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1 IntroductionJung (1981) and Borodin, Cook, and Pippenger (1983) prove that both the probabilisticacceptors and transducers working in space f(n) � log n can be simulated in deter-ministic f(n)2 space. The de�nition of probabilistic Turing machines uses a one-wayread-only random tape. The model of probabilistic machine [Gi 77] may be reviewedas a deterministic machine with a one-way only access to the random bits sequence.A two-way random tape proposed in [BCP 83] allows multiple access to the randombits sequence which is stored on the two-way read-only tape. The problem posed in[BCP 83] whether the f(n)2 deterministic space simulation holds also for the two-wayrandom-tape (Pr2SPACE(f(n))).Let 	 � �� � f0; 1g! be a binary predicate, where 	(x; y) is computed by a de-terministic machine M with two two-way read-only input tapes. If M stops on aninitial segment of Y , then 	(x; y) is de�ned. x 2 �� is recognized by M if andonly if Prf	(x; y) = trueg > 12 . We call M a probabilistic machine (over the al-phabet �) with two-way random tape. Let LM � �� denote the set recognized byM . If M is S(jxj) space bounded, then LM belongs to the two-way random-tapeprobabilistic space S(n), LM 2 Pr2SPACE(S(n)). If in addition M is T (jxj) timebounded, then LM 2 Pr2TISP(T (n); S(n)). We say that LM belongs to the two-wayLas Vegas [BGM 82] space S(n), LM 2 �2SPACE(S(n)), if for all x 2 �� eitherPrf	M(x; y) = trueg = 1 or Prf	M (x; y) = falseg = 1.We prove that the class of log F (n) space bounded Las Vegas algorithms with two-way random-tape (terminating with probability 1 and yielding always the correct result)denoted by �2SPACE(log f(n)) (time bounded Las Vegas algorithms are de�ned in[AM 77]; [BGM 82] are as powerful as DSPACE(f(n)). Therefore there is no polynomialsimulation for this class, which answers the problem of [BCP 83].2 Remarks1. This result is related to the recent result of Savitch and Dymond ([SD 84]) that\consistent" NSPACE is exponentially more powerful than DSPACE. The simi-larity becomes clear, if the reset mechanism in the original de�nition of consistentNSPACE is replaced by a two-way tape, of which the initial nondeterministicchoices are stored. The proof of our Theorem 2 can be applied to this case.2. The model of a probabilistic machine with two-way random tape may be viewed2



as a deterministic machine with a random oracle stored on a two-way tape. Theoracle tape records the outcome of an in�nite sequence of independent unbiasedcoin tosses. The classical model of Gill ([Gi 77]) may be viewed as a determinis-tic machine with a random oracle stored on a one-way tape. The classical oraclemachine ([BG 81]) is a deterministic machine with oracle stored on a derive resem-bling random-access store rather than tape (i.e., the question must be written ona query tape within the space bound). Denote by DSPACE(A)2(f(n)) the class ofsets recognized by f(n) space bounded deterministic Turing machines with oracleA stored on a two-way tape. Then, with probability 1 (i.e., for almost all oracles),DSPACE(A)2(f(n)) 6� �2SPACE(f(n)) (the inequivalence results from the factthat, with probability 1, A 62 �2SPACE(f(n))).3 ResultsTheorem 1. For every function f : IN ! IN ,[k2IN �2TISP(222 k�log f(n) ; log f(n)) � DSPACE(f(n)) :Corollary. For every function f ,Pr2SPACE(log f(n)) � �2SPACE(log f(n)) � DSPACE(f(n)) :Corollary (Problem of [BCP 83]).Pr2SPACE(f(n)) 6� DSPACE(f(n)2) :Proof of Theorem 1. Suppose T is a f(n) space bounded deterministic Turingmachine with one work tape. Suppose that T stops on every input (see [Si 80]).For x 2 ��, compT (x) 2 ��� will denote the computation of T over x (not recordingthe input or input position). The probability that the random tape will contain as asubsequence jc compT (x) jS; x 2 �� (encoded as a binary sequence), is equal to 1. On theother hand, the set f(x; u jc compT jS v) j x 2 ��; u; v 2 ���g is recognized by a log f(n)bounded deterministic Turing machine M with two input tapes (only the position inthe current storage-con�guration of T must be stored).3



Take now this machine M, put it on the random tape and let it search forjc compT (x) jS. This string will appear on the random tape with probability 1. ThusM stops with probability 1 and gives the correct result (according to the halting con-�guration in compT (x)). The expected time for the simulation lies in[k (2 k�jcompT (x)j) � [k (2f(jxj)�2 k�f(jxj)) �[k (222 k�log f(jxj) ) :Theorem 1 is valid also for transducers; in this case M begins outputing after it hasfound and veri�ed compT (x). 2Theorem 2. For every function f ,�2SPACE(f(n)) � [k SPACE(n4 � 2 k�f(n)) :Corollary. If f(n) � log n, then�2SPACE(f(n)) = [k DSPACE(2 k�f(n)) :In particular, �2SPACE(log n) = PSPACE:Proof of Theorem 2. Let M be an f(n) bounded �2 machine. A con�gurationof M contains the position on the input and the content of the work tape (but not theposition on the random tape). The number of con�gurations accessible on input x isbounded by jxj � 2 k�f jxj.M is simulated by a �1-machine T (i.e. with one-way random- tape) in the sameway as a two-way �nite automaton is simulated by a one-way FA (see [HU 79]). It holdsa table which says for each pair of con�gurations: ifM is in con�guration c and goes left(on the random tape) then it can (or cannot) come back in con�guration c0. In additionit is stored whether or not M starting in con�guration c can go left and never comeback (in this case it is stored whether M accepts or rejects).It is easy to see that T uses (jxj � 2 k�f jxj)2 space for two such tables and that thesetables are su�cient to determine whether M stops, and if it stops, to determine thedecision. Since M never gives a wrong result, T accepts the same sets as M. Since�1SPACE(f(n)) � PrSPACE(f(n)) � DSPACE(f(n)2) [BCP 83] T can be simulatedby a deterministic machine in O(jxj4 � 2 4k�f jxj) space. 24



We were not able to extend the upper bound of Theorem 2 to the case of probabilisticmachines with non-zero error probability. It is even not known whether or not Pr2SPACEis Blum complexity measure [Bl 67].4 Open ProblemIs there a recursive function h, such that for every fPr2SPACE(f(n)) � DSPACE(hf(n)) ?Is every set recognized by a probabilistic �nite automaton with two-way random-taperecursive, i.e., Pr2SPACE(O(1)) � DSPACE(h(n)) for some recursive h?(By [KV 84] the set of computations can be recognized by probabilistic �nite two-wayautomata with one-way random-type and bounded error probability).1References[AM 77] Adelman, L. & Manders, K., Reducibility, randomness and intractibility,Proc. 9th ACM Sympos. Theory of Comput., 1977, pp. 151-163.[BGM 82] Babai, L., Grigoriev, D. Yu. & Mount, D. M., Isomorphism of Graphswith bounded eigenvalue multiplicity, Proc. 14th ACM Sympos. Theoryof Comput., 1982, pp. 310-324.[BG 81] Bennett, C. & Gill, J., Relative to a random oracle A, PA 6= NPA 6=co �NPA with probability 1, SIAM J. Comput. 10, 1981, pp. 96-114.[Bl 67] Blum, M., A machine-independent theory of the complexity of recursivefunctions, J. Assoc. Comput. Mach. 4, 1967, pp. 322-336.[BCP 83] Borodin, A., Cook, S. & Pippenger, N., Parallel computation for well-endowed rings and space-bounded probabilistic machines, Inform. Control58, 1983, pp. 113-136.[Gi 77] Gill, j., Computational complexity of probabilistic Turing machines, SIAMJ. Comput. 6, 1977, pp. 675-694.1Note in proof. Meanwhile the authors were able to solve this problem. The �rst function hmentioned above is in fact recursive and 2O(n) and the second is n2 log2 n. Therefore Pr2SPACE is aBlum complexity measure. 5
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