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We design the first efficient parallel algorithm for computing the min-
imal elimination ordering (MEO) of an arbitrary graph.

The algorithm works in O(log® n) parallel time and O(nm) processors on a CREW
PRAM, for an n-vertex, m-edge graph, and is optimal up to a polylogarithmic factor
with respect to the best sequential algorithm of Rose, Tarjan and Lueker ([RTL 76]).

The MEO problem for arbitrary graphs arises in a number of combinatorial opti-
mization problems, as well as in database applications, scheduling problems, and the
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sparse (Gaussian elimination on symmetric matrices. It was believed before to be in-
herently sequential, and strongly resisting sublinear parallel time (sublinear sequential
storage) algorithms.

As an application, this paper gives the first efficient parallel solutions to the prob-
lem of minimal fill-in for arbitrary graphs and connected combinatorial optimization
problems (see [RTL 76], [Ta 85], for example), and to the problem of the Gaussian elim-
ination of sparse symmetric matrices ([Ro 70], [Ro 73]). (The problem of computing a
minémum fill-In is known to be NP-complete, [Ya 81].)

The method of solution involves a development of new techniques for solving con-
nected minimal set system problem, and combining it with some new divide-and-conquer
methods.

0 Introduction

The theory of elimination orderings is used in a number of combinatorial optimiza-
tion and database applications, as well as in scheduling and general divide-and-conquer
techniques ([Ro 73], [Ta 85]). Elimination orderings also arise in Gaussian elimination
on sparse symmetric matrices ([Ro 73], [RTL 76]).

The minimal elimination problem (MEO) for arbitrary graphs (cf. [Ro 73], [RTL 76],
[Ta 85], [DK 88a], [No 88]) is the following.

Let G = (V, E) be any graph and < be an ordering on V' given as an enumeration of
V. Define E. to be the chordal extension of G related to <, i.e. the minimal extension
E" of E such that if # < y, * < z and zy, then xz € E' implies yz € E’. The set
F. = FE.\ FE is called the fill-in of < [Ta 85].

The problem is to compute, for any given graph GG = (V, E), an ordering < on V such
that E. is (inclusion) minimal. We call such an ordering a minimal elimination ordering
(MEO) of GG ([RTL 76], [Ta 85]). An MEO algorithm is an algorithm computing for an
arbitrary input graph G = (V, E') an ordering on V such that E. is (inclusion) minimal.

MEO Algorithm (I/0)

INPUT: A graph G = (V. F).
OuTPUT: An ordering < on V such that F.
is inclusion minimal.




Fo = {ow|v#w, vwdg FE, 3p apath p = vyvy... v in G such that

v1 =0, v = w, and v; < min{v,w} for i =2,.... k—1}.

In the case the ordering < satisfies £ = E., (V, F) is chordal and the ordering < is
called a perfect elimination ordering (PEO).

It is known that the computation of a minimum (cardinality) chordal extension or
minimum cardinality fill-in is NP-complete ([Ya 81]). Rose, Tarjan and Lueker have
relativized this problem to the computation of an MEO E_. of a given graph. Their
sequential algorithm works in O(nm) time and O(n 4+ m) storage ([RTL 76]).

There are efficient parallel algorithms to recognize chordal graphs and to compute
the perfect elimination ordering for chordal graphs ([Ed 87], [NNS 87], [DK 86], [DK 87],
[K1 88]).

In this paper we give a parallel solution to the MEO Problem by designing an
algorithm computing an MEO for any given graph which works in O(log”®n) parallel
time and O(nm) processors on a CRCW PRAM.

The MEO algorithm of this paper directly entails recent results on existence of
NC-algorithms for Clique Separator Decomposition ([DK 88b], [DK 88a], [DKN 89])
and for the first time provides a parallel technique of computing the minimal fill-in
(cf. [Ta 85]) for arbitrary graphs, and combining our algorithm with the Cholesky factor-
ization algorithm of Gilbert and Hafsteinsson ([GH 88]), an efficient parallel algorithm
for the Gaussian elimination on sparse symmetric matrices (cf. [Ro 73]).

The paper is organized as follows.

In Section 1, the notational and fundamental concepts of this paper are introduced.
Section 2 describes the global strategy which is a divide-and-conquer strategy.

Section 3 presents the simple case of a graph G being the disjoint union of two cliques
Cy and C5. In this case the problem is equivalent to the following set system problem:

Given a set V and a set S of subsets of V, compute an ordering (51 < ... < S,) of
S such that for e =1,...,n, 5 \ U;<; S; is inclusion minimal in {5, \ U;<; S; | k > i}.

In Section 4 we complete the algorithm using the special case of Section 3.

1 Basic Concepts and Notations

Throughout the whole paper, graphs are undirected, without loops and multiple edges.
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A graph G = (V, E) consists of a vertex set V and an edge set F. The edge joining
x and y is denoted by xy.

Define N(x) := Ng(x) = {2} U {y | xy € E} as the neighborhood of the vertex x in
G (including ). For M C V, define also N(M) := Ng(M) = Uyenr N(2).

The subgraph of G induced by a subset V' of the vertex set V' of GG is denoted by
G|V'. Generally we call an edge-preserving subgraph an induced subgraph.

A connected subset of (i is a subset V' of its vertex set such that G|V’ is connected.

An inclusion maximal connected subset is called a connected component.

A spanning tree of the connected graph G = (V| F) is a tree T with vertex set V
and an edge set £/ C F.

A spanning forest of any graph consists of spanning trees for its connected compo-
nents.

Given a set A, we define #A to be the cardinality of A.

The computation models are the concurrent-read concurrent-write parallel random
access machine (CRCW PRAM) and the concurrent read exclusive write parallel random
access machine (CREW-PRAM) (cf. e. g. [FW 78], [Co 85], [KR 88]). Note that each
CREW-PRAM working in 7" time using P processors is also a CRCW-PRAM working in
the same time bounds. Vice versa, a CRCW-PRAM working in T' time using P processors
can be simulated by a CREW-PRAM in time O(T log P) using O(P) processors. For
example, a CRCW-PRAM, working in O(log n) time using O(n 4+ m) processors can be
simulated by a CREW-PRAM working in O(log®n) time using O(n + m) processors.

We assume that each arithmetic operation needs one time unit and one processor
unit.

In general, n is the number of vertices of G = (V, E), and m is the number of edges.

We assume that the reader is familiar with the following results in parallel compu-
tation.

Theorem 1 (i) (see [SV 82])
The connected components and a spanning tree of any graph can be computed in
O(logn) CRCW-time and O(n+m) processors and therefore in O(log> n) CREW-

time using O(n + m) processors.

(it) (see [Co 86])

n numbers can be sorted in O(logn) CREW-time and O(n) processors.
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Let T = (Vr, Er) be a tree with a root r. We can define the unique direction

—

T = (Vr,A,) or (y,x) of any edge xy of T to the root r. If (x,y) € A,, then x is
a child of y and y is the parent of . For each vertex @ of T' let {y7,..., yf(l,)} be the set
of its children. The edge y?x is labelled by ¢, I(y7x) = 1.

Let P, := (ey ... ep) be the sequence of the edges of the unique path from r to x
(that means e; = ryy, ep = yp_12). Then I*(x) := (I(e1),...,l(ep)).

The preorder < is defined as follows:

For x,y € Vp, < y iff I*(x) is a subsequence of [*(y) or [*(x) is lexicographically
smaller than [*(y).

Theorem 2 (see for example [TV 85]) A preorder can be computed in O(logn)
CREW-time and O(n) processors. For a tree T and a ‘root’ r € Vi an ordering (num-
bering) such that each initial segment induces a subtree containing r can be computed in

O(logn) CREW-time and by O(n) processors.
A graph is called chordal iff it has no induced cycle of length > 3 (each cycle of
length > 3 has an edge joining nonconsecutive vertices).
For a tree T and a collection S of subtrees of T' the vertex intersection graph of T
and S is defined as follows:
(i) The vertex set is S.

(ii) S1,S52 € S are joined by an edge iff they have a common vertex of T'.
Chordal graphs can be characterized as follows (cf. [Ga74], [Ta 85]):

Theorem 3 The following statements are equivalent:

(i) G=(V,E) is chordal.

(it) G = (V,E) has a perfect elimination erdering <, i.e. if @ < y, * < z and xy,
xz €K, thenyz € F.

(iit) G = (V. F) is the vertex intersection graph ([Ga7}], [Bu 74]) of a collection S
of subtrees of some tree T. That means Sg is of the form {S, : v € V} and, for
vertices v,w € V, vw € K tff S, and S, have at least one common vertex of T'.
We call (T,S¢) a subtree representation of (.



Remark. It is easily seen that the number of maximal cliques of a chordal graph is

bounded by n = #V.

Suppose that G is the vertex intersection graph of the collection S of subtrees of
T. For v € V let S, be the corresponding subtree in Sg. For ¢t € Vi let ¢; be the set
{S € 8¢ |t €5} We may assume that the maximal cliques of (G are exactly the sets

¢ = {v] S, € et} ([Ga 72],[Bu 74]).
Klein proved the following result ([KI1 88]):

Theorem 4 There is a parallel algorithm for computing for each chordal graph G a
perfect elimination ordering and the subtree representation (Tw, S¢) in time O(log® n)

and O(n + m) processors on a CRCW PRAM.

Consider any ordering < on the vertex set V of the graph G = (V| F). Then the
chordal extension E. of G and < is the smallest extension of F such that < is a perfect
elimination ordering, i.e. F. is the smallest set F' such that

1. £ C F and

20 ey e Foxz e Fy o <y,and x < z, then yz € F.

Theorem 5 [Ya 81] The computation of an ordering < such that its chordal extension
is minimal by cardinality, is NP-complete.

In contrast, Rose, Tarjan, and Lueker proved:

Theorem 6 For any graph G = (V. F), an ordering < can be computed in sequential
time of O(nm) such that F is minimal by inclusion.

Definition 1 An ordering < on the vertex set V of a graph G = (V. F) is called a
minimal elimination ordering (MEQ) if there is no ordering <' such that For & Fo (Fe
is minimal with respect to inclusion).

Obviously an MEO is an ordering < such that its chordal extension is an inclusion
minimal extension of G to a chordal graph.

An MEO can also be characterized as follows.

Lemma 1 ([RTL 76]) < is an MEO of (V. E) iff, for alle € FA\E, (V, Fo\{e}) has

an induced cycle of four vertices (and edges).

This result is essential in the whole paper.



2 The Global Strategy

We introduce the notion of an endsegment of an MEO:

A subset Vy of the vertex set V of a graph (' is called an endsegment of an MEO
iff there is a minimal elimination ordering < for G and a vertex v € V4 such that
Vo={weV | v=worv<w}

First, in a similar way as in the procedure NONE in Klein’s perfect elimination
ordering (PEQO) algorithm ([KI 88]) , we shall compute an endsegment Vo C V.

1. We add new edges to G|Vy which are necessarily in the fill in of each ordering,
having V; as endsegment, i.e. those pairs xy of vertices of V4 which are adjacent to
the same connected component of G|(V \ V). We denote the resulting extension

of G|Vu by Gig = (Vo, Eo). This will be done by the procedure ENDSEGMENT.

2. We consider the connected components Vi,..., Vi of G|(V \ V). We compute
recursively in parallel MEOs and their corresponding chordal extensions for G; =

G\Wi, ..., Gy = G|Vi, and for Gy.

3. Using the MEOs for Gy,..., G} and their corresponding chordal extensions, we
compute an MEO for G and its corresponding chordal extension.

The key for the computation of G is the following result:

Theorem 7 Let G = (V, E) and Vi be a subset of V. Let V; be a connected component
of GI(V\VWy). Let z,y € Vo, ' y" € Vi, and xa',yy’ € E. Then xy belongs to the chordal
extension of any ordering <, having Vo as an endsegment.

Proof: We use the following result in [Ta 85]:

Lemma 2 Given an arbitrary graph G = (V, E) and an ordering < on V, the Fill-In
Fo of G under ordering < is the set of edges defined as follows (cf. [Ta 85]):

F.o = {ow|v#w, vwd E, 3p a path p =vivy... v in G such that

vy =0, v = w, and v; < min{v,w} fori=2,... k—1}.

Consider x and y, 2" and y’, and V4 as stated in the theorem. Then there is a path from
2’ to y' in GG, using only vertices in V' \ V5. Consider any ordering <, having V4 as an
endsegment. Then all these vertices of the path are smaller than = and y. Since za’" and
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yy' are in ., we can add x at the beginning and y at the end of this path. All vertices
different from x and y are smaller than = and y. Therefore there is a path from x to y
such that all vertices different from = and y are smaller than x and y.

We determine Gy from V; as follows:

1. For any connected component V; of G|(V \ Vp), we determine the neighborhood of
Viin Vo (N(Vi) N Vo).

2. Weset xy € Fyiff x and y arein Vg and 2y € F or x,y € N(V;) for some connected
component V; of G|(V \ V), i.e. N(V;) N V5 is made complete.

A remark to step 2): To guarantee a logarithmic recursion depth, Gy has to be
complete or the size of V5 may not exceed 2/34V . Moreover, all connected components
Vi of G|(V '\ Vo) must have a size of at most 2/3¢V . In the case that Gy is complete, we
can order V5 in any way.

A remark to step 3): The idea of step 3) is to compute an MEO <, for each graph
G consisting of the vertex set V; = V;U(N(V;)NVp) and of the edge set E; = {azy|z,y €
W and (zy € For x,y € N(V;)}. N(Vi) N V5 is an end segment of <; for each ¢. This
will be done with the help of an MEO for G; = G|V,. Let <o be an MEO for G. Then
< is set to be the concatenation of all <; |V; and and <, at last. To guarantee that < is
really an MEO independently which orderings <; are chosen, we introduce the notion
of a good endsegment:

Definition 2 Let Vi be an endsegment of an MEO and Vi,..., V) be the connected
components of G|(V \ Vo). Let Gi = (VZ,EZ) and G be defined as above. Then Vg is a
good endsegment iff, for all MEOs <; for Gy with N(Vi))N' Vo as an end segment and
cach MEO <o on Gy, the concatenation of <y |Vi, ... , <i |Vi, and <o at last is an
MFEO.

In the rest of this section we consider the problem how to compute such a set V4 . Note
that in Klein’s PEO-algorithm, the fact is used that the neighborhood of a connected
subset of a chordal graph is an endsegment of a PEO. An analogous result for MEOs is
the following.

Theorem 8 Let M be a connected subset of V. Then N(M) is a good endsegment.



Proof Let Vo = N(M) and V; ...V} be the connected components of V' \ N(M).Let

Ci = NV,)NNM) fori=1,... k.

Let ‘z = VZ'AU QZ and let Go := (Vo, Eo) where E, arisesA from F by comp}eting all CN'Z
Let G} := (Vi, F;) where F; arises from F restricted to V; by compleAting C;.
Let (V;, E!) and (Vo, E{) be inclusion minimal chordal extensions of (V;, £;) and (Vo, Eo)

resp.

Claim 1 &' := (V, E{UJ E!) is a minimal chordal extension.

K3

Proof of Claim 1  First we show that GG’ is chordal. Consider any cycle C' of G'. As
long as €' is only in one V;, it has a chord or is of length three, because, by construction,
(| Vi is chordal. Suppose C' passes more than one V;. If C' passes V; and some other V;,
then it must pass N(V;) N Vg. Suppose C passes only V; and N(V;) N Vy. Then it has a
chord or is of length three, because G'|(V; U (N(V;) N Vy)) is chordal by construction.
Suppose now that C' leaves also N(V;) N V4. Then it must also return via N(V;) N Vo.
Therefore at least two vertices of C' are in N(V;) N V4. These two vertices are a chord in

G

To prove that G’ is a minimal chordal extension of G, we have only to show that
each edge zy € E/\ F, x,y € C; forms an induced cycle after its deletion.
Since x, y are adjacent to the same connected component V;, one finds a path z,yy ...y, y
such that y; € V;. This forms a cycle in G.
Since G’ is chordal, there is a y; which is adjacent to x and y in G'.
Since x,y € N(M) and M is connected, one finds a path xmy...myy such that all
m; € M.
Since also xmy ...y forms a cycle and G’ is chordal, one finds an m; which is adjacent
to = and y.

By the construction of G (v; vy, x,mj,y,v;) forms an induced cycle of length four
after the deletion of xy.
(Claim)

We complete the proof of theorem 8: Let <; be MEOs for G’Z and <g be an MEO for
Glo. Moreover, for each t = 1,... &k let N(V;)N 'V, be an end segment of <;. Since the sets
N(Vi)NVg are complete in G’i, we can order N(V;)NV; in any way, and each <; remains
an MEQO. Let for each : = 0,...,k let F; be the corresponding chordal extension of <;.
By the claim, the union E’ of all F; is a minimal chordal extension of G.

Let < be the concatenation of <y,...,<j, and at last <¢. Then < is a PEO for
G' = (V, E’) and therefore an MEO:



Suppose xy and xz are in E' and © < y and x < z. If & € V5, then also y and z are in
Vo, and « <g y,z. If © € V;, then y,z € V, U (N(V;) N Vy) Suppose x <y < z. If z € V,,
then y € V;, because V5 is an endsegment of <. Then © <; y <; z and yz € F; C F/,
because <; is a PEO for F;. Suppose y € V,, but z € V5. Then still y <; z, because
N(Vi) N Vg is an endsegment of <;. By the same argument as in the case that y and z
are in V;, yz € E'. Suppose y € V5. Then also z € V5, because V4 is an endsegment of
<. That means y and z are both in the complete set N(V;) N V5 and therefore joined by
an edge in F'.

Last theorem will be used in the "low degree refinement” part of the ENDSEGMENT

procedurei, i.e. if there is a large connected subset of low degree vertices.

For the "high degree refinement” part of the ENDSEGMENT procedure, the follow-

ing result is useful.

Theorem 9 Let G = (V, E) be any graph and x € V.. Let W be a connected component
of GI(V\ N(W)). Then {x} U (N(x) N N(W)) is a good endsegment.

Proof By previous theorem, N(x) is a good endsegment. By theorem 7, N(z) N N(W)
is complete in any chordal extension of an ordering, having N(x) as an endsegment.
Moreover, N(2)N N (W) is also complete in any chordal extension of an ordering, having
Vo = {2} U (N(z) N N(W)) as an endsegment. Consider the connected components
Vi,oo o, Vi of GI(V\V5). Then one of the V; is W. As in the previous theorem we fix MEOs
<; on the graphs (i which arise from GI(V,U(N(V;)NVy)) by making VoNN(V;) complete.
As in the previous theorem, we also concatenate all <; |V; and at last any ordering <q on
Vo to an ordering <. Now V4 is made complete only by making VoNN (W) = N(x)NN (W)
complete. When we restrict < to VoUW, 14 is a good endsegment of G|(VoUW), because
it is the neighborhood of x. Since all other V; have neighbors only in V4 and V4 is made
complete by W alone, the removal of any fill-in edge in V4, i.e. of any edge that appears
in the chordal extension but not in the original graph, induces a chordless cycle of length
four. All other fill-in edges not in £, are fill-in edges of some (:; which are also nonedges

in GZ
Now we are able to compute a set V4 in parallel which is a good endsegment.

We compute the set D; of sparse vertices and the set Dy of “dense” vertices. Here
“sparse” means that the degree is at most 2/3 of the number n of vertices. A vertex is
“dense” iff it is not sparse.

In the case that there are two nonadjacent dense vertices # and y, their common
neighborhood N(x) N N(y) is at least 1/3 of the number of vertices of the whole graph
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G = (V,E). Let W be the connected component of G|(V \ N(z)), y belongs to. Then
Vo is set to be {x} U (N(x) N N(W)).

Now we consider the case that the set of dense vertices is complete. Trivially the
set Dy of dense vertices can be taken as an endsegment of an MEOQO. In the case that
all connected components of G|y p, have a cardinality of at most 2/3 of the number of
vertices, we are done and set Vi = D,. Otherwise we consider the connected component
(1 of sparse vertices whose size is greater than 2/3 of the number of vertices of the
whole graph. We can compute on this connected component (' a spanning tree T7. As
a root we choose a sparse vertex r of maximal degree. If the degree of r is between 1/3
and 2/3 of the number of vertices of the whole graph, then we are done, since we only
have to take the neighborhood of r as an endsegment. This is a good endsegment by

Theorem 8.

It remains the case that the degrees of all sparse vertices of Cy are less than 1/3
of the number of vertices. But then we can compute an enumeration (vy,...,v,) of the
sparse connected component C; such that each initial segment (vy,...,v;) is a subtree
of the above spanning tree Tj. Since all neighborhoods N(v;) are less than 1/3 of the
number of vertices and the size of C is greater than 2/3 of the number of vertices, we
find an initial segment {vy,...,v;} such that the size of its neighborhood lies between
1/3 and 2/3 of the number of vertices of the whole graph. It also is a good endsegment
by Theorem 8.

The computation of a good end segment satistying above requirements consists of
the computation of connected components and spanning trees, neighborhoods of initial
segments, and of common neighborhoods. Therefore we get the same time and processor
bound as in the procedure NONE of the perfect elimination algorithm of Klein [KI].

Theorem 10 For any graph G = (V, F), we can compute a good endsegment Vg, such
that #Vy < %#V or Vo is complete in each chordal extension of an ordering, having Vy
as an end segment, and, for each connected component C of V \ Vo, #C < %#V, in
CREW-time O(log2 n) and O(n +m) < O(n?) processors.

How to make the neighborhood of each connected component of Gly\v, a complete
subgraph, will be discussed in a later section.

3 A Simple Case

We assume in this Section that the vertex set V of GG = (V| F) is the disjoint union of
two complete subsets V' and W’ with additional edges between V' and W’. This appears
as an essential subprocedure of the general case.
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For v € W', let N'(v) := N(v) NV’ be the set of neighbors of the vertex v" which

are in V'.

For the development of an MEO-algorithm for the simple case, the following struc-
tural result is useful.

Lemma 3 G is chordal iff for vi,v2 € W', N'(v1) and N'(vy) are comparable with
respect to inclusion (compare also [NNS 87]).

Proof

“=7: Suppose wy € N'(v1) \ N'(vy) and wy € N'(vg) \ N'(v1).

Then vyvywyw; forms a chordless cycle of length four.

“<”: We assume that G is not chordal.

Then a chordless cycle must be of the form wvyvgwiwy such that vy,vy € W’ and
wy,wy € V'. Longer chordless cycles are not possible. But then N'(v1) and N'(vy) are
not comparable by inclusion. This is a contradiction.

For the case that G is not chordal, we compute an MEO < with V'’ as an endsegment.
Since V' is complete, we can V' order in any way. It remains the problem how to order W”.
We compute an enumeration (u;); of W', whose corresponding ordering is the restriction
of a minimal elimination ordering to W’. The chordal extension E’ defined by (u;); is

E' = FEU{uv:v €V and there is an j <i,u;jv € K}

Define N"(u;) ={v € V't wv € F'} = UN’(uj) and G’ := (V. E'). N"(u;) is also
i<i
called the extended neighborhood of u;.

Clearly, by Lemma 3, G’ is a chordal extension of G. Our aim is to compute a minimal
chordal extension (i, that means we would like to compute an enumeration (u;); such
that the following minimality condition which we call Property M (minimality property)
is satisfied:

If u;v € E"\ E then there is a u; with j < 7 and a w € V' such that ujv € F,
ww €, and ujw ¢ B

It is easily seen that the deletion of the edge w;v induces a 4-cycle w;wovu;.

We also can describe the minimality property in terms of neighborhoods.
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If v € N'(u;) but v € N'(u;), then there is a u;, j < ¢, and a w € N(u;) such that
v € N'(u;) and w € N'(u;) \ N"(u;).

We shall show that an enumeration (u;); satisfying the Property M ever exists. The
following result proves the existence of such an enumeration and gives also a hint how
to compute it.

Lemma 4 If, for each i, N'(u;) \ U;<; N'(u;) is inclusion minimal in
{N"(we) \ U N'(w;) | k= 4}
j<i

then (u;); satisfies the Property M.

Proof.  Consider any v € N"(u;) \ N'(u;). Then [ # 1. Let ¢ be the minimum such that
v e N'(uy).

Since N'(u;) \ U;<; N'(u;) is minimal for
{N"(ue) \ U N'(u))
i<i

with respect to inclusion, and N'(uiy1) \ Uj<; NV'(u;) # N'(u) \ Uj<; N'(u;) (they differ
by v), there is a w € N'(u;) \ N”(u;) which is not in N”(u;41).

To compute a sequence (u;); satisfying the assumption of Lemma 3 is clearly equiv-
alent to the following computation problem on set systems:

Given a set system (family of sets) £ C P(V'), compute an enumeration A; of £ which
satisfies the following Property I (inclusion property):

I: A\ | Aj is inclusion minimal in {Ax\ [ A; : k >4}

J<e J<e

Theorem 11 Under the assumption that & is presented as the bipartite graph consisting
of V.UE as the vertex set and the membership relation as the edge set with n vertices
and m edges, an enumeration satisfying the Property I can be computed in CREW-time
O(log® n) by O(n + m) processors.
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Proof  We shall state a recursive divide-and-conquer algorithm computing an enumer-
ation satistfying Property [I:

Here we divide the sets in £ into small and large sets, that means sets A; with a size
smaller than 1/3 of the size of the ground set V and sets A; with a size at least 1/3 of
the size of the ground set. Our aim is to divide the problem to smaller ground sets V"’
and V”. V' is the union of some small sets in £. If the small ground sets cover at least
1/3 of the whole ground set V' then we can take V' as the union of some small sets such
that the size of V' is between 1/3 and 2/3 of the size of V. The V" is taken to be the
complement of V'. Clearly the size of V" also lies between 1/3 and 2/3 of the size of V.
We divide the sets in ¢ by the following way:

If A; € £ is a subset of V' then it belongs to the part of V.
Otherwise A’ := A; \ V' is taken to the part of V.

We continue recursively the procedure to V’ and all A; C V" and to V" and all Al
such that A; ¢ V’. We concatenate the sequence of all A; belonging to V' and afterwards
the sequence of A; belonging to V.

In the case that the small sets A; cover less than 1/3 of V, we also take V' as the
union of all small sets in . But we cannot define V" as in the case before. To make V”
not too large, we choose a large A;, say A’ such that A; \ V' is minimal. Let V" be the
complement of A" U V.

We recursively apply the procedure to V'’ and all subsets A; of V' and to V" and all
A=A\ AP\ V' = A;N V", Here we first concatenate the sequence of A; belonging to
V'. Afterwards we take the one A; = A’, and then we take the sequence of A; belonging
to V" (that means A; is not A’ and is not a subset of V).

Formally we proceed as in Algorithm 2.

The correctness of Algorithm 2 can be shown as follows:

Let Jy be the set of ¢ such that A; C V', J; be the set of ¢ such that A;\ V' = V"\ V',
and J3 be the set of remaining ¢ € I (as defined in the procedure Property I).

Let < #;...,7 > be an enumeration of J; satistying the property [ and <
J1s- -+, Jk > be an enumeration of J3 such that (Bj,)i = 1* satisfies the property I.

B

Since all A; with ¢ € J; are no subsets of V', A, \ Ué;ll A, is an inclusion minimal
set of all A; \ Ué‘:1 Ai; with j € I'\ {i1,...,2-1}. For ¢ € J;, the minimality conditions
are preserved by construction and the fact that V' = U, As.

Let P3 =< ji...jp > defined as above. Then Bj \ Uic; B, = Aj \ (Ui Aj U
Userua, Aj).
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PROCEDURE Property I ({4;|i€ 1}, V, P)
Input Parameter: A family {A4; : ¢ € I} of subsets of V
Output Parameter: Sequence P := (i1 ...77) which enumerates 7

BEGIN
1) Let I := {i| #A: < 1/3#V}, D= {il#4; > 1/34V};
a) I #U;ep, Ai > 2/3 #V, then select I C Iy such that
134V <# A<V vi={]A; v =v\V.

i€l i€l

b) 1f #| J A € [1/3#V,2/3#V] then

i€l

V= A V=AY
i€l

¢) If #| JA; <1/3#V then
i€l
V= A
i€l

Let A be an iz € I such that #A4; \ V/ is minimal; let V" := V' \ V' \ A.

2) Let
Jp={i AACV']
o= {ie I\ 1t AiUlUsep, Ai = VA V"]
J3 = I\(J1UJ2);
{Bi : iEJl} = {Az : iEJl};
{Bi : iEJg} = {AZ\V” : iEJg};

3) Property I ({B; :ie 1}, V', P) (if J1 >1)
Property I ({B; i€ Js}, W/, P) (if Js> 1)
Let P be any injective sequence enumerating Js.
P .= P — Py — P51s the concatenation of P, P, and Ps;

END.
Algorithm 2
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This completes the correctness proof.

The computation of all #A; needs O(log n) CREW-time and O(n + m) processors.
The same is true for the computation of I; and I. Therefore the preface of 1) can be
executed in O(log n) CREW-time by O(n + m) processors.

The selection of I as in la) can be done as follows:
Sort I with respect to #A; in decreasing order [ := {i1...0,};

Compute, for each v, the least j, say j(v) such that v € A;, and let

sj=#{v : j(v) =75} S5 = #(A;\ U A)).

<y

Compute by bisection a k such that 3=, S; € [%#V, %#V] (this exists, since for each
j, Si < 3#V).

It is easily seen that each step needs at most O(log n) CREW-time and O(n +
m) processors. Therefore la) can be executed in O(log n) CREW-time by O(n + m)
processors.

Since Uz, Ai can be computed in constant CRCW-time by O(n+m) processors, 1b)
and the first part of 1¢) can be computed in constant CRCW-time by O(n + m) proces-
sors. #A;, \ V' can be computed in O(log n) CREW-time and by O(n 4 m) processors.
Therefore 1¢) can be executed in O(log n) CREW-time and O(n 4+ m) processors.

Since V' is a fixed set, the it can be checked for all ¢ simultaneously in constant
CRCW-time with O(n+,,) processors, whether A, C V’. By the same arguments as in
the computation of V', Jy, J3, {B; : i € J1}, {B; : 1 € J3} can be computed in constant
CRCW-time and O(n + m) processors.

Therefore part 1) and part 2) of the procedure Property I have a processor bound
of O(n +m) and a time bound of O(logn) on a CREW-PRAM.

Since V' and V" are constructed such that #V’' < %#V and V'\ V" < %#V the
recursion depth as in 3) is O(log n). Therefore the whole procedure needs O(log®n)
CREW-time and O(n + m) processors. Note that .J; and J5 are disjoint, therefore the
processor number needed for the procedure Property [ is the sum of the processor
numbers O(ny + my) and O(ng + my) needed for
Property I ({B; : 1 € J1},V', A1),

Property I ({B; : 1 € J3}, V' \ V", Ps), respectively.

But ny + ny < n and my + my < m, since Jy N Jy =0 and V' 0 (V\ V") = 0.
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The procedure SIMPLE CASE is nothing else than the computation of an enumer-
ation (u;)%, of W’ such that (N'(u;))k, satisfies property I.

4 The General Case

In Section 2 we computed a good endsegment Vo C V of an MEO. For each connected
component V; of Gly\y,, we made N(V;) N Vg a complete subgraph. We defined Fy as
the set of edges in Vg, which are in F or arise as edges after N(V;) N V4 has been made
a complete subgraph. We defined Gy = (g, Fo) and G; = (V;, E|V;), for i = 1,... k.

Now MEO is applied recursively to all G; with ¢ = 0,..., k. We get orderings <
and <f,..., <} of Vg and Vi,..., V) respectively. We denote the chordal extensions of
G/; with respect to <g and <!, i =1,...k by G, ..., Gy.

The goal is to find perfect elimination orderings <y, ..., <g, such that the concate-
nation < of <q,...,<) and at last <g is an MEO.

It is sufficient to find perfect elimination orderings <; such that any extension of <;
to an ordering <” on V; U (N(V;) N V), with N(V;) N V4 as an end segment, is an MEO
of the graph (V; U(N(Vi) N Vo), E[(Vi U (N(V;) N W) U {zy|xz,y € N(V;) N Vo}). Then
since Vp is a good endsegment, < is an MEO of G.

Lemma 5 The chordal extension I of < consists of the edges in Gy, ...,Gy and of
additional edges between G; and Gg.

That means, all fill-in edges inside V; are just edges of G; and there are no fill-in
edges joining any x € V; and y € V; with 7,7 > 1 and ¢ # j.

Proof of lemma. Suppose < y and 2y € F.. Then 2y € I or there is a path P in
G from z to y, such that all internal vertices are smaller than z.

Suppose x € Vu. Suppose z’ and y’ are vertices of P such that all vertices between
2’ and y’ are not in Vg, but 2’,y’ € V;. Then 2'y’ € Ey, because 2’ and 3y’ are adjacent
to the same connected component. Therefore we can replace P by a path F in Gy such
that all internal vertices are smaller thatn x. Since <q=< |Vj is a perfect elimination
ordering of Gy, xy is an edge of Gy.

Suppose = &€ V5 and y € Vy. Then we are done.

Suppose x € V; and y € V;. Then ¢ = j, because, for all v < 2 and therefore for all
internal vertices v of P, v & V and every path in (G joining vertices in different V; must

17



< < <
/ =7
/ / _ s/
/ /// Ve /
/ =/ e
/ //\\4/ P \/
// -
'\ <o <o /

Vo

Figure 1

pass Vp. By the same argument, also all internal vertices of P are in V;. Therefore for
all internal vertices v of P, v <; x. Since <; is a perfect elimination ordering on G, xy
is an edge in Gj.

As shown by the following counterexample in figure 1, we cannot take each perfect
elimination ordering on (;. Edges of the original graph are denoted by continuous lines.
Fill-in edges are assigned by broken lines.

To get a better feeling on the structure of perfect elimination orderings and the
possibility to find the right perfect elimination ordering of G, we introduce the notion
of a cut. For vertices v,w of a graph G a v-w-cut is an inclusion minimal v and w
separating set of vertices. A cut of G is a v-w-cut of some two vertices v and w of G.

For chordal graphs we know the following about cuts [Di 76]:
Theorem 12 Fach cut ¢ of a chordal graph G = (V, E) is complete. Moreover, it is the

intersection of two maximal cliques (and therefore the intersection of the neighborhood
of two nonadjacent vertices in different connected components of Gly\.).

We also introduce the notion of a saturated connected component of G|(V'\ ¢) of a
cut ¢ of G: A connected component D of G|(V \ ¢) is a saturated connected component
of the cut ¢ iff each = € ¢ is adjacent to some y € D.

Corollary 1 FEach cut has at least two saturated connected components.
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Proof. Suppose ¢ is an @ — y-cut. Let D; be the connected component of G|(V'\ ¢), x
belongs to and Dy be the connected component of G|(V'\ ¢), y belongs to. Then Dy and
Dy are both saturated connected components of ¢: If z € ¢ is not adjacent to a vertex
of Dy or not adjacent to a vertex of Dy then ¢\ {2z} still separates x and y. That is a
contradiction to the minimality condition.

Lemma 6 Fach cut of a chordal graph G = (V, FE) with a perfect elimination ordering
< 15 of the form
e ={y:ax<yhazy € E}.

Proof We use the fact that each cut ¢ is the intersection of the neighborhoods of two
nonadjacent vertices x and y of G. Consider the subgraph of G induced by c¢U {z,y}.
Then one of the vertices z and y is the smallest in ¢U {x,y} with respect to the perfect
elimination ordering <, since only z and y have a simplicial neighborhood in ¢ U {z,y}.
We may assume that  is the smallest element. We also may assume that = and y are in
different connected components of G/|y\.. Therefore for at least one of these connected
components D and all z € D adjacent to all vertices of ¢, z < w, for all w € ¢. From
this connected component we choose a largest z adjacent to all vertices of ¢. But then
the complete set {y: zy € E Az <y} is exactly c.

Corollary The number of cuts of a chordal graph is bounded by the number n of its
vertices.

Theorem 13 (Klein) The cuts of any chordal graph G can be computed by a CRCW
in O(log®n) time by O(n +m) processors. Moreover, if a perfect elimination ordering

of G is known then we get a CREW-time bound of O(logn).

We return to the computation of <.

We compute the set C'ut; of all cuts of the chordal extension G of G;. This can
be done immediately, for each V;, by O(#V; + #E) processors and O(logn) time by a
CREW-PRAM ([KI 88]). Therefore the overall complexity of computing all cuts of any
(i; consists of a CREW-time bound of O(logn) and a processor bound of O(n?). This

bound remains true also in each recursion step of the MEO-algorithm.
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We begin with an overview of the procedure Minchord that computes, for each
t, the right perfect elimination ordering of ;. Note that for any perfect elimination
ordering <; of G; and any cut ¢ of G;, for all but one connected components D of
éi|w\m all vertices in D are smaller than all vertices in ¢. By some criteria, we find
out that connected component D that does not satisfy above requirement with respect
to the still unknown perfect elimination ordering that satisfies the minimal elimination
ordering requirements. We shall call this connected component the dominator of ¢ and
all other connected compontents of éz’|vi\c are called non dominating. We replace any
edge zy such that = appears in a non dominating connected component of some cut
that contains y by a directed edge * —; y. This partial orientation can be seen as a first
approximation of the required perfect elimination ordering <; of (. The next step is
to compute a pre-fill-in, i.e. for x € Vi and y € V;, zy is a pre-fill-in edge iff there is a
y" such that xy’ € F and (y',y) is in the transitive closure —* of —,;. We shall find out
that those edges that remain undirected define an equivalence relation on the vertices,
i.e. they form a disjoint union of cliques. For each such clique, we apply the SIMPLE
CASE procedure.

To get an algorithm with a processor bound of O(n?) and a time bound of O(log® n)
is quiet straightforward. The difficulty is to get a processor bound of O(nm) in each
recursion step of the MEO procedure.

4.1 How to find out the dominator of a cut

For each ¢ € C'ut; and each saturated connected component D of C~?Z|VZ \ ¢, we compute
the number num(D) := #(Ng(D) N V), the cardinality of the neighborhood of D in V4
with respect to the original graph G.

The dominator of ¢ € C'ut; is the only saturated connected component of G|(V; \ ¢)
such that num(D) is maximal. If there is more than one such saturated component then
it is the unique connected component D such that num(D) and #D are maximal, if
such a unique connected component exists. Otherwise ¢ has no dominator.

A saturated connected component D is a nondominating connected component of ¢ iff
D is not the dominator of ¢. We denote the set of nondominating connected components

of any cut ¢ of G; by ND;.

We give an example: Figure 7 shows a graph G with the complete set 1§ as a good
endsegment. Moreover, here ¢ is constructed in such a way that G|y\y, is connected

and chordal. In this example V; = V' \ Vg, G; = CN?Z', and Gy = G|V.

The cuts of G; = G|V\VO are ¢y, ...,cs as shown in figure 8.
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The dominating connecting component of ¢; is D := {vg,v3, w3}, it has the greatest
number of neighbors in V4.

The dominating connected component of ¢3 is {vq, wq, v1}, for the same reasons.

The connected components of G;|V;\ ¢ both have the same maximal number of
neighbors in V4.

Since {vy,v3,wy} has the greatest own cardinality, it is the dominating connected
component belonging to ¢;.

4.2 The orientation of edges and the clique structure of non
oriented edges

To determine <;, we introduce the following relation —,.

If 2y is in E; (the edge set of éz), y is in ¢ € Cut;, and x is in a nondominating
saturated connected component of G;|(V; \ ¢) then we set @ —, y.

The following result justifies that the transitive closure —7 of —; can be interpreted
as a first approximation of a minimal elimination ordering.

Theorem 14 (i) —; is cycle free.
(i) If v —;y and © —; z then yz € E;.
(iii) If & —sy, y —; 2z and 2z € E;, then @ —; 2.

) Let =; be the following relation: x =; y iff vy € E; and not & —; y ory —; x.
w) Let be the following relati y iff ey € B d not Yy Yy
Then =; is an equivalence relation.

Proof Let x —; y and * —,; z. Let ¢; and ¢; be cuts such that v € ¢, z €
and such that z is in a nondominating saturated connected component of ¢; and in a
nondominating saturated connected component of ¢;.

Claim 2 At least one of the vertices y,z is in ¢1 N cy.
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Proof of the Claim  Assume that y € ¢ \ ¢z and z € ¢3 \ ¢1. Let Dy be a saturated
connected component of C~?|(VZ \ ¢1) not containing x and D, be a saturated connected
component of G|(V; \ ¢2) not containing x. Then D; and Dy are disjoint, and moreover,
DiNcy, =0 and Dy Nep = . Otherwise y is a neighbor of a vertex of D, or z is a
neighbor of Dy, and therefore x € Dy or x € Dy.

Note that Dy U {z} is contained in a saturated connected component of ¢; and vice
versa.

Suppose ¥ —; y and @ —; z. Then we find saturated connected components Dy and
Dy of ¢; and ¢y respectively which do not contain x with the additional property that
#(Na(D1) N Vg) and #(Ng(D2) N Vp) are maximal. Therefore

#(Na(Dr) NVo) 2 #(Na(D; U{z}) Vo) 2 #Na((D2) N Vo).

But also the other direction of the inequation is true by the same argument and thus
the equality. Moreover, one finds such Dy, Dy such that #D; > #Dy U {z} and #D; >
#D,U{z}. That means # Dy > #Dy 4+ 1 and #Dy > #D; + 1. This is a contradiction.

(Claim)

Since cuts are complete, (ii) follows from Claim 2.

Now we consider the case ¥ —; y, y —; 2: Let ¢; be a cut such that y € ¢; and
is in a nondominating saturated component of G;|(V; \ ¢1) and let ¢; be a cut such that
z € ¢; and y is in a nondominating saturated component of G;|y,\.,.

Claim 3 FEach path from x to some vertex of ¢y must pass a vertex of ¢;.

Proof of the Claim  We assume that the Claim is not true. Let Dy be a saturated
connected component of C~?Z|(VZ \ ¢1 not containing x and Dy be a saturated connected
component of G5|(V; \ ¢;) not containing . Since we assume that there is a path from
x 10 ¢z not passing ¢y, all vertices of ¢; \ ¢; and « are in the same (saturated) connected
component of éi|w\c1- Moreover, also Dj is in this saturated connected component.

Since y € ¢1 \ ¢2, Dy and y are in one saturated connected component of é2|(V \ e2).

If we assume again that Dy and D, satisty the maximality conditions with respect to

#(Na(D;) N Vp) and their own cardinality we get the same contradiction as in Claim 2.
(Claim)

By Claim 3, zy € ¢y Ney if 22 € E:. Therefore also z —; z, (iii) has been proved.

We are now able to prove (i): Consider any chain xy —; x2 —; @3- - 2. Then we
find cuts ¢y, ..., ¢, such that for all ¢ < k: 2; € ¢;, ;21 € x; and all paths from z; to
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Ciyo Pass ¢;p1. Therefore also x; € ¢;49. Otherwise ¢; 49 is reachable from x; not passing
¢iv1 (by a path of length 0).

By induction one can prove that x; & ¢;yr, for any k > 0: For k = 1,2 this is just
shown. Assume x; € ¢;4ry1. Then there is a path o 12349 ...2; from z;45_1 to
Citk+1 Dot passing ¢;1x. This is a contradiction.

Therefore it is impossible that 1 = xj. Therefore the cycle freeness of —; has been
proved.

To prove (iv) we proceed as follows: If xy, yz € E; but zz ¢ E; then there is a cut
¢ between z and z. y is in this cut ¢. @ and y must be in different saturated connected
components of Gi|(v,\¢). But only one connected component can be a dominator.

Therefore @ —; y or z —; y is satisfied. (*)
If:z;yEEi,yZEEZ'and:z;—ﬁz,thenx—nyory—nz.(

**)

Let ¢ be a cut such that z € ¢ and 2 is in a nondominating saturated connected
component of G;|(V; \ ¢). Then in the case that y ¢ ¢, y is also in the same nondominating
connected component as x, and therefore y > z.

If y € ¢ we have @ —; y. By (*) and (**), =; is an equivalence relation.
Moreover, we get the following extended result.
Theorem 15 x —; vy, z =; « implies z —; y.

Proof If @ =; z, then 2z € E. Since x —; y, zy € FE. Otherwise z —; y, by (*).
Therefore, by Theorem 14, z —; y.

We determine the right <; is as follows:

Let —7 be the transitive closure of —;. Then for € V; and y € Vi, we set
xy € B! iff there is an @' —7 such that 2’y € E.

E! is also called the pre-fill-in of —;.

For each =;-equivalence class A, we apply the procedure SIMPLE CASE to the
subgraph (4, consisting of the complete sets A (of G;) and N(V;) NV (of Gy) and of
the edges of E! which join each a vertex of A and a vertex of N(V;) N V5. We denote
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the resulting ordering on A by <4 and the resulting chordal extension by E4. E; is the
union of all £4 such that A is an equivalence class of =;.

<; is a total ordering on V; which exceeds —7 and, for each =;-equivalence class A,
the ordering < 4.

Let < be the concatenation of all <; and of <y at last.

Lemma 7 1. <; is a perfect elimination ordering of Gi;.

2. The chordal extension F. of < is FyUFE,U...UE,U Ule EZ

Proof. The first statement is proved as follows.

Let v <; y and x <; z. If & —; y and @ —; z, then, by theorem 14, yz € E.
Suppose x <4 y and y —; z. Then x =; y, and therefore y —; z, by theorem 15.
If v <4yand @ <4 zthen, by y =; 2 = z, y =, z, and therefore yz € E;.

The second statement of this lemma follows immediately from the first statement of
this lemma, by lemma 5.

4.3 The MEO-Property of <;

Theorem 16 G := (V, E) is a minimal chordal extension of G = (V, E).

Proof  Since CN?|VZ = CN?Z %nd CN?|V0 are minimal chordal extensions of (¢; and of Gy 1t
remains to prove that, in G, the deletion of any edge between V4 and V; not being in £
forces a cycle of length four.

To check the minimality of ( as a chordal extension, we proceed as follows:

Let yv € E\E, y € V;, and v € V4. Then one of the following two statements is true.

1. There is an 2’ such that 2’ and y are in the same =;-equivalence class A, 2’ <4 ¥,
and z'v € E!. Since <4 is an MEO of the graph G4 consisting of the complete
sets Vo N N(V; and A and the edges of E! between A and N(V;) N Vo, yv € E! or

the deletion of y'v causes a chordless cycle of length four.
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2. yv € E!'\ E. Then there is an 2" —* y, such that 2"v € E. Therefore we find an
' —; y, such that 2'v € E!.

It remains to consider the second case.
Then there is a cut ¢ such that y € ¢ and 2’ is in a saturated component of G;|(V; \ ¢).

But then there is also a saturated component D’ of ¢ not containing =" and #(N(D)N
Vo) < #(N(D")NVy)). Therefore one finds a vertex v’ € N(D')NV; not being in N(D)NV,
orv e ND)NVy=N(D)N V.

In the next paragraphs v is any vertex of N(D') N Vy and o' is any vertex in
NDYNV\ND) f N(D')NVo\ N(D) #0 and o' =v if N(D') N Vo = N(D)N V.

Let & € D" and 0" € K. Let ¥ = xq125... 23211 = y be a shortest path in G, joining
2 and y such that all #; are in D’. Such a path exists since D' is a saturated connected
component.

First we consider the case that D’ is not the dominator of ¢. Then x;, —; y.
Moreover, x5_1 —; T, - xg — 1 and therefore & —7 xp —; y:

This can be proved by backward induction. Since z;_q2; € EZ', Tj_1 =;X; OF T —
xj_qorxj_y —; v;. We know that v; — z;41 and that ;2,41 ¢ EZ (we chose a shortest
path). Then, by theorem 15, 2; = x;_; is excluded, and, by theorem 14, x; —; ;4 is
excluded.

For the case that o' € N(D')\ N(D) we get a cycle (yv'va’y) after deletion of the
edge yv (see figure 3, continuous lines are edges, dashed lines fill-in edges. The cycle
without an arrow shows a cycle of length four.)

Figure 3
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For the case that v/ = v we get a cycle (xpya’vay) (see figure 3a, dashed lines between
points denote edges of the original graph. The non-dashed cycle arises from deleting the
edge zv. The dashed cycle arises from the deletion of yv'.)

Tk Yy '

Figure 3a
Now we consider the case that D’ is the dominator. Again we consider the shortest
path @ = xq...2py.

If y —;  then also xxv € E!, and we get the cycle xyya’vay, after the deletion of yv
(see figure 4).

Figure 4

If not ¥y —; x) then 2, — y or x; =; y. In the first case we can proceed as in the
case that D’ is not the dominator.

Also in the second case, xj_1 —; x, because x;_1y ¢ EZ', =; equivalence classes form
complete sets, and x; — x;_1 cannot be the case, by theorem 15. Therefore x; —; 241,
for all j < k, by the same argument as in the case that D’ is not the dominator.

Therefore xyv’ € B!, since x —7 . If v/ = v then again, after deletion of yv, a cycle
of length four arises (see figure 5).
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If v # o', we can use the fact that x; =; y, and ayv € Eoryv € E (see figure 6).

Figure 6

In both cases the deletion of the edge yv causes a chordless cycle of length four.

Therefore the Theorem is proved.

4.4 Structural Properties of Nondominating Components

We continue with a lemma which is useful for an efficient parallel algorithm that com-
putes <.

Lemma 8 For each verter x € 1% the set
D, :={D : D is a nondominating connected component of some cut of G; and x € D}
is totally ordered by inclusion.
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Proof Let Dy and D, be nondominating connected components for cuts ¢; and ¢
respectively. Let @ € Dy N Dy. Then each path from = to ¢; must pass ¢y or vice versa,
otherwise, as in the proof of Claim 2 of Theorem 14, one of the components Dy or Dy is
dominating. But then clearly Dy C D if each path from = to ¢y passes ¢; or vice versa.

Corollary 2 For all nondominating connected components Dy and Dy, D1 and Dy are
comparable by inclusion or are disjoint.

Lemma 9 Let D, be the unique smallest D € D,. Then

1.2 —;y iffvy € E, and y & D,.

2. D, =A{y:Ja' =2y =72 ory=; a}.

Proof. The first part can be seen as follows. @ —; y is equivalent to the statement
that there is a nondominating saturated connected component D of some cut ¢ such
that € D and y € ¢. On the other hand, ¢ is exactly the set of neighbors of D outside
D. Therefore, for zy € I;, + — y iff there is a saturated connected component of any
cut such that * € D and y € D. Therefore for zy € E,z—yiffz € D, and y ZD,,
because D, is the inclusion minimal saturated connected component of some cut which
contains x.

The second statement can be seen as follows: D, is a saturated connected component
of some cut ¢. Suppose y —* . Then no y’ on the —;-chain from y to = can be in ¢
(otherwise the —;-symbol would be turned). Therefore all elements of the —;-chain from
y to x is in D,. Suppose y =; x. Then y € ¢ and therefore y € D,.

Suppose vice versa that y € D,. Then there is a path from y to =, say y = yo,...,y; =
x such that all y; on this path are not in ¢. By theorem 14, we may abbreviate this path
in such a way that y; —; y;_1 and y; —; y;41 cannot be the case simultaneously.
Moreover, by theorem 15, we can abbreviate this path in such a way, that the following
situation cannot happen: y; = y;4(-)1 —i Y;j4(-)2- Moreover, the following situation is
excluded:
x =1y — y_1. Otherwise y;_1 € c.
Therefore the following possibility remains: The sequence y = yo,...,y; = x has an
initial segment of —; (which may be empty) and an end segment of =;.

Corollary 3 Let D, be defined as in the previous lemma. Then for zy € L,
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1. o —,y iff #D, < #D, and

2. 2=y iff Dy =Dy iff #D, = #D,.

We go back to our example:

We get Dy, := {v1}, D, :={vs} and D,, := {vs}, and the following direction —,; as
in figure 9.

U3

U2 Wwa 0

Figure 9

The pre-fill-in E! consists of the following additional edges:

W32, W3lly, Walls, Wally, Wally, Walky, W1ty, and wiuy (see figure 10). Note that wy =;
Wy =; Ws.

Note that wy, wq, and w3 are not in any proper nondominating and therefore D, =

Dy, =Dy, =V,
If we apply the SIMPLE CASE procedure to W = {wy,w,, w3} and V4 as complete

sets and edges of E! between W and V4 then (wq,wy,ws) is a suitable enumeration, and
we get a fill-in as in figure 12.

For complexity considerations, the following result is useful.

Lemma 10 The number of saturated connected components of all cuts is bounded by

O(#Vi).
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Proof. Suppose D is a nondominating connected component. Then D is of the form
D,. Therefore the number of nondominating components is bounded by the number
of vertices in V;. The number of dominating connected components is bounded by the
number of cuts and therefore bounded by the number of vertices.

Corollary 4 Assume the set ND; of nondominating saturated connected components
of all cuts is known. Then D, and =;, can be computed in O(logn) CREW-time using
O(n?) processors.

Proof. D, is computed by the computation of the #D with € D of minimal
cardinality. =; is computed by comparing #D, and #D,,.

Remark: We could compute —; with the same amount of complexity. But we never
will use — explicitely in the algorithm.

We still have to compute the pre-fill-in E!, for each =;-equivalence class A, the
ordering <4, and from these both results, the overall MEO < and its chordal extension.

If we would go straightforward, we had to compute —7. To compute —7, we would
need O(n®) processors.

To compute E! efficiently, we use the following simple fact:

Lemma 11 Forxz € V; and v € Vg, xv € E! iff xv € E or there is a y —; x such that
v € N(D,) N Vy. (Remember that D, is the smallest nondominating component which
contains y ).

Proof. Suppose zv € E. Then zv € E! is equivalent to the statement that there is a
y" such that ' = yo —; y1 = ... =; y; —; v and y'v € E. Then by lemma 9, y' € D,,
and v € N(D,,). Vice versa let v € N(D,), for some y —; x. Then, by lemma 9, there
are a y” such that y = y” and y"v € E or a y’ such that y'v € E and y" —7 y'. By
Theorem 15, y"” —* x and therefore zv € E..

For purposes of efficiency, we consider, for each = € V;, only those y —; = such that
D, is maximal by inclusion. Moreover, we are not interested in y itself, but in D,.

Set y —! x iff D, =/ x iff y is a y —; = such that D, is maximal by inclusion.
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Since the set N D; of nondominating connected components is of the property that
each pair is disjoint or comparable with respect to inclusion, for each D, € ND;, there
is at most one inclusion minimal D; € ND; such that D, ¢ D;. If no such D; exists
then we set D; = V.

We can compute these D}, by computing, for D = D, the second smallest D, € N D;
which contains z.

Lemma 12 For each D, € ND;, let D, the unique inclusion minimal set in ND;U{V;}
such that D, G D,. Then D, —!x iff v € D, \ D, and yx € E;.

Proof. Suppose y' — x, y' € D,, and y’' —; x. Then there is a y” with D, = D,»
and y' —7 y"” or y” = y'. By iterative application of theorem 14, for all vertices z on the
—;-chain from vy’ to y”, zx € FE;, and therefore z —; x. Therefore y"” —; x. By Theorem
15, y —; 2.

Therefore y —; x is equivalent to the statement that there is a y' € D, such that
!
Yy — .

Therefore D, —{ x iff y —; x and there is no D, such that D, ¢ Dy and y' — =,
iff y = v and € D) iff 2 € D, \ D, and yzx € E;.

Corollary 5 Forv € Vo and x € V;, av € E! iff xv € E or there is a D, —! = such
that v € N(D,) N V.

Corollary 6 Suppose the number of pairs (Dy,x) such that D, —! x is bounded by
m; > #Vi. Suppose ND; and, for each D € ND;, N(D) N Vy is known. Then the
pre-fill-in E! can be computed in O(logn) CREW-time using O(nm;) processors.

Proof. For all x € V;, we compute D, simultaneously in O(logn) CREW-time using
O(#V;?) processors. For each D € ND;, we select a representative + = xp such that
D = D, in O(log(#V:;) CREW-time using O(#V;) processors. D' = D/ is the second
smallest D” € ND; which contains xp. That can be computed in O(log #V;) CREW-
time using O(#V;?) processors. We set D, —; z iff + € D} \ D, and yz € E;. Last can be
checked in constant CREW-time using O(#V;?) processors. We set E! = {zv|x € V;, v €
Vo, such that zv € E or thereisa D € ND; with D —! x and v € N(D)}. Then E!

can be computed in O(log n) CREW-time using nm; processors.
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PROCEDURE MEO(G = (V, F), <, E)
Input Parameter: G
Output Parameter: <, Eo

BEGIN
1. If G is complete then < is any ordering on V.
2. Apply Endsegment(G, V;)
3. Compute the connected components Vi, ..., Vi of G|(V \ V)
4. Fori=1,...,k compute N; :={y € Vp:3ax € Vizy € F},
Ey:={ay:2,y€Vo,ay € F or i : xy € N;}.
5. Apply MEO((Vo, Eb), <o, Eo) and for each i = 1,..., k, MEO(G|V;, <}, E;)

6. Apply for each i = 1,... k: MinChord((V;, Ei)’ E|(N; UVY), Ny, <5, EZ) (to compute the right
<; and the corresponding chordal extension Fy)

7. < is the concatenation of <; and of <y, Fo := Ule(Ez) U Ey

END.
Algorithm 4

The whole recursive MEO-procedure is described in Algorithm 4.

The procedure Minchord, as described in Algorithm 5, computes <; and the corre-
sponding chordal extension F;.

To check the complexity of MEO, we still have to fill out the steps of MEO and
MinChord which are written in italics. We have to do it in such a way, that a processor
bound of O(nm) is preserved in all recursion steps.

We computed a good endsegment Vy and the connected components Vi,..., V. of
the complement. We let Gy = (Vi, Fy),..., Gk = (Vi, Ex) be G|Vi,..., G|V, and Gy =
(Vo, Eo) arises from G|V by making each neighborhood of any V; complete.

Generally, we define graphs Gy .., = (Vi .., i, i), where G g0 18
the graph corresponding to Gy, if we apply MEO to G and, for j # 0,
Gipoiigen,g 18 Gi17...7iq_1|Vil7m7iq_17]‘, where V; j 1s the gt connected component of

Gi17~~~7iq—1 |(Gi17~~~7iq—1 \ ‘/i17~~~7iq—170)'

geeeslg—1

1 7~~~7iq—1

Obviously we get a subtree representation on all the Gy, ;,. The parent of G
1s G Obviously, the vertex set of any G, .,
parent. Obviously, the children of the same parent are disjoint. Therefore we get:

i1 yeeip

i1 yeemip_1 is a subset of the vertex set of its

Lemma 13 G, and G, ...;, have nondisjoint vertex sets iff G, ;. is an ancestor

of Gi,...i, or vice versa.

. Vg
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PROCEDURE MinChord(G; = (V;
Input Parameter: G =
Output Parameter: <, E;

( iaEi)aNia

BEGIN

1.
2.

END.

Compute Cut; := set of cuts of (V;, EZ)

Compute the saturated connected components: Compute for each ¢ € Cut;, the set
D, of connected components of G;|(V; \ ¢);

for each ¢ € Cut; and each D € D,, compute the set Np = N(D) Nc of neighbors of D in ¢;
erase those D from D. such that #Np < #c.

Compute for each D €, Cut, De: the sel ND)NVo={veN :Jwe Dvwe E}
set Num(D) = #N(D) N Vy;
set Num’D := #D.

. D € D, is dominating iff (Num(D), Num’(D)) is maximal with respect to the lexicographic

order and D is the unique maximal element of D..
ND; = UceCut(i){D € D, : D is not dominating }

. Forall x € V; : D; 1s the D € N D; such that # € D and #D is minimal,

for each D € ND;, set Xp = {«: D, = D}; xp is a distinguished € Xp;
for each D € ND;, D' is the second largest D” € ND N {V;}, such that p € D".

. Compute the pre-fill-in E}:

E’ 1 For each D € ND; and each y € D'\ D with ¢py € E;, set D —hy;

E 2 For each € V; and each v € Vi, set xv € E! iff v € F or there is a D € ND; such
that D —} x and v € N(D)NV,.

Apply SIMPLE CASE for =;-equivalence classes:

A1 for each D € ND;, let Ap = {x: D, = D} and Ay, = Vi\UDeND, D be the set of
those vertices, appearing in no D € N D;.

A 2 for each D € ND, apply SIMPLE CASE to Gp = (Ap UN(Vi)) N W), El(Ap U V) U
Fi|Ap U Eg|(N(V)) OAVO)) with N(V; N V) as an end segment, <p as the resulting
ordering on Ap, and Ep as the resulting chordal extension.

. Compute <;:

S 1 Sort all D € ND; with respect to #D to an ordering <yp,;
S2 forxz,ye Wy, let x <; yifft Dy <yp, Dy or D, = Dy and = <p_ y.

S3 Ei =Upenp,ugv,y £p

Algorithm 5
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We introduce some notions which will be useful to compute connected components
in any G

0 yerig®

Definition 3 [f1,...,1,,0 is an initial segment of i1, ..., ¢4 (i1,...,1,,0 and i1,..., 1,

may be equal), then Giy,...ip0 15 called a zero ancestor of Gy, ;..

Gl ,.oig,j 15 called a nonzero sibling of Gy, i, 0, if J # 0.

L geeey

., the set of all vertices of V' which appear in a nonzero sibling

We denote by VZ;Z
0 Of G

of some zero ancestor (¢

11 4eeeytp, 11 4ee09lg "

The key for an nm processor bound of the procedure MEQO in all recursion steps is
the following:

Theorem 17 zy is an edge in G, iff there is a path from x to y in G|V}

yeenlp yeouslp

Proof. We prove the theorem by induction on p. For p = 1, we are done, by definition
of Gy and Gy,...,Gy.

Suppose, p > 1. Then we consider the cases 7, = 0 and 7, # 0.
Suppose, ¢, = 0. Then 2y is an edge in G},

is a nonzero sibling &
yy' are edges in G

iff zy is an edge in Gy, ;,_, or there
such that zz’ and

yeenrlp

: ! !
ip_1,; and vertices 2’ and y' of

1 geeny 11 4eeeslp—1,J

i yeenript *

Note that, by con-
struction, G, ;. ; is connected. Hence there is an edge xy in Gy, ;. _, 0 iff zy is an
edge in Gy, . ;,_, or there is a nonzero sibling Gy, _, ; of G such that there
is a path from x to y in Gy, i, |(Vi,..ipr s U {2,y ). By the induction hypothesis, each
edge in Gy, i,
vertices of Vi, ;i _ ., 7 # 0.

By construction, Gy, _,; consists only of edges in Gy _,.

01 5eenip—1,09

can be replaced by a path in G consisting of vertices in V, and

!
1yeentp—1

Therefore xy is an edge in Gy, ;,_, o iff there is a path from z to y in G|V! =

/ i1 serip—1,0
G|( il,...,ip_l U U]>0 ‘/ﬂv"'vip—lvj)'

Now we consider the case that ¢, # 0. Then all edges in G;,___;, are edges in G

i yeenript *

By the induction hypothesis, we are done.

Also the following theorem is useful:

36



Theorem 18 For any cut ¢ of the chordal extension Fo of an MEO < the graph G =
(V, E), the (saturated) connected components of G|(V \¢) and of (V, F)|(V\¢) coincide.

Proof  Clearly each connected component of (V,F.)|w . is the disjoint union of
connected components of G;|V \ ¢. Let Dy, Dy, ..., Dy be connected components of
GI(V \ ¢)and DU Dy U. .. Dy be a connected component of (V, F.)|(V; \ ¢). Then after
deletion of all edges between different components D;, D; the the graph remains chordal,
since no induced (chord free) cycle of the remaining graph can act in different connected
components D;, D; since they are separated by the complete set ¢. Therefore for any
minimal chordal extension (V, F) of (¢, each connected component of (V, F)|(V \ ¢) is
also one connected component of G|(V \ ¢).

Also saturatedness is preserved. It is caused by the fact that for any connected
component D of (V, F)|(V \ ¢) and for any vertex @ € ¢ which is in the neighborhood
of D with respect to F. but not in the neighborhood of D with respect to G, we only
had to erase all edges between = and D, and the the graph remains chordal: a cycle of
F. becoming chordless after the deletion of all edges between  and D can have only
two vertices of ¢ (¢ is complete) and must pass x. This is a contradiction, because = € ¢
and the cycle must leave ¢ via x. Therefore the neighborhoods of D in ¢ with respect to
FE and with respect to F. coincide.

Corollary 7 1. For each x € Vi, . i, 0, there is an edge to a vertex y € Vi; ;. ; in
Gy ,.ip tf there is an edge of G from x to a vertexr y' in the connected component
Y ing T GUWVi iy UVE )\ Vs igor Viaiyg belongs to.

11 4eeelps] 11 4eenslp

2. Let ¢ be a cut of the minimal chordal extension ézlzp of Gy, ...i,- Let D, be the set
of connected components of G|((V;, .., UV, ;)\ ¢) and D, be the set of connected
components of Gy, i |(Vi,...i,\¢). Then the sets D and {D'NV;, ., #0|D" € D'}

coincide.

3. Let ¢ be a cut of the minimal chordal extension ézlzp of Giy,..ip- Let D' be a
connected component of G|(‘/¢17m72’pu‘/i’1w7ip) and D = D'NV;, . its corresponding
connected component of Gil,...,z'p|(vil,..,,¢p \¢). Then x € ¢ is a neighbor of a vertex
v € D with respect to Gy,
G.

iff v is a neighbor of a vertex v € D' with respect to

yeenrp

4. Let ¢ be a cut of the minimal chordal extension Gzlzp of Giy...i,- Let D" be
U Vzll, ) \ C) and D = D' N Vi17~~~7ik
corresponding connected component of Gy, o |(Vi, i, \ €). Moreover, assume that
iy, 0. Then a vertex x € V;
to G

a connected component of G|((Vi, .4, iy its

Lrnip_1,0 18 adjacent to some vertex of D with respect

oeipy W T 15 adjacent to some verlex in D' with respect to G.
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Proof.

L : There is an edge of s, ..., from x to a vertex y € V;, ., ; iff zy € E or there is
a path P from = to y of (¢ such that all internal vertices of P are in Vl’ll,p Let 3" be
the first internal vertex of P. Then y’ € Vigl,...,xp,jv because 3’ and y can be joined by a
path using only internal vertices from V;; . and therefore no vertices from V;, ., 0.

Then w is adjacent to a vertexof Vi . .in G.

1"

Vice versa, let « be adjacent to y" € V7 . .. One possibility is that y € Vi, ., ;.
Then we are done. It remains to consider the case that y € Vlil,p Then there is a path
in G from y’ to some y € V, !

where all internal edges are in S
an edge of G

" Then zy is

1se-9TpyJ

il geenslp

2: By theorem 17, there is a path from u to v in G, . ;, using only vertices not
in c iff there is a path from u to v in G|(V, .., UV . ) using only vertices not in
c. Therefore the set D of connected components of Gi1,...,xp|vi1,...,xp \ ¢ and the set of
nonempty intersections of G/|((V; u v )\ ¢) with Vi,

sty coincide.

1yeesZp WLp

3 The argument is the same as in 1. Suppose = € ¢. Then x is adjacent to some y € D
with respect to G, iff xy € F or there is there is a path P from x to y in G whose
internal vertices are all in Z’ll,p The internal vertices are all in D', because they are
all not in V;, ., and therefore not in c and therefore all with y in the same connected
component of G[((V;, ..., UV . )\ c). Therefore z is adjacent to some vertex y' € D'

in G.

yeenrp

Vice versa, suppose x is adjacent to some vertex y' € D' in G. Then we get a path
P"in G from y' to a vertex y € D such that all internal vertices are not in V;; .,
therefore in V’ll,p Therefore we get a path P from z to y in GG such that all internal

and

K3

. L e . -
vertices are in V| . Therefore zy is an edge in G, .z,

4 can be proved in the same way as 3.

respect to (7;, .., complete, we use the following trivial consequence of the last corollary,

To get an algorithm which makes the neighborhood of Vi, . ; in V;

1,...,1’13,

Corollary 8 For each vertex v € Vi, . ., 0, the number of j such that there is a vertex
Yy € Vi wpjs 15 bounded by the number of edges in G which are incident with x.

Proof. This is an immediate consequence of the last corollary, item 1.
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PROCEDURE MAKE THE NEIGHBORHOOD COMPLETE(V,, V4, ..., Vi, G, Ey)
Input Parameter: Vo, .. Vi, G=(V, E)
Output Parameter: FEj

BEGIN

1. Forz € Vo,y €V, and zy € E, set zV; € R.
2. For z,y € Vg set zy € Ey iff there is an zV; € R such that yV; € R.

END.
Algorithm 6

We can compute Gy as in algorithm 6.

Clearly Algorithm 6 makes N(V;) N Vo complete, for each j = 1,..., k. Since each «
is only in one V;, R can be computed in constant CRCW-time using O(n?) processors
(in each recursion step), and therefore in O(log n) CREW-time using O(n?*) processors.
By the last corollary, the second step can be executed in O(logn) CREW-time using
O(nm) processors. This bound is valid in all recursion steps.

We continue with the computation of the connected components of Gy, i [(Vi, i, \

¢). This is done in Algorithm 7.

PROCEDURE COMPUTE THE SET D, OF CONNECTED COMPONENTS OF
Giy,oip(Vig, i, \ ©)

Input Parameter: Giy,. iy
Output Parameter: D,

G,e

BEGIN

1. Compute the set Z of indices of zero-ancestors of Gy, . 4.

2. For each ¢1,...,4,,0 in Z compute the set S(41,...,4,) of indices of nonzero siblings of
Giy,.igy0-

3. Set S = Uil,...,iq,OEZ S(iv, ... i)

4. Set Vi ;= Ujl,...,j;es Viv,it-

5. Compute the connected components Dy, of G|((Vi,,..;, UV{, ;i )\ ¢).

1yee-

6. For each D' € D), set D=D'NV;, .
It D+#0, set DeD,

g

END.
Algorithm 7

By 2 of the second last corollary, the algorithm computes the set of connected com-
ponents of Gy, i |(Vi, ., \ €).

The complexity is checked as follows:
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Step 1 can be done sequentially in logarithmic time, because the recursion depth of
MEO is logarithmic and therefore each G;, . ; has only logarithmically many ancestors,
that means p < logn.

The computation of nonzero siblings of any zero ancestor can be done by as many
processors as nonzero siblings exist in constant CREW-time. The processor bound is n.

The computation the set of all nonzero siblings in 3 needs O(n) processors and

O(log n) CREW-time.

In 4, the set V; . is computed in O(logn) CREW-time using O(n) processors.
Note that all th...,jq/ are pairwise disjoint.

The last step 5 is bounded by O(n + m) processors and a CRCW-time of O(logn)
[SV 82].

Since the number of cuts is bounded by n, the overall complexity of computing D.,
for all cuts ¢ simultaneously, is bounded by nm.

To compute the set of neighbors of D in ¢ with respect to Gy, ;,, we compute the
set of neighbors of the corresponding component D' € D’ in ¢ with respect to G. We

proceed as in Algorithm 8.

PROCEDURE COMPUTE FOR ALL ¢ AND ALL D' € D/, THE SET N(D)N¢ OF NEIGHBORS

IN c.
Input Parameter: e, DG

Output Parameter: {N(D')Nc|D' € DL}

BEGIN

1. Foreach ¢ € Cuty,, . ;,

and each zy € E such that € ¢ and y € ¢, determine the D;yc e,D.
such that y € D, .

2. For ¢ € Cuty,, . ;, and each edge xy € F such that x € ¢ and y ¢ ¢, z 1s set into thge
neighborhood of Dy, ..

END.

Algorithm 8

Clearly this algorithm computes, for each cut ¢ and each connected component be-
longing to ¢, the set of neighbors in c.

The first and the second step can be executed in constant CREW-time using O(nm)
processors, since the number of cuts is bounded by n and the number of edges in F is
m.

We continue with the computation of the neighbors of D in V;, ; o with respect to
G
we compute the neighborhood of D’ with respect to G.

i1,..ip» Where D is a saturated connected component of some cut ¢ € Cut;, . ;, ;. Again
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The algorithm works as Algorithm 8. We only replace ¢ by Vi, ., 0.

It remains to fill out step E’2. The algorithm was mentioned in the proof of corollary
6. To get a processor bound of O(nm) in all recursion steps, we have to show that, for
any x, the number of D,, D, —! x is bounded by the number of neighbors of = in G.
Note that D,, and D,, are equal or disjoint if D, —! x and D,, —! x. Moreove, in the
latter case, D, and D,  are disjoint. A necessary condition that z is in the neighborhood
of D, in G . ;, and therefore in the neighborhood of D; in (7, i.e. thereis a z € D;
such that zo € K. Therefore the number of D, with D, —! x is bounded by the number
of neighbors of = in G.

Hereby, all gaps in MEO and MinChord are filled. Putting all the results together,

we get:

Theorem 19 An MEO and a minimal chordal extension can be computed in O(log® n)
CREW-time by O(nm) processors.

5 Applications

We summarize some applications of our parallel MEO algorithm. We refer to [Ro 73],
[Ta 85], [KI 88], [DK 88a], [GH 88] for fundamentals. One application is symmetric
sparse Gaussian elimination. The problem is to compute, for any symmetric matrix
with nonzero entries on the diagonal, a Gaussian elimination scheme such that the set
of entries becoming nonzero is minimized with respect to inclusion [OCF 76, Ro 73].
We call such an elimination scheme a sparse Gaussian elimination. To compute a sparse
Gaussian elimination, we proceed as follows. For any symmetric matrix A = (a; ;)7 _;,
we consider the corresponding graph G4 = (Va, F4) = ({1,...,n},{¢jla;; # 0}. By
[Ro 73], the problem to compute a sparse Gaussian elimination for A is equivalent to
the problem of the computation of an MEO for G4. Therefore we get immediately.

Theorem 20 There is a CREW-algorithm which computes, for any symmetric n X n-
matriz with nonzero entries on the diagonal and m nonzero entries, a sparse Gaussian
elimination scheme in O(logn)® time using O(nm) processors.

Another application of MEO is ¢lique decomposition. The problem of clique decom-
position is, given a graph G = (V| F), to compute the set of cuts of G which induce a
complete subgraph of G and to compute, with the help of the set of cuts, the inclusion
maximal components of (¢ which are not decomposable by complete cuts. Sequentially,
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this problem can be solved in O(nm) time [Ta 85]. He computed the cuts of the chordal
extension of an MEQO and selected those cuts of the chordal extension which are also
complete in the original graph. It is not difficult to parallelize this procedure in O(log n)
CREW-time using O(nm) processors. To get the components of the clique decomposi-
tion, we consider the cliques sets of the chordal extension. We compute the clique tree
for the chordal extension. It consists of the set of cliques of the chordal extension as
vertex set and has the property that, for each vertex = of the given graph, the set of
cliques containing x forms a subtree [Bu 74, Ga74]. Note that each edge of the clique
tree corresponds to the cut of those vertices of the chordal extension which are in both
incident cliques. A clique tree for the chordal extension can be computed from the MEO
in O(logn) CREW-time using O(n?) processors [KI 88]. To compute the components,
we unify those cliques of the chordal extension to one component which are not separa-
ble by an edge of the clique tree corresponding to a cut of the chordal extension which
is also complete in the given graph. This can be done by tree contraction techniques in
O(log n) CREW-time using O(n) processors. Therefore the overall complexity of clique
decomposition is O(nm) processors and O(log® m) CREW-time.

6 Further Research

From the main result of this paper the following questions arise.

1. Is there a way to improve our algorithm with respect to the number of processors
(O(nm)) giving the MEO an even better sequential time algorithm ([RTL 76]
provides an O(nm) time algorithm)?

2. Is it possible to modify our algorithm to work in O(log® n) parallel time and in the
same number of processors on a CRCW PRAM (P. Klein asked this question in
[K1])? The recursive structure of any such MEO algorithm working in a ‘shallow’
O(log® n) parallel time would be of its own interest!

3. The Breadth-First Search (BFS) algorithm of Theorem 20 uses the chordal ‘parent-
richest neighbors” method of [KI 88] applied to an MEO of an input graph. Are
there MEOs which can be used directly to construct the Depth-First Search (DFS)
tree for an arbitrary graph? Can our MEQO algorithm be modified as to generate
efficiently DFS trees of arbitrary graphs? (In general it will be very interesting to
shed some light on the connection between DFS orderings and MEOs. At present
there is not much known.)
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