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Abstract

We prove there is no polynomial deterministic space simulation for two-way
random-tape probabilistic space (PrySPACE) (as defined in [BCP 83]) for all
functions f : IN — IN and all @ € IN, PrySPACE(f(n)) € DSPACE(f(n)”).
This is answer to the problem formulated in op cit., whether the deterministic
squared-space simulation (for recognizers and transducers) generalizes to the two-
way random-tape machine model. We prove, in fact, a stronger result saying that
even space-bounded Las Vegas two-way random-tape algorithms (yielding always
the correct answer and terminating with probability 1) are exponentially more

efficient than the deterministic ones.
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1 Introduction

Jung (1981) and Borodin, Cook, and Pippenger (1983) prove that both the probabilistic
acceptors and transducers working in space f(n) > logn can be simulated in deter-
ministic f(n)? space. The definition of probabilistic Turing machines uses a one-way
read-only random tape. The model of probabilistic machine [Gi 77] may be reviewed
as a deterministic machine with a one-way only access to the random bits sequence.
A two-way random tape proposed in [BCP 83] allows multiple access to the random
bits sequence which is stored on the two-way read-only tape. The problem posed in

[BCP 83] whether the f(n)* deterministic space simulation holds also for the two-way
random-tape (ProSPACE(f(n))).

Let U C ¥* x {0,1}¥ be a binary predicate, where W(x,y) is computed by a de-
terministic machine M with two two-way read-only input tapes. If M stops on an
initial segment of Y, then W(x,y) is defined. * € ¥* is recognized by M if and
only if Pr{U¥(z,y) = true} > 1. We call M a probabilistic machine (over the al-
phabet ¥) with two-way random tape. Let Ly, € Y¥* denote the set recognized by
M. If M is S(|z|) space bounded, then Lj; belongs to the two-way random-tape
probabilistic space S(n), Ly € PraSPACE(S(n)). If in addition M is T'(]x|) time
bounded, then Ly € PryTISP(T'(n),S(n)). We say that Ly belongs to the two-way
Las Vegas [BGM 82] space S(n), Ly € ASPACE(S(n)), if for all @ € X* either
Pr{Un(z,y) = true} = 1 or Pr{Wp(2,y) = false} = 1.

We prove that the class of log F'(n) space bounded Las Vegas algorithms with two-
way random-tape (terminating with probability 1 and yielding always the correct result)
denoted by A;SPACE(log f(n)) (time bounded Las Vegas algorithms are defined in
[AM 77]; [BGM 82] are as powerful as DSPACE( f(n)). Therefore there is no polynomial
simulation for this class, which answers the problem of [BCP 83].

2 Remarks

1. This result is related to the recent result of Savitch and Dymond ([SD 84]) that
“consistent” NSPACE is exponentially more powerful than DSPACE. The simi-
larity becomes clear, if the reset mechanism in the original definition of consistent
NSPACE is replaced by a two-way tape, of which the initial nondeterministic

choices are stored. The proof of our Theorem 2 can be applied to this case.

2. The model of a probabilistic machine with two-way random tape may be viewed



as a deterministic machine with a random oracle stored on a two-way tape. The
oracle tape records the outcome of an infinite sequence of independent unbiased
coin tosses. The classical model of Gill ([Gi 77]) may be viewed as a determinis-
tic machine with a random oracle stored on a one-way tape. The classical oracle
machine ([BG 81]) is a deterministic machine with oracle stored on a derive resem-
bling random-access store rather than tape (i.e., the question must be written on
a query tape within the space bound). Denote by DSPACE<A)2(f(n)) the class of
sets recognized by f(n) space bounded deterministic Turing machines with oracle

A stored on a two-way tape. Then, with probability 1 (i.e., for almost all oracles),
DSPACE<A)2(f(n)) 2 A SPACE(f(n)) (the inequivalence results from the fact
that, with probability 1, A € AySPACE(f(n))).

3 Results

Theorem 1. For every function f: IN — IN,

£

U 2, 715P2 """ log f(n)) 2 DSPACE(f(n)) .

ke IN

Corollary. For every function f,

PrySPACE(log f(n)) 2 AySPACE(log f(n)) 2 DSPACE(f(n)) .

Corollary (Problem of [BCP 83]).

Pr,SPACE(f(n)) € DSPACE(f(n)?).

PROOF OF THEOREM 1. Suppose T is a f(n) space bounded deterministic Turing
machine with one work tape. Suppose that 7 stops on every input (see [Si 80]).

For x € ¥*, comp,(x) € ¥* will denote the computation of T over z (not recording
the input or input position). The probability that the random tape will contain as a
subsequence ¢ comp(x) §, € ¥* (encoded as a binary sequence), is equal to 1. On the
other hand, the set {(x,u § comps § v) | z € X%, u,v € ¥*} is recognized by a log f(n)
bounded deterministic Turing machine M with two input tapes (only the position in

the current storage-configuration of 7 must be stored).



Take now this machine M, put it on the random tape and let it search for
¢ compy(x) §. This string will appear on the random tape with probability 1. Thus
M stops with probability 1 and gives the correct result (according to the halting con-

figuration in compy(x)). The expected time for the simulation lies in

U(Qk.|compr(x)|) S U(Qf(|x|)2kf(|$|)) S U(22
k k k

5 k-log f(lz

I))‘

Theorem 1 is valid also for transducers; in this case M begins outputing after it has

found and verified comp(x). O

Theorem 2. For every function f,

Ay SPACE(f(n)) C | SPACE(n* - 251 |
k

Corollary. If f(n) > logn, then

ALSPACE(f(n)) = | DSPACE(2%/()) .
k

In particular,

A,SPACE(logn) = PSPACE.

PROOF OF THEOREM 2. Let M be an f(n) bounded A, machine. A configuration
of M contains the position on the input and the content of the work tape (but not the

position on the random tape). The number of configurations accessible on input x is
bounded by |z| - 2%/,

M is simulated by a Aj-machine 7 (i.e. with one-way random- tape) in the same
way as a two-way finite automaton is simulated by a one-way FA (see [HU 79]). It holds
a table which says for each pair of configurations: if M is in configuration ¢ and goes left
(on the random tape) then it can (or cannot) come back in configuration ¢. In addition
it is stored whether or not M starting in configuration ¢ can go left and never come

back (in this case it is stored whether M accepts or rejects).

It is easy to see that T uses (|z|-2%/1*1)? space for two such tables and that these
tables are sufficient to determine whether M stops, and if it stops, to determine the
decision. Since M never gives a wrong result, 7 accepts the same sets as M. Since
ASPACE(f(n)) € PrSPACE(f(n)) € DSPACE(f(n)?) [BCP 83] T can be simulated

by a deterministic machine in O(|z|* - 247171} space. O



We were not able to extend the upper bound of Theorem 2 to the case of probabilistic

machines with non-zero error probability. It is even not known whether or not ProSPACE

is Blum complexity measure [BI 67].

4 Open Problem

Is there a recursive function h, such that for every f

Pr,SPACE(f(n)) € DSPACE(hf(n)) ?

Is every set recognized by a probabilistic finite automaton with two-way random-tape

recursive, i.e., ProSPACE(O(1)) € DSPACE(h(n)) for some recursive h?

(By [KV 84] the set of computations can be recognized by probabilistic finite two-way

automata with one-way random-type and bounded error probability).!

References

[AM 77]

[BGM 82]

[BG 81]

[B1 67]

[BCP 83]

[Gi 7]

Adelman, L. & Manders, K., Reducibility, randomness and intractibility,
Proc. 9" ACM Sympos. Theory of Comput., 1977, pp. 151-163.

Babai, L., Grigoriev, D. Yu. & Mount, D. M., Isomorphism of Graphs
with bounded eigenvalue multiplicity, Proc. 14" ACM Sympos. Theory
of Comput., 1982, pp. 310-324.

Bennett, C. & Gill, J., Relative to a random oracle A, PA # NP4 #
co — NP4 with probability 1, SIAM J. Comput. 10, 1981, pp. 96-114.

Blum, M., A machine-independent theory of the complexity of recursive
functions, J. Assoc. Comput. Mach. 4, 1967, pp. 322-336.

Borodin, A., Cook, S. & Pippenger, N., Parallel computation for well-
endowed rings and space-bounded probabilistic machines, Inform. Control

58, 1983, pp. 113-136.

Gill, j., Computational complezity of probabilistic Turing machines, SIAM
J. Comput. 6, 1977, pp. 675-694.

I Note in proof. Meanwhile the authors were able to solve this problem. The first function A

mentioned above is in fact recursive and 2°(") and the second is n”log? n. Therefore PrySPACE is a

Blum complexity measure.



[HU 79]

[Ju 81]

[KV 84]

[SD 84]

[Si 80]

Hopcroft, J. & Ullman, J., Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Mass., 1979.

Jung, H., Relationships between probabilistic and deterministic tape com-
plexity, 10" MFCS, Lecture Notes in Comput. Sci. 118, Springer-Verlag,
New York/Berlin, 1981, pp. 339-346.

Karpinski, M. & Verbeek, R., On the Monte Carlo space-constructible
functions and separation results for probabilistic complexity classes, In-
terner Bericht [/3 des Inst. Informatik, Univ. Bonn.

Savitch, W. & Dymond, P., Consistency in nondeterministic storage, J.
Comput. System Sci. 29, 1984, pp. 118-132.

Sipser, M., Halting space bounded computations, Theoret. Comput. Sci.
10, 1980, pp. 335-338.



