that y 2 Vi1;:::;xp;j.Then we are done. It remains to consider the case that y 2 V 0i1;:::;xp. Then there is a pathin G from y0 to some y 2 Vi1;:::;xp;j, where all internal edges are in V 0i1;:::;xp. Then xy isan edge of Gi1;:::;xp.2: By theorem 17, there is a path from u to v in Gi1;:::;ip using only vertices notin c i� there is a path from u to v in Gj(Vi1 ;:::;xp [ V 0i1;:::;xp) using only vertices not inc. Therefore the set D of connected components of Gi1;:::;xpjVi1 ;:::;xp n c and the set ofnonempty intersections of Gj((Vi1;:::;xp [ V 0i1;:::;xp) n c) with Vi1;:::;xp coincide.3 The argument is the same as in 1. Suppose x 2 c. Then x is adjacent to some y 2 Dwith respect to Gi1;:::;xp i� xy 2 E or there is there is a path P from x to y in G whoseinternal vertices are all in V 0i1;:::;xp. The internal vertices are all in D0, because they areall not in Vi1;:::;xp and therefore not in c and therefore all with y in the same connectedcomponent of Gj((Vi1;:::;xp [ V 0i1;:::;xp) n c). Therefore x is adjacent to some vertex y0 2 D0in G.Vice versa, suppose x is adjacent to some vertex y0 2 D0 in G. Then we get a pathP 0 in G from y0 to a vertex y 2 D such that all internal vertices are not in Vi1;:::;xp andtherefore in V 0i1;:::;xp. Therefore we get a path P from x to y in G such that all internalvertices are in V 0i1;:::;xp. Therefore xy is an edge in Gi1;:::;xp.4 can be proved in the same way as 3.To get an algorithm which makes the neighborhood of Vi1;:::;xp;j in Vi1;:::;xp;0 withrespect to Gi1;:::;xp complete, we use the following trivial consequence of the last corollary,Corollary 8 For each vertex v 2 Vi1;:::;xp;0, the number of j such that there is a vertexy 2 Vi1;:::;xp;j, is bounded by the number of edges in G which are incident with x.Proof. This is an immediate consequence of the last corollary, item 1.38



PROCEDURE MAKE THE NEIGHBORHOOD COMPLETE(V0; V1; : : : ; Vk; G;E0)Input Parameter: V0; : : : ; Vk; G = (V;E)Output Parameter: E0BEGIN1. For x 2 V0, y 2 Vj, and xy 2 E, set xVj 2 R.2. For x; y 2 V0 set xy 2 E0 i� there is an xVj 2 R such that yVj 2 R.END. Algorithm 6We can compute G0 as in algorithm 6.Clearly Algorithm 6 makes N(Vj) \ V0 complete, for each j = 1; : : : ; k. Since each xis only in one Vj, R can be computed in constant CRCW-time using O(n2) processors(in each recursion step), and therefore in O(log n) CREW-time using O(n2) processors.By the last corollary, the second step can be executed in O(log n) CREW-time usingO(nm) processors. This bound is valid in all recursion steps.We continue with the computation of the connected components of Gi1 ;:::;ik j(Vi1;:::;ik nc). This is done in Algorithm 7.PROCEDURE COMPUTE THE SET Dc OF CONNECTED COMPONENTS OFGi1;:::;ip j(Vi1;:::ip n c)Input Parameter: Gi1;:::;ip ; G; cOutput Parameter: DcBEGIN1. Compute the set Z of indices of zero-ancestors of Gi1;:::;ip .2. For each i1; : : : ; iq ; 0 in Z compute the set S(i1; : : : ; iq) of indices of nonzero siblings ofGi1;:::;iq;0.3. Set S = Si1;:::;iq;02Z S(i1; : : : ; iq).4. Set V 0i1;:::;ip = Sj1;:::;j0q2S Vj1;:::;j0q .5. Compute the connected components D0c of Gj((Vi1;:::;ip [ V 0i1;:::;ip ) n c).6. For each D0 2 D0c, set D = D0 \ Vi1;:::;ip .If D 6= ;, set D 2 DcEND. Algorithm 7By 2 of the second last corollary, the algorithm computes the set of connected com-ponents of Gi1;:::;ipj(Vi1;:::;ip n c).The complexity is checked as follows: 39



Step 1 can be done sequentially in logarithmic time, because the recursion depth ofMEO is logarithmic and therefore each Gi1;:::;ip has only logarithmically many ancestors,that means p � log n.The computation of nonzero siblings of any zero ancestor can be done by as manyprocessors as nonzero siblings exist in constant CREW-time. The processor bound is n.The computation the set of all nonzero siblings in 3 needs O(n) processors andO(log n) CREW-time.In 4, the set V 0i1 ;:::;ip is computed in O(log n) CREW-time using O(n) processors.Note that all Vj1;:::;jq0 are pairwise disjoint.The last step 5 is bounded by O(n +m) processors and a CRCW-time of O(log n)[SV 82].Since the number of cuts is bounded by n, the overall complexity of computing Dc,for all cuts c simultaneously, is bounded by nm.To compute the set of neighbors of D in c with respect to Gi1 ;:::;ip, we compute theset of neighbors of the corresponding component D0 2 D0c in c with respect to G. Weproceed as in Algorithm 8.PROCEDURE COMPUTE FOR ALL c AND ALL D0 2 D0c THE SET N (D)\c OF NEIGHBORSIN c.Input Parameter: c;D0c; GOutput Parameter: fN (D0) \ cjD0 2 D0cgBEGIN1. For each c 2 Cuti1;:::;ip and each xy 2 E such that x 2 c and y 62 c, determine the D0y;c 2 ; D0csuch that y 2 D0y;c.2. For c 2 Cuti1;:::;ip and each edge xy 2 E such that x 2 c and y 62 c, x is set into thgeneighborhood of D0y;c.END. Algorithm 8Clearly this algorithm computes, for each cut c and each connected component be-longing to c, the set of neighbors in c.The �rst and the second step can be executed in constant CREW-time using O(nm)processors, since the number of cuts is bounded by n and the number of edges in E ism. We continue with the computation of the neighbors of D in Vi1;:::;ip;0 with respect toGi1 ;:::;ip, where D is a saturated connected component of some cut c 2 Cuti1;:::;ip;j. Againwe compute the neighborhood of D0 with respect to G.40



The algorithm works as Algorithm 8. We only replace c by Vi1;:::;ip;0.It remains to �ll out step E'2. The algorithm was mentioned in the proof of corollary6. To get a processor bound of O(nm) in all recursion steps, we have to show that, forany x, the number of Dy, Dy !0i x is bounded by the number of neighbors of x in G.Note that Dy1 and Dy2 are equal or disjoint if Dy1 !0i x and Dy2 !0i x. Moreove, in thelatter case,D0y1 and D0y2 are disjoint. A necessary condition that x is in the neighborhoodof Dy in Gi1;:::;ip and therefore in the neighborhood of D0y in G, i.e. there is a z 2 D0ysuch that zx 2 E. Therefore the number of Dy with Dy !0i x is bounded by the numberof neighbors of x in G.Hereby, all gaps in MEO and MinChord are �lled. Putting all the results together,we get:Theorem 19 An MEO and a minimal chordal extension can be computed in O(log3 n)CREW-time by O(nm) processors.5 ApplicationsWe summarize some applications of our parallel MEO algorithm.We refer to [Ro 73],[Ta 85], [Kl 88], [DK 88a], [GH 88] for fundamentals. One application is symmetricsparse Gaussian elimination. The problem is to compute, for any symmetric matrixwith nonzero entries on the diagonal, a Gaussian elimination scheme such that the setof entries becoming nonzero is minimized with respect to inclusion [OCF 76, Ro 73].We call such an elimination scheme a sparse Gaussian elimination. To compute a sparseGaussian elimination, we proceed as follows. For any symmetric matrix A = (ai;j)ni;j=1,we consider the corresponding graph GA = (VA; EA) = (f1; : : : ; ng; fijjai;j 6= 0g. By[Ro 73], the problem to compute a sparse Gaussian elimination for A is equivalent tothe problem of the computation of an MEO for GA. Therefore we get immediately.Theorem 20 There is a CREW-algorithm which computes, for any symmetric n� n-matrix with nonzero entries on the diagonal and m nonzero entries, a sparse Gaussianelimination scheme in O(log n)3 time using O(nm) processors.Another application of MEO is clique decomposition. The problem of clique decom-position is, given a graph G = (V;E), to compute the set of cuts of G which induce acomplete subgraph of G and to compute, with the help of the set of cuts, the inclusionmaximal components of G which are not decomposable by complete cuts. Sequentially,41



this problem can be solved in O(nm) time [Ta 85]. He computed the cuts of the chordalextension of an MEO and selected those cuts of the chordal extension which are alsocomplete in the original graph. It is not di�cult to parallelize this procedure in O(log n)CREW-time using O(nm) processors. To get the components of the clique decomposi-tion, we consider the cliques sets of the chordal extension. We compute the clique treefor the chordal extension. It consists of the set of cliques of the chordal extension asvertex set and has the property that, for each vertex x of the given graph, the set ofcliques containing x forms a subtree [Bu 74, Ga74]. Note that each edge of the cliquetree corresponds to the cut of those vertices of the chordal extension which are in bothincident cliques. A clique tree for the chordal extension can be computed from the MEOin O(log n) CREW-time using O(n2) processors [Kl 88]. To compute the components,we unify those cliques of the chordal extension to one component which are not separa-ble by an edge of the clique tree corresponding to a cut of the chordal extension whichis also complete in the given graph. This can be done by tree contraction techniques inO(log n) CREW-time using O(n) processors. Therefore the overall complexity of cliquedecomposition is O(nm) processors and O(log3m) CREW-time.6 Further ResearchFrom the main result of this paper the following questions arise.1. Is there a way to improve our algorithm with respect to the number of processors(O(nm)) giving the MEO an even better sequential time algorithm ([RTL 76]provides an O(nm) time algorithm)?2. Is it possible to modify our algorithm to work in O(log2 n) parallel time and in thesame number of processors on a CRCW PRAM (P. Klein asked this question in[Kl])? The recursive structure of any such MEO algorithm working in a `shallow'O(log2 n) parallel time would be of its own interest!3. The Breadth-First Search (BFS) algorithm of Theorem 20 uses the chordal `parent-richest neighbors' method of [Kl 88] applied to an MEO of an input graph. Arethere MEOs which can be used directly to construct the Depth-First Search (DFS)tree for an arbitrary graph? Can our MEO algorithm be modi�ed as to generatee�ciently DFS trees of arbitrary graphs? (In general it will be very interesting toshed some light on the connection between DFS orderings and MEOs. At presentthere is not much known.) 42
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