Efficient Parallel Algorithm for Clique Separator Decomposition
(Extended Abstract)

ELIAS DAHLHAUS
AND
MAREK KARPINSKI*

DEPT. OF COMPUTER SCIENCE
UNIVERSITY OF BONN

Abstract.

We design a first efficient parallel algorithm for decomposing an arbitrary graph by clique
separators. The algorithm works in O(log® n) parallel time and O(n®) processors on a CREW
PRAM. The theory of clique separators is directly related to the theory of elimination orderings
of arbitrary graphs, and is used in efficient algorithms for Gaussian elimination of sparse
symmetric matrices [Ro 70], [Ro 73], [RTL 76), [Ta 85]. It is the first sublinear parallel time
(and therefore sequential parallel space) algorithm for the clique decomposition, and at the
same time an optimal algorithm up to the polylogarithmic factor with respect to the best
sequential O(n?) time algorithm of Tarjan [Ta 85).

1. Introduction.

One of the most important methods supporting the divide-and-conquer techniques in many
graph algorithms is the method of computing graph separators either of small size ([Ta 72|,
[LNS 82], [HT 73]), or a special structure (e.g. clique separators, [Di 87], [Ta 85|, [GJ 8],
[RTL 76], [Wa 37)).

Recently, considerable progress has been achieved in designing efficient parallel algorithuns
for the first class of separators (cf. [Ra 87], [GM 87]). The second class of separators restrained
attempts to design efficient parallel algorithms. The main reason for this was the fact that
all the efficient sequential solutions [Ta 85] were based on a ‘highly sequential’ subroutine for
computing a minimal ordering of a given graph [RTL 76].

In this paper we remedy this situation by developing a new method of graph extensions
including all minimal chordal extensions of a given graph. This allows us to apply next the

*Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1, aud
Ly the SERC Grant GR-E 68297



generalization of Tarjan’s [Ta 85] technique of finding clique separators as the intersections of
pairs of neighbourhoods in the extension graphs.

The extension algorithm (Parallel-Fill-In; Section 3) works in O(log® n) time and O(n?)
processors on a CREW PRAM for a graph of n vertices. (Only the completeness check for
clique separators in the extension of a graph requires O(n?) processors and O(logn) time).

The Clique Separator Decomposition algorithm works in O(log® n) parallel time and O(n?)
processors on a CREW PRAM.

2. Preliminaries.

By a graph we always mean an undirected graph G = (V| E) with a vertez set V and an
edge set E with no cycles and no multiple edges. An edge between z and y is denoted by [z, y].
The number of vertices #V is denoted by n, and the number of edges is denoted by m. For
any set A, the size of A is denoted by #A.

By a cut of vertices x and y of a graph G = (V, E) we mean an inclusion minimal set of
vertices which separates ¢ and y. By a complete set V' we mean a subset of the vertex set,
such that for all z,y € V' [z,y] € E.

The Clique Separator Decomposition is the problem of computing all the clique separators
(or a binary decomposition tree, cf. [Ta 85]) for a given input graph G.

A clique separator is a complete cut. A graph G with no induced cycle greater than 3 is
called a chordal graph.

We shall need the following properties of clique separators and minimal chordal extension:
Theorem 1 (see [Ta 85] or [Ha 81]). In chordal graphs, each cut is a clique separator.

Theorem 2 (see [Ta 85]). Any clique separator of G = (V, E) is also a clique separator
in any (inclusion) minimal chordal extension (V, E') of G.

Our computational model will be a CREW PRAM (concurrent-read exclusive write)
([FW 78], [Co 85], [KR 88]).

3. The Algorithm.
3.1. An QOutline.

Here we present a Clique Separator Decomposition algorithm which combines methods in-
troduced recently in [DK 88b] with certain extensions of P. Klein's FOCS ‘88 ([KI 88]) method
for chordal graphs. The algorithm computes at first a chordal extension G’ which preserves
clique separators, together with a perfect elimination scheme on G'. The last step is to check
for each clique separator of G' = (V, E'), whether it is a clique separator of G (that means a
complete subgraph).

We begin with the algorithm which computes an ascending sequence (Cy,--- ,Cy), C: €V,
of “convex” sets of G' (see [FJ 86]), such that

2



1) C,+1\C; has only one element; )
i) [z,y] € E' iff z,y € C; and there is a connected component C of V\C;, such that z,y €
N(C);
1) each clique separator of G is also a clique separator of G'.
Clearly this sequence (C;)., defines a perfect elimination ordering for G' = (V,EU E').

Therefore G' is chordal. All these C; are convex for G' in the sense of [FJ 86| (closed by
chordless paths).

By a procedure NONE, we compute “convex” sets (see [FJ 86]) C;,Cz, such that
#C1, #(C\C1), #(V\C2) < 24#V. Moreover, (V,E' U E) shall preserve clique separators.
The procedure REFINE computes for each “convex” set C' suitable “convex” sets Cy, Cs,

such that C C C; C Cp and #(C1\C), #(Ci\C2), #(V\C2) < 2 #(V\C). Let [z,y] € E.iftx

and y are adjacent to the same connected component of V\C, where € = C; or C = Cj, and
let E :=EU E,.

Procedures NONE and REFINE are based on P. Klein's ([Kl1 88]) new technique for
chordal graphs.

Observation.

Whenever u and v € C;\C are in the same connected component w.r.t. Ec., then they are
in the same connected component of V\C w.r.t. F, and vice versa.

3.2. The Fine Structure of the Algorithm.
Procedure NONE (G (V,E)).

Let D:={v €V : degree (v) > 2#V}.
If D is not complete, pick some z,y € D,[z,y] ¢ E and let C' := {v|[v, z],[v,y] € E} be the
common neighbourhood of z and y. Make C' a clique. (Comment: each u,v € C are on the
cycle (z,u,y,v,z). Therefore each new edge of C is on a chordless cycle of G. That means
that this extension E U E' preserves clique separators.)

Let Cy := C; be some subset of C’, such that $#V < #C; < 24V, (Clearly #C' < t#V.)
If D is complete and #D > %#V, then C is some subset of D, s.t. %#V S HO< %#V.

If #D < }#V, D is complete, and all connected components of V\D have a size < 2:

Let (Cy, = ,C~';¢)~ beﬁ an enumeration of these connected components; let for j = 0,--- ,k:
Let C; be some C7}, such that #C} < 24V, #(V\C;) < 3#V. Set C; := Cisr-

If D is complete or empty and there is a connected component € of V\D, such that
#(V\D) > 24V )

Compute a spanning tree on C and, using this spanning tree, compute an enumeration
(zi)™m, of C, suchAthat ea‘frll initial segment C; := {z|i < j} is connected; let C} be the
necighbourhood of Cj and Crnyy :=V.



Pick up a #(C}\C_;) > }#V (if it exists, here Cj := 0): Set C := Cj_, and C; := C;.
Otherwise, if such C}, C;_; do not exist, there is a C7}, s.t. %#V < #C; < %#V; pick up such
a C%, set Cy 1= Cp :=C].

Set NONE :=(C;,(C,).
End of Procedure NONE.

Now we proceed with the procedure REFINE.

Procedure REFINE(G,C).

If for each connected component I(y,-+- K, of V\C #K; < 2§(V\C).: Let C; := CU
U;<: Ki and E' := 0; Otherwise: Let K, be the largest component; apply REFINE'(C U
. C).

Assume V\C be connected:

Procedure REFINE'(G,C).
Let D :={z € G : dy\c(z) := #{y € V\C|ly,z] € E} < 2{(V\C)}.
Let D' be the union of all connected components of D touching C.

(Low degree extension): Compute a spanning forest on D’ and, using this, an enumeration
(z;)™, of D', such that for each initial segment uj := {z;}].,, u; UC is connected. Let
C; := N(u;) U C. Here N(u;) is the neighborhood of u;.

If #(Cm\C) > L#(V\C), then let Crmyq :=V and pick up a #(C541\C)) = 1#(V\C) (if
it exists). Let 01 £ C'J and l?'g = C'J-.H. Ifﬁsuch éj,éj+] do not exist, let C; be any é_,; 8.t.
LH#(V\C) < #(C;\C) < 2#C; and Cp :=Cjy.

If #Cm < L#(V\C) : Let C := Cm (possibly Cy = C).

If 3z € C}, s.t. d\/\cl(:c) < % (VAC): Let Cp := C UN(z).

Otherwise (high degree extension):

Let (x;)%_, be an enumeration of all z € Cy, such that dy\¢, (z) # 0 and let F; := {z|[z,z;] €
Eforalli=1,---,j}. If for some j, #F; < 2#(V\C), set C; := Cy U F;. Otherwise apply
NONE to (G} Fy) with outputs C and Cj. If #(C3\C}) 2> H#(V\C), let C; := C;UC] and
Cp := Cy UCY. If #(F\C}) 2 1#HV\C), let C; := C; U C}. Otherwise C; :=Cy UCY.

End of procedure REFINE.

The whole algorithm works as follows:
Algorithm Paraliel-Fill-In.

Input G = (V, E).

Let (Cy,C2) := NONE(G). Apply REC(C,,C3>).

Procedure REC(C,,--- ,Cy).



If #C, =1 and #(Ci+1\C)) = 1 for each i, then stop.
Compute new “convez” sels:

Let C?, CY be the two Cy, C, arising from the application of NONE(G) C)); let Ci,Cj be
the two Cy, C, arising from the application of REFINE(G} Ci41,C5)

Add new edges:

For C; and Ci4; and each connected component K of Ci+1\Ci, let zk be a vertex in C;
adjacent to K, such that zy ¢ C = CJ{\Cj such that C maximal (z is in a minimal number
of old and new known “convex” sets).

Join each vertex z of C; adjacent to K with xx by an edge [z,2x] € Epew (hercby we
have guaranteed that each z,y € C\C?_,,Ci\Cl_,,Ci\C etc. resp. those which are in the
same connected component of V\CZ_,,..., resp. are also in the same connected component
of C\C?_.;,C\C} 1, Ci\C;q4. . etic: Tesp.):

Let K be a connected component of Citq1\C? and rx be again an ¢ € C? contained in
a minimal member of known “convex” sets C;,C}, and for each z adjacent to K an edge
[.T,',.'L"!\'] & Enew-

Do the same procedure also with the level C?\C}. (Hereby it is guaranteed that connect-
edness in Co\C; and V\C) for each C; C Cy, st. Cy,Cp € {Ci,Cili =1...k,j = 1,2} are
equivalent (compare the observation)); E := E U Eew;

apply REC(C},CE,C,C},CE...).
End of Procedure REC.
Output (V, E).
End of the Algorithm Parallel-Fill-In.

3.3. Analysis of the Algorithm:

1) The recursion depth of REC is O(logn), since the maximum cardinality of levels Ciy;\C;
goes down by at least $#(Ci41\Ci) at each step.

2) as mentioned above, the following is valid for the output (V; E) in C; C Cj, x,y € C;\C; :
r,y in the same connected component of C;\C; <= z,y in the same connected component
of V\Gi.

3) Let z < y if for some k : y € Ci but z ¢ Ci. For the corresponding chordal extension E' of
(V, Eqd), [z,y] € E' <= [z,y] € E or z,y are adjacent to tlie same connected component
K of {v|[v < z}. But for each such connected component I, we have zx = x. But
[ya:r] = [y| 3:1(] € Enew-

Therefore the output (V, E) is a chordal extension of G = (V, Eqq). Moreover: Output (V,E) =
(V. E').

1) Old cliqgue separators are preserved: We have to prove this statement for each step of the
application of NONE or REFINE.



NONE: Additional edges of common neighbours of z,y € D are in a cycle of legth four.
Therefore clique separators are preserved. Let M be a connected subset of V and C := M’
be the set of neighbours of M. Let z,y € M' be adjacent to the same connected component
of VAM'. Then z,y € M'\M. Consider a path z,y1,... ,¥p, ¥, S.t.y1 ... yp is chordless and p
is minimal. But then there is also no chord [z,y;] or [y;,y]. Let 2,zy,...z,y be a chordless
path, s.t. z1,-++2p € M. But then the concatenation of these two paths form a cycle. Hereby
the application of the procedure NON E preserves clique separators.

REFINE (Low degree extension): Assume any “convex” set C := C; is given. Assume that
vertices adjacent to the same connected component of V\C form a clique in an extension E' of
E preserving clique separators. Assume M is connected and intersects C. Let M’ be defined
as above and C' := M' UC. Let z € M'\M and y € M'\M be connected by a shortest path
pin V\C'. Then by the same arguments as before [z,y] is a chord of a chordless cycle, if
[z,u] ¢ E.

Assume now y ¢ M'\M; that means y € C. But y and M N C are adjacent to the
same connected component of V\C. But then we find a 3’ and a path P, C M, such that
(y,y', P1,z, P) forms a chordless cycle in a clique separator preserving extension E' of E.

REFINE (High degree extension): Assume now V\C'is connected, D C C and C' = CU
{y|Vz € D, [y,z] € E}. Then we may assume that D forms a clique in some clique separator
preserving extension E' of E. We have to prove that for z,y € C'\C which are adjacent to
the same connected component of V\C', we can join them by an edge and no clique separator
is destroyed. Let z € C'\C, y € C'\C and p = (z,x1,%2,73,...) be a shortest (chordless)
path € V\C' connecting x and y. Let d € D and [d,z;],[d,z;] € E but not [d, 7] € E
for i < k < j. Then (d,z;,zit1,... ,zj,d) forms a chordless cycle. Therefore [z;, z;] can be
added, such that no clique separator is destroyed. Since each z; is not adjacent to at least
one d € D, it is possible to add a chord abbreviating p, such that «; is not used and no clique
separator is destroyed. Therefore an edge [z, y] can be added, such that no clique separator of
G is destroyed.

Now let x € C'\C, but y € C. Then the same argument to add an edge [z,y] works. By
these observations no edge of E'\ E destroys some clique separator.

We can conclude by the following:

Theorem 3. It is possible to compute a clique separator preserving extension G’ of G in
O(log® n) time and O(n?) processors on a CREW PRAM.

The clique separators of G’ can be computed in O(logn) time and O(n?) processors. Only
to check whether a clique separator of G' is complete in G requires O(n?®) processors and
O(logn) time.

Therefore our Main Result follows:

Theorem 4. There exists a parallel algorithm for Clique Separator Decomposition of an

arbitrary graph with n vertices working in O(log? n) parallel time and O(n®) processors on a
CREW PRAM. 0



NONE: Additional edges of common neighbours of z,y € D are in a cycle of legth four.
Therefore clique separators are preserved. Let M be a connected subset of V and C := Al
be the set of neighbours of M. Let z,y € M' be adjacent to the same connected component
of VAM'. Then z,y € M'\M. Consider a path z,y1,... ,yp, ¥, 8.t.y1 ...y is chordless and p
is minimal. But then there is also no chord [z,y;] or [y;,y]. Let z,2y,...2,y be a chordless
path, s.t. 21,---2p € M. But then the concatenation of these two paths form a cycle. Hereby
the application of the procedure NONE preserves clique separators.

REFINE (Low degree extension): Assume any “convex” set C' := C; is given. Assume that
vertices adjacent to the same connected component of V\C form a clique in an extension E' of
E preserving clique separators. Assume M is connected and intersects C. Let M’ be defined
as above and C' := M' UC. Let z € M'\M and y € M'\M be connected by a shortest path
pin V\C'. Then by the same arguments as before [z,y] is a chord of a chordless cycle, if
[x,u] € E.

Assume now y ¢ M'\M; that means y € C. But y and M N C are adjacent to the
same connected component of V\C. But then we find a 3 and a path P, C M, such that
(y,v', Py, x, P) forms a chordless cycle in a clique separator preserving extension E' of E.

REFINE (High degree extension): Assume now V\C is connected, D C C and C' = C'U
{y|Vz € D, [y,z] € E}. Then we may assume that D forms a clique in some clique separator
preserving extension E' of E. We have to prove that for z,y € C'\C which are adjacent to
the same connected component of V\C’, we can join them by an edge and no clique separator
is destroyed. Let z € C'\C, y € C'\C and p = (z,x;,%2,23,...) be a shortest (chordless)
path C V\C' connecting ¢ and y. Let d € D and [d,z],[d,z;] € E but not [d,zy] € E
for i < k < j. Then (d,z;,zit1,... ,zj,d) forms a chordless cycle. Therefore [z;, z;] can be
added, such that no clique separator is destroyed. Since each z; is not adjacent to at least
one d € D, it is possible to add a chord abbreviating p, such that z; is not used and no clique
separator is destroyed. Therefore an edge [z, y] can be added, such that no clique separator of
G is destroyed.

Now let x € C'\C, but y € C. Then the same argument to add an edge [z,y] works. By
these observations no edge of E'\ E destroys some clique separator.

We can conclude by the following:

Theorem 3. It is possible to compute a clique separator preserving extension G’ of G in
O(log® n) time and O(n?) processors on a CREW PRAM.

The clique separators of G' can be computed in O(logn) time and O(n?) processors. Only
to check whether a clique separator of G' is complete in G requires O(n?®) processors and
O(logn) time.

Therefore our Main Result follows:

Theorem 4. There exists a parallel algorithm for Clique Separator Decomposition of an

arbitrary graph with n vertices working in O(log? n) parallel time and O(n®) processors on a
CREW PRAM. 0



Acknowledgement.

We thank Richard Karp, Michael Rabin, Bob Tarjan, and Avi Wigderson for interesting
discussions on the topics related to this paper.

References.

[Co 85]

[DHK 88

[DK 86a)

[DK 8Gb)]

[DK 88a]

[DK 88b)
Di 87
[FJ 86
[FW 78]

[(Ga 72]

(GM 87]
[GS 87]
(GJ 84]

(GJ 85]

Cook, S.A., A Taxonomy of Problems with Fast Parallel Algorithms, Infor-
mation and Control 64 (1985), pp. 2-22

Dahlhaus, E., Hajnal, P., and Karpinski, M., Optimal Parallel Algorithm for
the Hamiltonian Cycle Problem on Dense Graphs, Proc. 29th IEEE FOCS
(1988)

Dahlhaus, E., and Karpinski, M., Fast Paralle] Computation of Perfect and
Strongly Perfect Elimination Schemes, Research Report No. 8513-CS, Uni-
versity of Bonn 1986; submitted for publication

Dahlhaus, E., and Karpinski, M., The Matching Problem for Strongly Chordal
Graphs in in NC, Research Report No. 855-CS, University of Bonn, 1986,

pp- 1-7
Dahlhaus, E., and Karpinski, M., A Fast Parallel Algorithm for Computing

All Maximal Cliques in a Graph and the Related Problems, Proc. SWAT
'83, Springer LNCS 318 (1988), pp. 130-144

Dahlhaus, E., and Karpinski, M., Fast Paralle] Decomposition by Clique Sep-
arators, Research Report No. 8525-CS, University of Bonn 1988

Distel, R., Simplicial Decomposition of Graphs - Some Uniqueness Results,
Journal of Combinatorial Theory, Ser. B 42 (1987), pp. 133-145

Farber, M., and Jamison, R.E., Convexity in Graphs and Hypergraphs, STAM
J. of Algebraic and Discrete Methods 7 (1986), pp. 433-444

Fortune, S., and Wyllie, S., Parallelism in Random Access Machines, Proc.
10th ACM-STOC (1978), pp. 114-118

Gavnl, F., Algorithms for Minimum Coloring, Maximum Clique, Minimum
Coloring by Cliques, and Maximum Independent Sets of a Chordal Graph,
SIAM J. Comput. (1972), pp. 180-187

Gazit, H., and Miller, G.L., A Parallel Algorithm for Finding a Separator in
Planar Graphs, Proc. 28th IEEE FOCS (1987), pp. 238-248

Goldberg, M., and Spencer, T., A New Paralle] Algorithm for the Maximal
Independent Set Problem, Proc. 28th IEEE FOCS (1987), pp. 161-165

Golumbie, M.C., and Jamison, R.E., The Edge Intersection Graphs of Paihs
in a Tree, J. Combin. Theory Ser. B; to appear

Golumbic, M.C., and Jamison, R.E., Edge and Vertex Intersections cf Paths
in Trees, Discrete Math. 55 (1985), pp. 151-159

7



[Ha 81]
(1 73]

(KR 88

[ 88|
[LT 79]
[Lu 85]
[NNS 87]
[Ra 87]
[Ro 70]

[Ro 73]

[RTL 76]

[TNS 82]

[Ta 72]
[Ta 85

[TY 84]

[TY 85]

Halin, R., Graphentheorie II, Wissenschaftliche Buchgesellschaft, Darmstacdt
1981

Hopcroft, J.E., and Tarjan, R.E., Dividing a Graph into Triconnected Com-
ponents, SIAM J. Comput. 2 (1973), 135-158

Karp, R., and Ramachandran, V., A Survey of Parallel Algorithms for Shared-
Memory Machines, Research Report No. UCB/CSD 88/407, University of
California, Berkeley (1988); to appear in Handbook of Theoretical Computer
Science, North Holland (1988).

Klein, Ph., Efficient Parallel Algorithms on Chordal Graphs, Proc. 29th IEEE
FOCS (1988)

Lipton, R.J., and Tarjan, R.E., A Separator Theorem for Planar Graphs,
SIAM J. Appl. Math. 36 (1979), pp. 177-189

Luby, M., A Simple Parallel Algorithm for the Maximal Independent Set
Problem, Proc. 17th ACM STOC (1985), pp. 1-9

Naor, J., Naor, M., and Schaffer, A., Fast Parallel Algorithms for Chordal
Graphs, Proc. 19th ACM STOC (1987), pp. 355-364

Rao, S., Finding New Optimal Separators in Planar Graphs, Proc. 28th IEEE
FOCS (1987), pp. 225-237

Rose, D., Triangulated Graphs and the Elimination Process, J. Math. Anul.
Appl. 32 (1970), pp. 579-609

Rose, D., “A Graph-Theoretic Study of the Numerical Solution of Sparse Posi-
tive Definite Systems of Linear Equations”, in: Graph Theory and Computing,
R. Read ed., (Academic Press, New York 1973), pp. 183-217

Rose, D., Tarjan, R.E., and Lueker, G., Algorithmic Aspects of Vertex Elimi-
nation on Graphs, SIAM J. Comput. 5, pp. 266-283

Takamizawa, K., Nishizeki, T., and Saito, N., Linear-time Computability of
Combinatorial Problems on Series-Parallel Graphs, J. ACM, Vol. 29 (1982},
pp. 623-641

Tarjan, R.E., Depth-first Search and Linear Graph Algorithms, SIAM J. Com-
put 1 (1972), pp. 146-160

Tarjan, R.E., Decomposition by Clique Separators, Discrete Mathematics 55
(1985), pp. 221-232

Tarjan, R.E., and Yannakakis, M., Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Hypergraphs, SIAM J. Comput. 13 (1984), pp. 566-579

Tarjan, R.E., and Yannakakis, M., Simple Linuear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Graphs, Test Acyclicity of Hyper-
graphs, and Selectively Reduce Hypergraphs; Addendum, SIAM J. Compnt.
14 (1985), pp. 254-255



[Wa 37] Wagner, K., Uber eine Eigenschaft der ebenen Komplexe, Mathematische
Annalen 114 (1937), pp. 570-590

[Wh 81] Whitesides, F.H., An Algorithm for Finding Clique Cut-sets, Information
Processing Letters 12 (No 1) (1981), pp. 31-32



