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general problem arises in a number of applications, e.g., in design of e�cient al-gorithms in algebra, coding theory and combinatorial optimization (cf. [Ga 83],[Ga 84], [Ka 85], [KT 88], [MS 72], [GK 87], [BT 88], [GKS 88]). The interest inthe parallel (boolean circuit) complexity of this problem has arisen recently inconnection with the design of fast parallel algorithms for the perfect matchingproblem [GK 87]. [GK 87] gave the �rst deterministic algorithm for sparse in-terpolation of determinants over �elds of characteristic 0, and [BT 88] extendedit to the case of arbitrary sparse polynomials over �elds of characteristic 0.Following [GK 87], and [GKS 88] we shall use uniform boolean circuits in ouranalysis. Given a (�xed) �nite �eld GF[q]. We say that the black box InterpolationProblem (over a �nite �eld extension GF[qs]) is in NCk (cf. [Co 85], [KR 88]), ifthere exists a class of uniform (ntq)O(1)-size and O(logk(ntq))-depth boolean cir-cuits with oracle nodes S (returning values of a black box over the �eld extensionGF[qs]) computing for an arbitrary n-variate polynomial f 2 GF[q][x1; : : : ; xn]all the nonzero coe�cients and monomial vectors of f . The oracle Ssf is de�nedby Ssf(x1; : : : ; xn; y) i� f(x1; : : : ; xn) = y over GF[qs]. If the lifting of a black box(given explicitly by a straight-line program, determinant, boolean circuit, etc.)from the �eld GF[q] to the extension GF[qs], and the computation of the valuef(x1; : : : ; xn) over GF[qs] by a black box, are both in boolean NC (in P), thenthe explicit Interpolation Problem lies also in boolean NC (in P).The reader is referred to [LN 83], [MS 72] for the basic algorithms for �nite�elds, and to [Co 85], [KR 88] for the basic models of parallel computation.1. Lower BoundsWe shall state �rst a result on the number of queries necessary to interpolatea sparse polynomial f 2 GF[q][x1; : : : ; xn] over GF[q] (i.e., for the case of s = 1).Theorem 1. ([CDGK 88]) Given an arbitrary �nite �eld GF[q] and at-sparse polynomial f 2 GF[q][x1; : : : ; xn] given by a black box input oracle, anyalgorithm for testing whether f � 0 requires 
(nlog t) queries to the input oracle.2



For the important case of boolean functions (GF[2]) we are able to prove thetight lower and upper bounds �(nlog t) for the number of queries necessary todetermine identity to zero of t-sparse polynomials f 2 GF[2][x1; : : : ; xn].An Algorithm for GF[2] ([CDGK 88])Input: t-sparse polynomial f 2 GF[2][x1; : : : ; xn] given by a black box inputoracle;Output: Yes, if f � 0; No, if f 6� 0.Step 1: For all n-bit vectors v 2 f0; 1gn, having at most blog2 tc zeros com-pute the values �v = f(v).Step 2: Output Yes i� 8v [�v = 0 ].The correctness of the above algorithm was proven in [CDGK 88]. We donot know whether the result generalizes for the arbitrary �nite �eld GF[q] . Wenote that we deal here not only with interpolation of polynomials but arbitraryfunctions in their RSE-representation ([We 87]).For arbitrary boolean functions f : f0; 1gn ! f0; 1g there exists exactly onef0,1g-vector S = (SA)A�f1;:::;ng such thatf(x) = MA�f1;:::;ng SA ^ î2Axifor L boolean XOR and V boolean AND.The size of the vector S is referred to as the size (RSE(f)) of f in its RSE-representation (cf. [We 87]) (and is in our framework exactly its sparsity overGF[2][x1; : : : ; xn]).Theorem 2. ([CDGK 88]) Given an arbitrary boolean function f by theblack box input oracle, there exists an algorithm for deciding over GF[2] whetherf � 0 using O(nlog(RSE(f))) queries to the oracle. The algorithm is optimal withrespect to the number of queries to the oracle over GF[2] taken by any (adaptiveor non-adaptive) algorithm for this problem.3



The lower bounds of this Section proves the impossibility of polynomial time(and NC-) algorithms for the general sparse polynomial interpolation with in-put oracles over �nite �elds without proper �eld extensions. So the intriguingquestion arises whether we can do interpolation over �nite �elds at all - withoutgoing to the 'impossible' �eld extension GF[qn] (where there are no e�ectivedeterministic procedures known even for �nding primitive elements!).In the next section we shall present suprising upper bounds on the Inter-polation Problem using only 'slight' (logarithmic in nt) extensions of a ground�eld.2. Upper BoundsWe formulate now our main Interpolation result on the slight �eld extensions.Theorem 3. ([GKS 88]) Given any t-sparse polynomial f 2GF[q][x1; : : : ; xn] by the black box input oracle. There exists a determin-istic parallel algorithm (NC3) for interpolating f over a slight �eld ex-tension GF[qd2 logq(nt)+3e] working in O(log3(ntq)) parallel boolean time andO(n2t6 log2(ntq)+ q2:5 log2 q) processors. For the �xed �eld GF[q] , the algorithmworks in O(log3(nt)) parallel boolean time and O(n2t6 log2(nt)) processors.The algorithm discovered in [GKS 88] involves two major computationalsteps: (1) breaking the zero identity problem of polynomials over a slight �eldextension GF[qd2logq(nt)+3e], and (2) inductive enumeration of all partial solutionsfor terms and coe�cient vectors over GF[q] by means of recursion using (1).We develop here a new general method involving Cauchy ([C]) matrices tobreak zero-identity problem in Step 1, and combine it with the new parallelenumeration method based on [GK 87] to solve Step 2. The number of queriesto the input oracle over the slight �eld extension GF[qd2logq(nt)+3e] is boundedby t(1 + (n� 1)�t2�) (= O(nt3)).We shall investigate here in more detail the problem of checking identity tozero (Step 1) in order to compare it with the results of Section 1. (The method4



of Cauchy matrices applied here could be also of independent interest.)De�nition. (Cauchy matrix) ([C])An (N �N) matrix C = [cij] over the �eld GF[q] is called a Cauchy matrix, ifcij = 1xi + yjfor the �xed values xi; yj 2 GF[q] ; 1 � i; j � N .Lemma. (cf., e.g. [MS 72]). Let C be a Cauchy matrix, then the determinantDet(C) = Q1�i<j�N (xj � xi)(yj � yi)Q1�i;j�N (xi + yj)For any of its minors 6= 0 a similar formula holds. Therefore any minor of anysize is nonsingular.In our algorithm we construct the Cauchy matrix C = [cij] bycij = 1i+ j mod pwhere p is a prime.
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An Algorithm for (the slight �eld extension) GF[qO(log(nt))]([GKS 88])Input: t-sparse polynomial f 2 GF[q][x1; : : : ; xn] given by a black box inputoracle;Output: Yes, if f � 0; No, if f 6� 0.Step 1: Determine a minimal s satisfyingqs � 1 > 4nq(n� 1) t2!:So take s = dlogq(nt) + 3e.Step 2: Construct the �eld GF[qs] and a primitive element ! in GF[qs] withthe help of Berlekamp Algorithm [Be 70].Step 3: Let N = dqs�1e4nq . Use the sieve of Erastosthenes to �nd a prime p with2N < p � 4N .Step 4: Construct an N�N Cauchy matrix C = [cij] by cij = 1i+j mod p; 1 �i; j � N by means of the Euclidean algorithm.Step 5: Construct an arbitrary submatrix �C = [�cij] of C of size N � n.Step 6: Query in parallel the black box for any row �ci = (�cij); 1 � j � n, ofthe matrix �C, and for each l; 0 � l < t, at the points�li = !l��ci = (!l��ci1 ; !l��ci2; : : : ; !l��cin)and at the zero point �00 = (0; : : : ; 0).Step 7: Output Yes (f � 0) i� 80 � l < t; 0 � i � N [�li = 0 ].6



The correctness proof of this algorithm is given in [GKS 88]. The main reasonfor the algorithm to work is the strong term separation property of a Cauchymatrix constructed in Step 3 (the existence of a row �ci of a Cauchy matrix Cseparating arbitrary two monomials of f under !l��ci substitution to the blackbox oracle).We summarizeTheorem 4. Given any �xed �nite �eld GF[q] and a t-sparse polynomialf 2 GF[q][x1; : : : ; xn] by the black box input oracle, there exists a deterministicparallel algorithm (NC2) for interpolating f over GF[qd2logq(nt)+3e] working inO(log2(nt)) parallel boolean time and O(n2t3) processors, and making O(nt3)queries to the black box input oracle.Theorems 3 and 4 can be generalized to work over arbitrary �elds of positivecharacteristic, by applying our method to the slight extensions of their primitivesub�elds of the same characteristic.3. Some Consequences for Boolean FunctionWe shall derive some interesting consequences of Theorem 3 and 4 for thecase of boolean functions (GF[2]). Although we formulate them for GF[2] only,same result holds for arbitrary 'small' (or �xed) �nite �elds (in this case insteadof boolean circuits we use straight-line programs!).The boolean RSE-Conversion Problem is the problem of converting a booleanfunction f (given by the input oracle), and such that RSE(f) � t into theequivalent RSE-formula.A SPARSE�{SAT problem is the problem of checking whether f (given asabove) has a satisfying assignment. 7



Theorem 3 entails directly the following.Corollary 1. The boolean RSE-Conversion Problem is inNC3.The algorithmuses O(log3(nt)) parallel boolean time and O(n2t6 log2(nt)) processors.It is interesting to note that SPARSE�{SAT problem was not known beforeto be in P. Theorem 1 says that there is no polynomial time algorithm withoutusing proper �eld extensions. Corollary 1 puts this problem in P and determin-istic boolean NC3, and Theorem 4 yields even better O(log2 n) parallel timebound.Corollary 2. SPARSE�{SAT is in NC2. The algorithm uses O(log2(nt))parallel boolean time and O(n2t3) processors.4. Further ResearchThe research on parallel complexity of multivariate polynomial interpola-tion was spurred by its application towards the parallel matching algorithms (cf.[GK 87]), and resulted already in several applications in problems like sparse fac-torization and polynomial GCD (cf. [KT 88], [BT 88]). The good bit-complexityalgorithms require however computations over �nite �elds rather than ZZ. In thisconnection an important problem arises to improve on the number of processorsof the algorithms of Theorem 3, and 4.
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