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Abstract.

We design a first efficient parallel algorithm for decomposing an arbitrary graph by clique
separators. The algorithm works in O(log® n) parallel time and O(n®) processors on a CREW
PRAM. The theory of clique separators is directly related to the theory of elimination orderings
of arbitrary graphs, and is used in efficient algorithms for Gaussian elimination of sparse
symmetric matrices [Ro 70], [Ro 73], [RTL 76), [Ta 85]. It is the first sublinear parallel time
(and therefore sequential parallel space) algorithm for the clique decomposition, and at the
same time an optimal algorithm up to the polylogarithmic factor with respect to the best
sequential O(n?) time algorithm of Tarjan [Ta 85).

1. Introduction.

One of the most important methods supporting the divide-and-conquer techniques in many
graph algorithms is the method of computing graph separators either of small size ([Ta 72|,
[LNS 82], [HT 73]), or a special structure (e.g. clique separators, [Di 87], [Ta 85|, [GJ 8],
[RTL 76], [Wa 37)).

Recently, considerable progress has been achieved in designing efficient parallel algorithuns
for the first class of separators (cf. [Ra 87], [GM 87]). The second class of separators restrained
attempts to design efficient parallel algorithms. The main reason for this was the fact that
all the efficient sequential solutions [Ta 85] were based on a ‘highly sequential’ subroutine for
computing a minimal ordering of a given graph [RTL 76].

In this paper we remedy this situation by developing a new method of graph extensions
including all minimal chordal extensions of a given graph. This allows us to apply next the
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generalization of Tarjan’s [Ta 85] technique of finding clique separators as the intersections of
pairs of neighbourhoods in the extension graphs.

The extension algorithm (Parallel-Fill-In; Section 3) works in O(log® n) time and O(n?)
processors on a CREW PRAM for a graph of n vertices. (Only the completeness check for
clique separators in the extension of a graph requires O(n?) processors and O(logn) time).

The Clique Separator Decomposition algorithm works in O(log® n) parallel time and O(n?)
processors on a CREW PRAM.

2. Preliminaries.

By a graph we always mean an undirected graph G = (V| E) with a vertez set V and an
edge set E with no cycles and no multiple edges. An edge between z and y is denoted by [z, y].
The number of vertices #V is denoted by n, and the number of edges is denoted by m. For
any set A, the size of A is denoted by #A.

By a cut of vertices x and y of a graph G = (V, E) we mean an inclusion minimal set of
vertices which separates ¢ and y. By a complete set V' we mean a subset of the vertex set,
such that for all z,y € V' [z,y] € E.

The Clique Separator Decomposition is the problem of computing all the clique separators
(or a binary decomposition tree, cf. [Ta 85]) for a given input graph G.

A clique separator is a complete cut. A graph G with no induced cycle greater than 3 is
called a chordal graph.

We shall need the following properties of clique separators and minimal chordal extension:
Theorem 1 (see [Ta 85] or [Ha 81]). In chordal graphs, each cut is a clique separator.

Theorem 2 (see [Ta 85]). Any clique separator of G = (V, E) is also a clique separator
in any (inclusion) minimal chordal extension (V, E') of G.

Our computational model will be a CREW PRAM (concurrent-read exclusive write)
([FW 78], [Co 85], [KR 88]).

3. The Algorithm.
3.1. An QOutline.

Here we present a Clique Separator Decomposition algorithm which combines methods in-
troduced recently in [DK 88b] with certain extensions of P. Klein's FOCS ‘88 ([KI 88]) method
for chordal graphs. The algorithm computes at first a chordal extension G’ which preserves
clique separators, together with a perfect elimination scheme on G'. The last step is to check
for each clique separator of G' = (V, E'), whether it is a clique separator of G (that means a
complete subgraph).

We begin with the algorithm which computes an ascending sequence (Cy,--- ,Cy), C: €V,
of “convex” sets of G' (see [FJ 86]), such that
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1) C,+1\C; has only one element; )
i) [z,y] € E' iff z,y € C; and there is a connected component C of V\C;, such that z,y €
N(C);
1) each clique separator of G is also a clique separator of G'.
Clearly this sequence (C;)., defines a perfect elimination ordering for G' = (V,EU E').

Therefore G' is chordal. All these C; are convex for G' in the sense of [FJ 86| (closed by
chordless paths).

By a procedure NONE, we compute “convex” sets (see [FJ 86]) C;,Cz, such that
#C1, #(C\C1), #(V\C2) < 24#V. Moreover, (V,E' U E) shall preserve clique separators.
The procedure REFINE computes for each “convex” set C' suitable “convex” sets Cy, Cs,

such that C C C; C Cp and #(C1\C), #(Ci\C2), #(V\C2) < 2 #(V\C). Let [z,y] € E.iftx

and y are adjacent to the same connected component of V\C, where € = C; or C = Cj, and
let E :=EU E,.

Procedures NONE and REFINE are based on P. Klein's ([Kl1 88]) new technique for
chordal graphs.

Observation.

Whenever u and v € C;\C are in the same connected component w.r.t. Ec., then they are
in the same connected component of V\C w.r.t. F, and vice versa.

3.2. The Fine Structure of the Algorithm.
Procedure NONE (G (V,E)).

Let D:={v €V : degree (v) > 2#V}.
If D is not complete, pick some z,y € D,[z,y] ¢ E and let C' := {v|[v, z],[v,y] € E} be the
common neighbourhood of z and y. Make C' a clique. (Comment: each u,v € C are on the
cycle (z,u,y,v,z). Therefore each new edge of C is on a chordless cycle of G. That means
that this extension E U E' preserves clique separators.)

Let Cy := C; be some subset of C’, such that $#V < #C; < 24V, (Clearly #C' < t#V.)
If D is complete and #D > %#V, then C is some subset of D, s.t. %#V S HO< %#V.

If #D < }#V, D is complete, and all connected components of V\D have a size < 2:

Let (Cy, = ,C~';¢)~ beﬁ an enumeration of these connected components; let for j = 0,--- ,k:
Let C; be some C7}, such that #C} < 24V, #(V\C;) < 3#V. Set C; := Cisr-

If D is complete or empty and there is a connected component € of V\D, such that
#(V\D) > 24V )

Compute a spanning tree on C and, using this spanning tree, compute an enumeration
(zi)™m, of C, suchAthat ea‘frll initial segment C; := {z|i < j} is connected; let C} be the
necighbourhood of Cj and Crnyy :=V.



Pick up a #(C}\C_;) > }#V (if it exists, here Cj := 0): Set C := Cj_, and C; := C;.
Otherwise, if such C}, C;_; do not exist, there is a C7}, s.t. %#V < #C; < %#V; pick up such
a C%, set Cy 1= Cp :=C].

Set NONE :=(C;,(C,).
End of Procedure NONE.

Now we proceed with the procedure REFINE.

Procedure REFINE(G,C).

If for each connected component I(y,-+- K, of V\C #K; < 2§(V\C).: Let C; := CU
U;<: Ki and E' := 0; Otherwise: Let K, be the largest component; apply REFINE'(C U
. C).

Assume V\C be connected:

Procedure REFINE'(G,C).
Let D :={z € G : dy\c(z) := #{y € V\C|ly,z] € E} < 2{(V\C)}.
Let D' be the union of all connected components of D touching C.

(Low degree extension): Compute a spanning forest on D’ and, using this, an enumeration
(z;)™, of D', such that for each initial segment uj := {z;}].,, u; UC is connected. Let
C; := N(u;) U C. Here N(u;) is the neighborhood of u;.

If #(Cm\C) > L#(V\C), then let Crmyq :=V and pick up a #(C541\C)) = 1#(V\C) (if
it exists). Let 01 £ C'J and l?'g = C'J-.H. Ifﬁsuch éj,éj+] do not exist, let C; be any é_,; 8.t.
LH#(V\C) < #(C;\C) < 2#C; and Cp :=Cjy.

If #Cm < L#(V\C) : Let C := Cm (possibly Cy = C).

If 3z € C}, s.t. d\/\cl(:c) < % (VAC): Let Cp := C UN(z).

Otherwise (high degree extension):

Let (x;)%_, be an enumeration of all z € Cy, such that dy\¢, (z) # 0 and let F; := {z|[z,z;] €
Eforalli=1,---,j}. If for some j, #F; < 2#(V\C), set C; := Cy U F;. Otherwise apply
NONE to (G} Fy) with outputs C and Cj. If #(C3\C}) 2> H#(V\C), let C; := C;UC] and
Cp := Cy UCY. If #(F\C}) 2 1#HV\C), let C; := C; U C}. Otherwise C; :=Cy UCY.

End of procedure REFINE.

The whole algorithm works as follows:
Algorithm Paraliel-Fill-In.

Input G = (V, E).

Let (Cy,C2) := NONE(G). Apply REC(C,,C3>).

Procedure REC(C,,--- ,Cy).



If #C, =1 and #(Ci+1\C)) = 1 for each i, then stop.
Compute new “convez” sels:

Let C?, CY be the two Cy, C, arising from the application of NONE(G) C)); let Ci,Cj be
the two Cy, C, arising from the application of REFINE(G} Ci41,C5)

Add new edges:

For C; and Ci4; and each connected component K of Ci+1\Ci, let zk be a vertex in C;
adjacent to K, such that zy ¢ C = CJ{\Cj such that C maximal (z is in a minimal number
of old and new known “convex” sets).

Join each vertex z of C; adjacent to K with xx by an edge [z,2x] € Epew (hercby we
have guaranteed that each z,y € C\C?_,,Ci\Cl_,,Ci\C etc. resp. those which are in the
same connected component of V\CZ_,,..., resp. are also in the same connected component
of C\C?_.;,C\C} 1, Ci\C;q4. . etic: Tesp.):

Let K be a connected component of Citq1\C? and rx be again an ¢ € C? contained in
a minimal member of known “convex” sets C;,C}, and for each z adjacent to K an edge
[.T,',.'L"!\'] & Enew-

Do the same procedure also with the level C?\C}. (Hereby it is guaranteed that connect-
edness in Co\C; and V\C) for each C; C Cy, st. Cy,Cp € {Ci,Cili =1...k,j = 1,2} are
equivalent (compare the observation)); E := E U Eew;

apply REC(C},CE,C,C},CE...).
End of Procedure REC.
Output (V, E).
End of the Algorithm Parallel-Fill-In.

3.3. Analysis of the Algorithm:

1) The recursion depth of REC is O(logn), since the maximum cardinality of levels Ciy;\C;
goes down by at least $#(Ci41\Ci) at each step.

2) as mentioned above, the following is valid for the output (V; E) in C; C Cj, x,y € C;\C; :
r,y in the same connected component of C;\C; <= z,y in the same connected component
of V\Gi.

3) Let z < y if for some k : y € Ci but z ¢ Ci. For the corresponding chordal extension E' of
(V, Eqd), [z,y] € E' <= [z,y] € E or z,y are adjacent to tlie same connected component
K of {v|[v < z}. But for each such connected component I, we have zx = x. But
[ya:r] = [y| 3:1(] € Enew-

Therefore the output (V, E) is a chordal extension of G = (V, Eqq). Moreover: Output (V,E) =
(V. E').

1) Old cliqgue separators are preserved: We have to prove this statement for each step of the
application of NONE or REFINE.



NONE: Additional edges of common neighbours of z,y € D are in a cycle of legth four.
Therefore clique separators are preserved. Let M be a connected subset of V and C := M’
be the set of neighbours of M. Let z,y € M' be adjacent to the same connected component
of VAM'. Then z,y € M'\M. Consider a path z,y1,... ,¥p, ¥, S.t.y1 ... yp is chordless and p
is minimal. But then there is also no chord [z,y;] or [y;,y]. Let 2,zy,...z,y be a chordless
path, s.t. z1,-++2p € M. But then the concatenation of these two paths form a cycle. Hereby
the application of the procedure NON E preserves clique separators.

REFINE (Low degree extension): Assume any “convex” set C := C; is given. Assume that
vertices adjacent to the same connected component of V\C form a clique in an extension E' of
E preserving clique separators. Assume M is connected and intersects C. Let M’ be defined
as above and C' := M' UC. Let z € M'\M and y € M'\M be connected by a shortest path
pin V\C'. Then by the same arguments as before [z,y] is a chord of a chordless cycle, if
[z,u] ¢ E.

Assume now y ¢ M'\M; that means y € C. But y and M N C are adjacent to the
same connected component of V\C. But then we find a 3’ and a path P, C M, such that
(y,y', P1,z, P) forms a chordless cycle in a clique separator preserving extension E' of E.

REFINE (High degree extension): Assume now V\C'is connected, D C C and C' = CU
{y|Vz € D, [y,z] € E}. Then we may assume that D forms a clique in some clique separator
preserving extension E' of E. We have to prove that for z,y € C'\C which are adjacent to
the same connected component of V\C', we can join them by an edge and no clique separator
is destroyed. Let z € C'\C, y € C'\C and p = (z,x1,%2,73,...) be a shortest (chordless)
path € V\C' connecting x and y. Let d € D and [d,z;],[d,z;] € E but not [d, 7] € E
for i < k < j. Then (d,z;,zit1,... ,zj,d) forms a chordless cycle. Therefore [z;, z;] can be
added, such that no clique separator is destroyed. Since each z; is not adjacent to at least
one d € D, it is possible to add a chord abbreviating p, such that «; is not used and no clique
separator is destroyed. Therefore an edge [z, y] can be added, such that no clique separator of
G is destroyed.

Now let x € C'\C, but y € C. Then the same argument to add an edge [z,y] works. By
these observations no edge of E'\ E destroys some clique separator.

We can conclude by the following:

Theorem 3. It is possible to compute a clique separator preserving extension G’ of G in
O(log® n) time and O(n?) processors on a CREW PRAM.

The clique separators of G’ can be computed in O(logn) time and O(n?) processors. Only
to check whether a clique separator of G' is complete in G requires O(n?®) processors and
O(logn) time.

Therefore our Main Result follows:

Theorem 4. There exists a parallel algorithm for Clique Separator Decomposition of an

arbitrary graph with n vertices working in O(log? n) parallel time and O(n®) processors on a
CREW PRAM. 0



NONE: Additional edges of common neighbours of z,y € D are in a cycle of legth four.
Therefore clique separators are preserved. Let M be a connected subset of V and C := Al
be the set of neighbours of M. Let z,y € M' be adjacent to the same connected component
of VAM'. Then z,y € M'\M. Consider a path z,y1,... ,yp, ¥, 8.t.y1 ...y is chordless and p
is minimal. But then there is also no chord [z,y;] or [y;,y]. Let z,2y,...2,y be a chordless
path, s.t. 21,---2p € M. But then the concatenation of these two paths form a cycle. Hereby
the application of the procedure NONE preserves clique separators.

REFINE (Low degree extension): Assume any “convex” set C' := C; is given. Assume that
vertices adjacent to the same connected component of V\C form a clique in an extension E' of
E preserving clique separators. Assume M is connected and intersects C. Let M’ be defined
as above and C' := M' UC. Let z € M'\M and y € M'\M be connected by a shortest path
pin V\C'. Then by the same arguments as before [z,y] is a chord of a chordless cycle, if
[x,u] € E.

Assume now y ¢ M'\M; that means y € C. But y and M N C are adjacent to the
same connected component of V\C. But then we find a 3 and a path P, C M, such that
(y,v', Py, x, P) forms a chordless cycle in a clique separator preserving extension E' of E.

REFINE (High degree extension): Assume now V\C is connected, D C C and C' = C'U
{y|Vz € D, [y,z] € E}. Then we may assume that D forms a clique in some clique separator
preserving extension E' of E. We have to prove that for z,y € C'\C which are adjacent to
the same connected component of V\C’, we can join them by an edge and no clique separator
is destroyed. Let z € C'\C, y € C'\C and p = (z,x;,%2,23,...) be a shortest (chordless)
path C V\C' connecting ¢ and y. Let d € D and [d,z],[d,z;] € E but not [d,zy] € E
for i < k < j. Then (d,z;,zit1,... ,zj,d) forms a chordless cycle. Therefore [z;, z;] can be
added, such that no clique separator is destroyed. Since each z; is not adjacent to at least
one d € D, it is possible to add a chord abbreviating p, such that z; is not used and no clique
separator is destroyed. Therefore an edge [z, y] can be added, such that no clique separator of
G is destroyed.

Now let x € C'\C, but y € C. Then the same argument to add an edge [z,y] works. By
these observations no edge of E'\ E destroys some clique separator.

We can conclude by the following:

Theorem 3. It is possible to compute a clique separator preserving extension G’ of G in
O(log® n) time and O(n?) processors on a CREW PRAM.

The clique separators of G' can be computed in O(logn) time and O(n?) processors. Only
to check whether a clique separator of G' is complete in G requires O(n?®) processors and
O(logn) time.

Therefore our Main Result follows:

Theorem 4. There exists a parallel algorithm for Clique Separator Decomposition of an

arbitrary graph with n vertices working in O(log? n) parallel time and O(n®) processors on a
CREW PRAM. 0
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