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Abstract. We present here some recent results on fast parallel interpolation of
multivariate polynomials over finite fields. Some applications towards the general

conversion algorithms for boolean functions are also formulated.

Introduction

We consider the general problem of interpolation of multivariate polyno-
mials over finite fields given by black boxes (input oracles). In this setting we
are given a polynomial [ over GF[q], as a black box, and an information about
its sparsity ¢ (the bound on the number of nonzero coefficients). Given this, we
must determine an extension GF[¢*] of GF[q], s as small as possible, and an ef-
ficient (deterministic boolean NC-algorithm, cf. [Co 85], [KR 88]) interpolation
algorithm working over GF[¢°] to determine all coefficients of f in GF[g]. Such a

*Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant
KA 673/2-1, and by the SERC Grant GR-E 68297



general problem arises in a number of applications, e.g., in design of efficient al-
gorithms in algebra, coding theory and combinatorial optimization (cf. [Ga 83],
[Ga 84], [Ka 85], [K'T 88], [MS 72], [GK 87], [BT 88], [GKS 88]). The interest in
the parallel (boolean circuit) complexity of this problem has arisen recently in
connection with the design of fast parallel algorithms for the perfect matching
problem [GK 87]. [GK 87] gave the first deterministic algorithm for sparse in-
terpolation of determinants over fields of characteristic 0, and [BT 88] extended
it to the case of arbitrary sparse polynomials over fields of characteristic 0.

Following [GK 87], and [GKS 88] we shall use uniform boolean circuits in our
analysis. Given a (fixed) finite field GF[g]. We say that the black box Interpolation
Problem (over a finite field extension GF[q*]) is in NC* (cf. [Co 85], [KR 88]), if
there exists a class of uniform (ntq)°M-size and O(log"(ntq))-depth boolean cir-
cuits with oracle nodes S (returning values of a black box over the field extension
GF[¢*]) computing for an arbitrary n-variate polynomial f € GF[q][z1, ..., z,]
all the nonzero coefficients and monomial vectors of f. The oracle 5% is defined
by SH@1, .., 20, y) f f(21,...,2,) =y over GF[g°]. If the lifting of a black box
(given explicitly by a straight-line program, determinant, boolean circuit, etc.)
from the field GF[g] to the extension GF[¢®], and the computation of the value
flz1,...,2,) over GF[¢°] by a black box, are both in boolean NC (in P), then
the explicit Interpolation Problem lies also in boolean NC (in P).

The reader is referred to [LN 83], [MS 72] for the basic algorithms for finite
fields, and to [Co 85], [KR 88] for the basic models of parallel computation.

1. Lower Bounds

We shall state first a result on the number of queries necessary to interpolate
a sparse polynomial f € GF[¢][xy,...,x,] over GF[q] (i.e., for the case of s = 1).
Theorem 1. ([CDGK 88]) Gliven an arbitrary finite field GF[q] and a
t-sparse polynomial f € GF[q][z1,...,x,] given by a black box input oracle, any

algorithm for testing whether f = 0 requires Q(n'°¢') queries to the input oracle.



For the important case of boolean functions (GF|[2]) we are able to prove the
tight lower and upper bounds ©(n!'°¢?) for the number of queries necessary to

determine identity to zero of {-sparse polynomials f € GF[2][z1,...,z,].

An Algorithm for GF[2] ([CDGK 88])

Input: t-sparse polynomial f € GF[2][zy,...,z,] given by a black box input

oracle;
Output: Yes, if f =0; No, if f Z 0.

Step 1:  For all n-bit vectors v € {0,1}", having at most |log, | zeros com-
pute the values o, = f(v).

Step 2:  Output Yes iff Vo [a, = 0].

The correctness of the above algorithm was proven in [CDGK 88]. We do
not know whether the result generalizes for the arbitrary finite field GF[¢]. We
note that we deal here not only with interpolation of polynomials but arbitrary
functions in their RSE-representation ([We 87]).

For arbitrary boolean functions f :{0,1}" — {0,1} there exists exactly one
{0,1}-vector S = (Sa)acqi,.n} such that

.....

for @ boolean XOR and A boolean AND.

The size of the vector S is referred to as the size (RSE(f)) of f in its RSE-
representation (cf. [We 87]) (and is in our framework exactly its sparsity over
GF[2][z1, ..., xn]).

Theorem 2. ([CDGK 88]) Given an arbitrary boolean function f by the
black box input oracle, there exists an algorithm for deciding over GF[2] whether
f =0 using O(n'°8BSEUNY queries to the oracle. The algorithm is optimal with
respect to the number of queries to the oracle over GF[2] taken by any (adaptive

or non-adaptive) algorithm for this problem.
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The lower bounds of this Section proves the impossibility of polynomial time
(and NC-) algorithms for the general sparse polynomial interpolation with in-
put oracles over finite fields without proper field extensions. So the intriguing
question arises whether we can do interpolation over finite fields at all - without
going to the ’impossible’ field extension GF[¢"] (where there are no effective
deterministic procedures known even for finding primitive elements!).

In the next section we shall present suprising upper bounds on the Inter-
polation Problem using only “slight’ (logarithmic in nt) extensions of a ground

field.

2. Upper Bounds

We formulate now our main Interpolation result on the slight field extensions.

Theorem 3. ([GKS 88]) Given any t-sparse polynomial [ €
GFlql[z1,...,x,] by the black box input oracle. There exists a determin-
istic parallel algorithm (NC?®) for interpolating [ over a slight field ex-
tension GF[ql*180)F31] working in O(log®(ntq)) parallel boolean time and
O(n?t%log®(ntq) + ¢*°log” q) processors. For the fived field GF[q], the algorithm
works in O(log®(nt)) parallel boolean time and O(n?1%log®(nt)) processors.

The algorithm discovered in [GKS 88] involves two major computational
steps: (1) breaking the zero identity problem of polynomials over a slight field
extension GF[¢l?°%(")+31] "and (2) inductive enumeration of all partial solutions
for terms and coefficient vectors over GF[¢g] by means of recursion using (1).

We develop here a new general method involving Cauchy ([C]) matrices to
break zero-identity problem in Step 1, and combine it with the new parallel
enumeration method based on [GK 87] to solve Step 2. The number of queries
to the input oracle over the slight field extension GF[g?°#(")+31] is bounded
by t(1+ (n —1)(3)) (= O(nt?)).

We shall investigate here in more detail the problem of checking identity to
zero (Step 1) in order to compare it with the results of Section 1. (The method
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of Cauchy matrices applied here could be also of independent interest.)

Definition. (Cauchy matrix) ([C])
An (N x N) matrix C' = [¢;;] over the field GF[¢] is called a Cauchy matrix, if

1
T+ Y;

Cij =
for the fixed values x;,y; € GF[¢], 1 <¢,7 < N.

Lemma. (cf., e.g. [MS 72]). Let C' be a Cauchy matriz, then the determinant

Det(C) _ H1§i<j§N(x] - fl?i)(yj - yi)
[Ti<ijen (i +y;)

For any of its minors # 0 a similar formula holds. Therefore any minor of any

size is nonsingular.

In our algorithm we construct the Cauchy matrix C' = [¢;;] by

1

Cij = mod p

=103

where p is a prime.



An Algorithm for (the slight field extension) GF[¢?(°s("))]

Input:

Output:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

(IGKS 88))

t-sparse polynomial f € GF[q][z1,...,z,] given by a black box input

oracle;
Yes, if f =0; No, if f £0.

Determine a minimal s satisfying

¢ —1>4ng(n — 1)(;)
So take s = ﬂogq(nt) + 3].

Construct the field GF[¢*] and a primitive element w in GF[¢°] with
the help of Berlekamp Algorithm [Be 70].

Let N = % Use the sieve of Erastosthenes to find a prime p with
2N < p <4N.

Construct an N x N Cauchy matrix C' = [¢;;] by ¢;; = % mod p, 1 <

1,7 < N by means of the Euclidean algorithm.
Construct an arbitrary submatrix C' = [¢;;] of C of size N x n.

Query in parallel the black box for any row ¢ = (¢;), 1 < 7 <n, of
the matrix C, and for each [, 0 < [ < ¢, at the points

l-c; — (wlfl‘l wlfl‘g

\ sl

and at the zero point ag, = (0,...,0).

Output Yes (f=0)iff VO<[<¢,0<i < N[ay, =0].



The correctness proof of this algorithm is given in [GKS 88]. The main reason
for the algorithm to work is the strong term separation property of a Cauchy
matrix constructed in Step 3 (the existence of a row ¢; of a Cauchy matrix C
separating arbitrary two monomials of f under w"® substitution to the black
box oracle).

We summarize

Theorem 4. Given any fized finite field GFlq] and a t-sparse polynomial
I € GFl¢][z1,...,2,] by the black box input oracle, there exists a deterministic
parallel algorithm (NC?) for interpolating f over GF[q[*1°8")+31] working in
O(log?(nt)) parallel boolean time and O(n*t3) processors, and making O(nt>)

queries to the black box input oracle.

Theorems 3 and 4 can be generalized to work over arbitrary fields of positive
characteristic, by applying our method to the slight extensions of their primitive

subfields of the same characteristic.

3. Some Consequences for Boolean Function

We shall derive some interesting consequences of Theorem 3 and 4 for the
case of boolean functions (GF[2]). Although we formulate them for GF[2] only,
same result holds for arbitrary ’small’ (or fixed) finite fields (in this case instead
of boolean circuits we use straight-line programs!).

The boolean RSE-Conversion Problem is the problem of converting a boolean
function f (given by the input oracle), and such that RSE(f) < ¢ into the
equivalent RSE-formula.

A SPARSEg-SAT problem is the problem of checking whether f (given as

above) has a satisfying assignment.



Theorem 3 entails directly the following.

Corollary 1. The boolean RSE-Conversion Problem is in NC?. The algorithm
uses O(log®(nt)) parallel boolean time and O(n*t®log®(nt)) processors.

It is interesting to note that SPARSE4—SAT problem was not known before
to be in P. Theorem 1 says that there is no polynomial time algorithm without
using proper field extensions. Corollary 1 puts this problem in P and determin-

istic boolean NC3, and Theorem 4 yields even better O(log®n) parallel time
bound.

Corollary 2. SPARSEg-SAT is in NC2. The algorithm uses O(log*(nt))

parallel boolean time and O(n*t*) processors.

4. Further Research

The research on parallel complexity of multivariate polynomial interpola-
tion was spurred by its application towards the parallel matching algorithms (cf.
[GK 87]), and resulted already in several applications in problems like sparse fac-
torization and polynomial GCD (cf. [K'T 88], [BT 88]). The good bit-complexity
algorithms require however computations over finite fields rather than ZZ. In this
connection an important problem arises to improve on the number of processors
of the algorithms of Theorem 3, and 4.
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