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Abstract

This paper gives a survey of some recent results on the parallel complexity of the sparse black
box interpolation problem for multivariate polynomials and rational functions over arbitrary
fields. In this setting, rather than the degree of the polynomial, the number of terms is of
importance. Given a multivariate polynomial (or rational function) over an arbitrary field, as
a black box (input oracle), and an information about its sparsity (a bound on the number of
non-zero coefficients) we have to determine the complexity of reconstructing the polynomial.
Some of the recent NC-algorithms and implementations using the computer-algebra system
Scratchpad II are presented.

This paper is a revised version of a thesis for a Master’s Degree in Computer Science, University
of Bonn, August 1988.
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1 Introduction

The problem of interpolating polynomials reflects an important topic in the history of math-
ematics. The classical interpolation problem states as follows: Given n + 1 function values
y(zx) = Y, an interpolation formula approximates the function y(z) by a suitable function
Y(z) = Y(z,a0,...,a,) from a given class of functions (e.g. polynomials, rational functions)
depending on n + 1 parameters «; chosen so that Y (zx) = y(zi) for the given set of n + 1
argument values zg.

The interpolation formulae of Newton, Lagrange and Hermite for univariate polynomials of
fixed degree over fields of characteristic zero laid foundations for the whole area of numeric
analysis. However, polynomials are not well suited for approximating smooth functions since
they tend to oscillate between interpolation points. Rational functions belong to a more adapt-
able function class (one aspect in rational interpolation is the construction of algorithms to
speed up convergence of certain series, e.g. Richardson’s method, extrapolation algorithms).
Further generalizations of the classical polynomial interpolation include the study of other
function classes (trigonometric functions for Fourier Analysis, Spline interpolation for manip-
ulation of ordinary and partial differential equations) as well as interpolation over finite fields
and multivariate interpolation.

A more recent motivation for the study of algebraic interpolation problems is the question of
specifying appropriate data structures to store polynomials efficiently. The sparse representa-
tion of a polynomial, i.e. representing a polynomial by a list of non-zero coefficients and the
corresponding exponents, proved to be very successful. Another possibility is given by algebraic
straight-line programs (cf. [Ka 85]) representing an abstract operational command-sequence to
describe a polynomial. The length of the derivation-sequence corresponds to the time complex-
ity of the straight-line program; the space complexity is given by the length of the encoding of
the straight-line program.

In this context, conversion algorithms from one representation into another one are of special
interest. Here, not the degree of the polynomial is of importance, but rather the number of
non-zero coefficients.

This motivates the problem of sparse black box interpolation. In this scenario we are given a
polynomial as a black box (input oracle), and an information about its sparsity (a bound on the
number of non-zero coefficients). For any evaluation point as input, the black box outputs the
value of the polynomial at this point. Given this, we have to determine an efficient interpolation
algorithm reconstructing the sparse representation of the polynomial.

The model of black box is independent of the representation of the polynomial. One may think
of the black box as a straight-line program, the solution of the sparse black box interpolation
problem serves as a conversion algorithm into the sparse representation.

This paper studies the parallel complexity of the black box interpolation for multivariate
polynomials and rational functions. The reader is referred to [Co 85], [KR 88] for the basic
models of parallel computation.

In case of fields of characteristic 0 we say the black box interpolation problem for arbitrary
t-sparse n-multivariate polynomials and rational functions is in NC* if there exists a class of
uniform (ntd)®(M-size and O(log*(ntd))-depth boolean circuits with oracle nodes (returning
values of the black box) computing the sparse representation. Here, d is a bound on the degree
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of the polynomial or rational function.

For the finite field GF(q) the black box interpolation problem for ¢-sparse n-multivariate poly-
nomials is in NC* if there exists a class of uniform (ntg)?()-size and O(log*(ntg))-depth
boolean circuits with oracle nodes (returning values of the black box) computing the sparse
representation.

If the computation of function values is in NC, then the explicit interpolation problem lies in
NC provided the black box interpolation problem is in NC.

This paper is a revised version of my thesis for a Master’s Degree in Computer Science, Uni-
versity of Bonn, August 1988. It is organized as follows.

In Chapter 2, we present the work of Grigoriev and Karpinski [GK 87] on finding perfect
matchings in a bipartite graph with polynomially bounded permanent, which represents a
crucial step towards the construction of deterministic interpolation algorithms.

Chapter 3 studies the problem of deterministic polynomial interpolation over fields of char-
acteristic zero. The techniques developed by Grigoriev and Karpinski given in Chapter 2 are
extended by Ben-Or and Tiwari and lead to a deterministic polynomial algorithm [BT 88].

The more complex problem of interpolation over finite fields gains a definite relevance in
the construction of efficient algorithms for algebraic problems (factorization of polynomials,
computation of primitive elements, computation of discrete logarithms, cf. [Ga 83], [Ga 84],
[Ka 85]) as well as for applications in coding theory and cryptography (cf. [LN 86]). Chapter
4 gives bounds on the number of evaluation points. We also present deterministic polynomial
interpolation algorithms.

It has been assumed that the problem of interpolating rational functions is only solvable
non-deterministically in polynomial time. The algorithms developed in the previous chapters
result in an efficient probabilistic solution. However, the methods introduced prove themselves
strong enough to derive even a deterministic polynomial algorithm for rational interpolation
(over fields of characteristic zero). This is pointed out in Chapter 5.

Finally, implementations of the interpolation algorithms presented in this paper are introduced
in appendix A. For this purpose the computer-algebra system Scratchpad II is used. The
implementations were designed at the Scientific Center of IBM Germany in Heidelberg.



2 Efficient Algorithms for the Permanent Problem

A crucial step for the construction of efficient NC-interpolation algorithms is supplied by the
work of Grigoriev and Karpinski [GK 87] on finding matchings for bipartite graphs. Because
of the equivalence to the perfect matching problem of bipartite graphs the permanent forms
the core of the solution of many interesting problems concerning parallel computation theory
(e.g. Maximum Flow Problem, Two-Processor Scheduling Problem).

Definition 2.1 (Permanent)
The permanent perm (A) of a matrix A € (n X n, IK) is defined by

n
perm (A) := Z Haj‘,,m. (1)
ESn j=1

A permutation ¢ € S, is called non-vanishing if ¢ contributes a non-zero term to perm (A).

Let A € (n x n,{0,1}) be the adjacency matrix of a bipartite graph G. Any non-vanishing
permutation corresponds uniquely to a perfect matching of G. Hence, the number of perfect
matchings of G is given by perm (A).

The problem of computing the permanent is threefolded:

Decision problem: The computation of the logical permanent:
perm (A) := V /\ @3.0(7)
gESy =1
(does G have a perfect matching).

Construction problem: Construction of a non-vanishing permutation (construction of arbitrary
perfect matchings of G).

Enumeration problem: Enumeration of all non-vanishing permutations (enumeration of all per-
fect matchings of G).

The solution of these three problems in the special case of polynomially bounded permanent
(perm (A) < ¢n*) is carried out using techniques from [GK 87]. The adaptability of these
techniques for the interpolation is of special interest.

2.1 The Decision Problem

Let A € (n x n, [K'). We design an efficient zero test for perm(A).

Let I be the number of ones occurring in A. It holds 0 < I < n?. Let A, be the matrix resulting
from A by substituting the ones in A by pairwise distinct variables z;.

) # ifa;, is the k-th one occurring in A
(A = { 0 ifa,=0 (2)
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Let p be a polynomial in the variables 21,...,2 defined by p(z1,...,21) = det(A4,). p has
coefficients from {-1,0,1}. It holds:

p(z) = > (=17 TI(A2)iots)
OESn i=1
= Z H(Az)-f"'{j} = Z H(AZ);LU(J'}
a€Sn _‘,l—l gESn 3_1
(=1)7=1 (1) e
= =

= D ti-2 .
i F]

The t;, t; are the monomials with non-zero coefficients occurring in p. They correspond to
the pairwise distinct non-vanishing permutations of A. Concerning matrices over {0, 1}, the
number of monomials corresponds to perm(A).

Lemma 2.2 perm (A)=0 <<= p=0

Proovr:
perm (A)=0 < Vo€ S,: H @jo() =0

= Vi:t;=0 A Vj:t;=0
< p=0

(]

By means of Lemma 2.2, the decision problem is reduced to the problem of testing p to zero.
This fits in our scenario of black box interpolation. p is defined as the determinant of 4,, hence
a black box evaluation of p corresponds to computing det (A,) for some given argument. There
exist several efficient NC-algorithms for computing the determinant of an n X n matrix with
nO(1)-bit entries, e.g. the algorithm proposed in [BGH 82] takes O(log? ») boolean parallel time
and O(n*®) boolean processors.

In order to test p to zero, we have to choose a small number of evaluation points such that
the information extracted from these function values distinguishes p from the zero-polynomial.
Grigoriev and Karpinski solve this problem by evaluating the determinant of the matrix A,
at points (p[*, ..., pJ*) with pairwise distinct primes p;, and using the uniqueness of the prime
factorization. Let

Am = (a75) = Asle=(pp,...01")
and

pm = p(PTse s )

Zt pl! 1p?1)_zt:(p?1!ﬂp?l)
7
) m
Zt(pla 1pf) th(ph---sp‘)
j ——— ————"

Y,

PIEHE ij;“. (3)
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The evaluation at prime powers yields a separation of different monomials of p. Therefore {z;}
and {y,} are unique prime codings of pairwise distinct permutations; so all z; # 0,y; # 0 are
pairwise distinct. We will use this technique also for interpolation.

Theorem 2.3  Let A € (n x n,{0,1}) and let p be defined as above. Then

p=0 <+ Vi<m<perm(4): pnr =0

Proor: The ’if’ part of the statement is trivial. We have to prove the ’only if’ part. z;,y;
are unique codings of the monomials of p, therefore the following equivalences hold:

p=0 < Vi:t;=0 A Vj:;=0
= Viiz,=0 A Vj:y =0
= A{=:}={y,},
because all non-zero z,, y, are pairwise distinct. We have to prove:
Vi<m<perm(4): pn=0 = {z:}={y,}.

Let ¢; (d,) be the i-th elementary symmetric polynomial, evaluated at z,..., Zperm(4) (evalu-
ated at yy,..., yperm{A))' Let

perm(A perm(A)

)
S = Z - i and Bl Z Y
=1 1=1

Equation (3) implies that s,, = rp, for 1 < m < perm (A). The Newton formula (cf. [LN 86])
yields the following recurrence equations for s,, and r,:

51 = G
82 = €181 — 2{’32
perm(A)—1
Sperm(A) = Z ("1):_lci3perm[.4)—i + ("1)pe"n{A)glperm(A)cpenn{A)
=1

and similarly for r.:
m=—1

T'm = Z("l){_ldz'-‘"m-—z + ("l)m_lmdm-
1=1
Since rp, = s, we conclude ¢, = dy, for 1 < m < perm (A); therefore there exists a permuta-
tion o with 2, = y,(,), so {z.} = {y,}. o

As an immediate consequence of Theorem 2.3 we obtain:

Theorem 2.4 Let A € (n x n,{0,1}) with polynomially bounded permanent, i.e.
perm (A) < en* for some constants ¢,k. Then the decision problem for A is in NC2. The
algorithm takes O(log? n) parallel time and O(n**+45logn) processors.

Proor: Let A, be defined as above. By Theorem 2.3 it suffices to calculate the determinants
of these matrices for 1 < m < enk. For that purpose we need at most the first n2 primes. By the
prime theorem the n?-th prime is bounded by O(n?logn). Therefore the greatest entry pﬁk
can be represented by O(n* logn) bits. Hence, the determinants can be computed in parallel
by the NC?-algorithm from [BGH 82] mentioned above, We have to evaluate at most O(n*)
determinants, so our statement holds. O
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2.2 The Construction Problem

The efficient zero test for polynomially bounded permanents forms the core for the solution of
the construction problem.

Let A € (n x n,{0,1}) with polynomially bounded permanent. Recursive parallel splitting of
A using the divide-and-conquer method and applications of the zero test put the status of the
construction problem in NC3.

Theorem 2.5 Let A = (a;;) € (n x n,{0,1}) with perm(A)< cn*. The construction of a
non-vanishing permutation of A lies in NC3.

Proor: Let A;; be the matrix obtained from A by canceling the i-th row and j-th column.
Using Theorem 2.3 we test in parallel for each a;; = 1, whether perm(A)# 0 (whether there
is a non-vanishing permutation ¢ with o(i) = j). We call an element a;,; with this property a
generator.

If there is exactly one generator a;, ; for each row ip of A, then a unique permutation is given.
Otherwise the row iy consists of at least of two generators a;;,j and a;y,j,. Hence the non-
vanishing permutation ¢ is not unique at point 9. However, either A;, ; or A;  ; contains
at most half of the non-vanishing permutations. The procedure is applied in parallel to the
matrices A;, j, and A;; .-

While the number of non-vanishing permutations is bounded by en*, after at most t <
log(cn*) = O(log n) recursion steps we find a unique non-vanishing partial permutation, which
can be composed to a unique non-vanishing permutation.

The zero test is in NC?; hence the proposed construction lies in NC?3, a

2.3 The Enumeration Problem

Once again recursive applications of the zero test lead to a solution of the enumeration problem.
However, a new logarithmic enumeration technique developed by Grigoriev and Karpinski is of
crucial importance. As described in Chapter 4.3 and 5, this enumeration technique is also used
for interpolation of polynomials in finite fields and of rational functions yielding N C-algorithms
for those problems, too.

A set {ai, j,5...,0i,.; } of entries in A is called a partial solution of a non-vanishing permutation
of A, if there exists a non-vanishing permutation ¢, such that the elements of {a;, j,,. .., @i, ;. }
occur in o:

d o € Sp,o non-vanishing : o(i;) = j1,...,0(%) = jr.

Let § = {ai,,j,» -1 @i, } Witha;, j, #0fors = 1,...,r, pairwise distinct indices #1,...,7, and
pairwise distinct indices jy,..., j». Theorem 2.3 supplies an efficient test whether & represents
a partial solution:

Let AEE ';r}} be the matrix, obtained from A by canceling the rows ¢y,..., ¢, and the columns

J1,..., Jr. Then § is a partial solution if there exists a non-vanishing permutation for Alizveir)

(jl !---tjl")‘

Theorem 2.6 Let A = (a;;) € (n x n,{0,1}) with perm(4)< en*. Then there exists an
N(C3-algorithm for determining all non-vanishing permutations of A. The algorithm requires
O(log® n) parallel time and O(n®*+5:5 log n) processors.
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Proor: Assume n = 2™ for simplicity of notation. For fixed o with 1 < o < m + 1 we
distribute the rows of A among 2™+1~% blocks consisting of 22! successive rows. The blocks
are numbered from 0 to 2™+1-2 —1 and are denoted by B, g for 0 < 8 < 2m*1=2_ B, 5 consists
of the rows with indices 8221 + 1,...,82%"1 4+ 2o=1 TLet S, be the set of partial solutions
corresponding to the rows of block B, s:

Sap = {(J1s- -+ Jza=1) | @pga-1414ys - - -+ Qpga-142a-1 j ., 18 & partial solution }
withl1 <a<m+1and0< g8 < 2mti-ao
For 0 < 8 < n, By g consists of the row with index 8+ 1. Then
51,6 = {jl ag+1, is a generator}.

The sets Sy g form a basis for recursive construction of larger partial solutions. Sy,3 can be
computed in parallel for 3, testing for each 1 < j < n, whether ag4y,, is a generator (cf.
Theorem 2.5). This basic step can be performed by n? parallel applications of the zero test
given by Theorem 2.3.

With a = m + 1 (f = 0) we obtain the set of non-vanishing permutations of A:

Siistip {(41s-++rJn) ] Q1,55 --Gn,j, i a general solution}

12

{o € S, | o is a non-vanishing permutation of A}.

Starting with S 5, we determine S, g recursively for @ = 2,...,m+ 1. Construct the set So415
from S, 25 and S, 28+1:

Sat1.6 = {u.v|u € Sa28, v € Sa 2841 }-

Seos1,5 consists of potential candidates for So41,5. We have to eliminate those elements from

Sa+1,5 Which do not represent a partial solution. Then
Sot1,5={w € 8,415 w is a partial solution }
(cf. Fig. 1 in Section 4.3).

Within m = O(logn) recursion steps, the set of non-vanishing permutations Sp,41,0 is con-
structed.

|Sas1.4| is bounded by perm (A) < cn*; hence, |S,416| is bounded by ¢2n?* for any 8. At
most n sets of potential candidates are to be tested in each recursion step; therefore the zero
test of the corresponding partial matrix is performed at most O(n?¥+1) times. As stated in
Theorem 2.4 the zero test requires O(log?n) parallel time and O(n**+4-%logn) processors; so
the enumeration algorithm takes O(log® n) parallel time and O(n3**53log n) processors. O

Obviously, the number of all non-vanishing permutations is determined by enumerating them.
Concerning any matrix with entries from {0, 1}, this number corresponds to its permanent.

Corollary 2.7 Let A € (n x n,{0,1}) with perm (4) < cn*. The computation of perm (4)
lies in NC3.
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3 Polynomial Interpolation over Fields of Characteristic Zero

3.1 The First Deterministic Polynomial Algorithm

The reduction of the number of requests to the black box was the primary target of effort in
oder to develop efficient interpolation algorithms.

The first starting-point is the probabilistic interpolation algorithm of Zippel [Zi 79] for sparse
polynomials in the variables z;,...,z,. The algorithm works in n steps. At the i-th step, the
polynomial is considered as a polynomial in the variables z1,. .., z; with coefficients correspond-
ing to polynomials in ;4;,...,z,. Partial monomials in z;,...,2; with non-zero coefficients
are determined by evaluating the polynomial at randomly selected points. Schwartz [Sc 80]
shows that the probability of hitting a root of a non-zero polynomial is small. Linear systems
of equations for the coefficients of partial monomials are derived which are solvable with high
probability.

Tiwari [Ti 87] succeeded in designing a deterministic algorithm from [Zi 79] using techniques
presented by Grigoriev and Karpinski [GK 87]. Instead of choosing the evaluation points at
random, monomials are separated by evaluating the polynomial for prime powers. The resulting
linear systems of equations are solvable in any case.

Theorem 3.1 Let IK be an arbitrary field of characteristic zero and f € K|[z1,...,2,]
a t-sparse polynomial with deg, (f) < d. f is identical to zero iff f vanishes at the points
(pf,...,pk) for 0 < k < t, where the p;'s are pairwise distinct primes.

ProoF: Let

t
f(zl's"'wxn) =Zci'ti(3lv---1xn)
1=1

where the #;’s are the monomials occurring in f with coefficients ¢; € IK . Let ux be the value
of f at the point (p%,...,p5) and let Q; = ti(p1,...,pn). Due to the uniqueness of prime
factorization (cf. [GK 87])

Qi #£Q; for i #j. (4)
We have to prove: f=0 <= pu;=0for all 0 < k < ¢. It holds:

t t i
He = f(pllca"'vpﬁ) . Zciti(ﬁ»---spﬁ) . Zciti(plv--spﬂ)k = chﬂsk
i=1 i=1

=1
We obtain the following linear system of equations:

(Qf) 0gk<t '(Cf}lgigt = (fi)ogk.(t (5)

1<t
N T
=V

By (4), V is a non-singular Vandermonde matrix and the linear system of equations has a
unique solution. Hence

f=0 <<= ¢=0foralll<i<t <= u=0 foral0<k<t.
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This zero test is to be used for the interpolation of t-sparse polynomials. We determine recur-
sively all occurring partial monomials in the variables ,,. .., z;4+1 where the partial monomials
in the variables zq,...,2; and the exponents of z;;; are known.

Theorem 3.2 Let f € IK[zy,...,2,] be a t-sparse polynomial with deg, (f) < d. Then
O(ndt?) requests to the black box are sufficient to reconstruct f in O(nd?¢3) (sequential) time.

Proor: First, for every variable z,, we determine the set S; of exponents of z; occurring in
f. Rewrite f according to powers of z,:

f(.’,t'l,.. Z.’E {a] xl,...,xg_l,x,-.,.l,...,:J:n).
1=0

Then
So= {1 | ) #0}.
Since f is t-sparse, we conclude that pf:] is t-sparse. In order to apply the zero test to P}‘.), we

have to determine the values “EJ}: =p, }(pk, v pE_ ) with 0 < k < t. Let V&) be defined by

vf("g = Flok e bl gl Bt een it y) Rl CIgd
Then

d-1 } d-1 )
S M ohienttag) = 040 forigicd
=0 3=0

yielding the linear system of equations:

2y 0 P Mok

':‘ : d.-l :"

g N e BTN il
=2 G

C is a non-singular Vandermonde matrix, therefore the linear system of equations can be solved
for any k and any 1 and we obtain all necessary values. We need n - d - ¢ requests to the black
box to determine S, for 1 < i < n.

Let 5; be the set of the partial monomials occurring in f in the variables z1,...,z;. It holds:
St =51
We determine S; from S;_; and S; for i = 2,...n. Let H; = §;_1 x 5;, i.e.
{a 8o 8 ,BES) = {tiy(zr..en2i)}

with monomials ¢, ,. The set H; consists of potential candidates for S;. Since f is t-sparse, it

holds |8;_;| < t and because of deg,, (f) < d, it holds |$;_1| < d. Therefore, the number of
elements in H; is bounded by

h; == [H{lgt-d

Rewrite f according to the elements in H,:

Jz1senen®n) = 23,3(31‘ cor i) Pig(Tig1s -0 Tn).

J._



10 3 POLYNOMIAL INTERPOLATION OVER FIELDS OF CHARACTERISTIC ZERO

Then
Si={ti; | pj #0}.
Furthermore the polynomials p; ; are t-sparse because f is t-sparse.

Like the procedure above, we eliminate those t; ; from H; with p; ; = 0 with the help of the zero
test given by Theorem 3.1. However, there is no black box for the polynomials p; ; explicitly
given. They are to be constructed from the given black box for f.

Testing p; ; to zero for j = 1,...,h; requires the values

s = piglehic wplsd BrO k<L

Let
= Hthi o thlonnagt.,) 168 U7 € by

Then
(i S
vy = Y el s B i )
i=1
Ay ‘
= Y tij(pr,. o m) ulh for0<i<h
=1

We obtain the following linear system of equations

(1) 0 0 i)
Uotk tf,l - tt-‘hq P‘,ilk
N hy—1 sl !
VE:.]-I,k 7 WP 7 ,ugf‘}.k

il

=i T

By (4), 7 is a non-singular Vandermonde matrix. Therefore the linear system of equations is
solvable for any k and yields the required values.

Forany H;,i = 2,...,n we have to query the black box for values v}',z with 0 <1 < h; (h; < td).
If i = n, it suffices to execute the step for k¥ = 0 because the coefficients ¢; correspond to the
coefficient polynomials.

Allin all, the number of requests to the black box is ndt for the computation of the S;, (n—2)dt?
for the computation of the H; for i = 2,...,n—1 and dt for the computation of the ¢; yielding
a total number of O(ndt?) requests.

We have to solve O(nt) linear systems of equations of dimension dt. Using Berlekamp-Massey
algorithm ([B] 83]), the interpolation algorithm takes O(nd?t®) (sequential) time. O

Remark: Fori = 2,...,n the set S; is determined sequentially from §;_; and S;. There-
fore the time complexity of a parallel implementation is at least polynomial in n. Hence, the
enumeration technique used here is not applicative to obtain NC-algorithms. The logarith-
mic enumeration techniques used for the enumeration of all perfect matchings of a bipartite
graph in Section 2.3 are used for interpolation by Singer, Grigoriev and Karpinski and lead to
NC-algorithms even for interpolation over finite field (cf. Chapter 4.3).
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3.2 Development of an NC-Algorithm

We present new techniques of Ben-Or and Tiwari ([BT 88]) minimizing the number of re-
quests to the black box. These techniques are similar to those used by Clausen, Grabmeier
and Karpinski (cf. Chapter 4.2). However, in contrast to [CGK 87] we obtain a first NC-
interpolation algorithm because of the simpler arithmetic in fields of characteristic zero.

Theorem 3.3 Let IK be an arbitrary field of characteristic zero and let f € IK[z1,...,%x)
be a t-sparse polynomial with deg(f) = d. Then f can be reconstructed deterministically by
2t queries to the black box in O(t3dnlogn) (sequential) time.

Let !
Hrroeatg] = Za,- 3 71 T 7|

=1
. . [ 4 (a4 - 5
with monomials t;(z1,...,2,) = 2;",...,2x"", where a;;, € INg,a; € IK. Let k be the (a
priori unknown) exact number of monomials occurring in f.

Let p, be the j-th prime. The black box is evaluated at the points
Vi = (Ploe+s Do)
with 0 < ¢ < 2t. Let m; = t,(v;). By this choice of evaluation points, the monomials of f are

separated (cf. [GK 87]), i.e. m; # m,, for i £ j.

The reconstruction of f involves two major computational steps: (1) determining the exponents
a;,for 1 < j<nand1<i<kand (2) determining the coefficients a; for 1 < ¢ < k.

If all the exponents «;,, are known and therefore & and the monomials #; occurring in f for

1 < i € k are determined, the coefficients ¢; can be computed as follows. Let v, = f(v;), then

k k
Uy == Za‘-'t‘(vr) = Za‘-m’: where 0 < r < k.
=1 1=1

We obtain the linear system of equations

Vo m) m? a1
Vi—1 it . mi? ax

Since m; # m, for i # j, M is a non-singular Vandermonde matrix. Hence the given linear
system of equations has a unique solution.

In the following, it remains to handle the first step, namely the determination of the exponents
a; ;. This is based on a technique for decoding BCH-codes ([Bl 83],[LN 86]}).

First we assume that ¢ corresponds to the exact number k of monomials. The general case
k <t is reduced to this case by determining k.

In order to determine the exponents a;,;, we determine m; for 1 < 4 < t and factor it into prime
powers. The factorization of m; is simple because the prime factors of m; are just p1,...,pn.
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This fast factorization points out the difference of the complexity compared to the analogous
algorithm [CGK 87] for finite fields. There the computation of discrete logarithms is required
(for which no efficient deterministic algorithm is known).

The core of the problem is the computation of the m;’s. We define a polynomial A € Z(z2),
whose roots are just the m;’s:

t t
Al2):= H(z -my) = Z)\gzi, A= 1.
=0

i=1

In the following we derive linear systems of equations to obtain the coefficients A; (thereby the
polynomial A is completely determined) and then determine the zeros of A.

Since A(m;) = 0, a, - m! - A(m;) = 0 for arbitrary {. Then:

0 = a;(dom! + Amit! 4 ... 2mit)

t
= G (Aomt + Aymbt! 4 .o 4 Amitt)

i=1

t t ¢
= XY ami+ M Za;mff"l +oot MY aimt
i=1 i=1

1=1

= Ao+ M1+ F Ay

With A; = 1, we conclude —vj4¢ = Aov; + Aqvi41 + - - + Ayvi44—1 yielding the following linear
system of equations:

(V14 )ogs‘.;(: ’ (’\i)ogs‘a = (_”tH)DgI(t‘ (6)
V

Consider the matrix V (V is a ToeplitzMatrix):
t - 3 t - .
Vig, = Zar-m;“ = Zm; cap+ml
r=1 r=1

Nt
5 L 1 g % J
== (1":+3)0<;',J<z = (mr) o<t Dy (mr) 0<y<t
= 0Zr<t 0<r<t

where D4 = diag((a:)o<i<t)-

Since a; # 0 for 0 < i < t, the rank of V equals t. Therefore V is non-singular and the linear
system of equations (6) has a unique solution A;, 0 < 7 < t (the coefficients of the polynomial
A). We used 2t evaluations of f to obtain the values vg, ..., v9:—1.

In the general case k < t, we have to determine k. For this purpose let V be defied as above
and V; the (I x I)-matrix obtained from the first / rows and the first [ columns of V. For k < ¢,
the a; are not necessaryly non-zero, as a consequence the corresponding matrix D4 has not
full rank. However, the following lemma holds:

Lemma 3.4

S (e [T (mi-mp? ifi<k

det (V) = SC|{§|'=;'” i€S IES

0 ifli>k
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Corollary 3.5 Let k be the number of non-zero coefficients of f and k£ < ¢. Then

k = max{j < t|V; non-singular}.

By Corollary 3.5 we obtain & by computing the rank of V:
k = rank(V).

In summary, we have the following algorithm for the interpolation of a t-sparse polynomial
f € IK[zy,...,z,]. The correctness of the algorithm follows from above.

Interpolation Algorithm [BT 88]

Input:  Black box for f € IK([z,,...,xy,], t-sparse.

Output: The monomials occurring in f and the corresponding coefficients.

Step 1: Query the black box at points v; = pi,...,p. Let v; = f(v;), 0 < i < 2t
Step 2: Let V= (Vit))o<i, < Determine k = rank(V). Let V= (v,—.,.J)DSi‘Kk.

Step 3: Let s:=(sg,...,8k—1)" where s, := v;,. Solve the linear system of equations

f)-)'A:—S, A= (/\g,...,a\k-l)t.

Step 4: Determine the roots my,..., my of the polynomial

k-1
A(z) =25 + Z A2t

i=0
Step 5:  Compute the prime factorization of
me=pr for1 <i<k.
Step 6: Let M = (m}) Bl and v = (vo,...,vk—1)". Solve the linear system of equations
12;<k
M-a=uv, g s soven)s

Step 7:  Output: (@i, (@ig,. .-y Qin) )iz, k-

It remains to settle the determination of the roots of A in Step 4. It holds:

k
A(2) = H(z — m;) € Z|z], therefore

=1

deg(A) =k <t, and

=Py i Pa & [Py v Bu)
By the prime theorem we have p, = O(nlogn), furthermore the product of all primes less than
! is at most O(2'), hence

m; < 20(ndlogn]‘
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With this upper bound for the absolute value of the roots of A the algorithm of Loos ([Lo 83])
determines the set of roots in O(t3dn logn) time.

Step 2 and 3 can be performed in O(¢?) time using Berlekamp-Massey algorithm ([Bl 83]).
The same complexity bound is valid for Step 6 applying Zippel’s algorithm for the inversion
of non-singular Vandermonde matrices ([Zi 88]). This completes the proof of Theorem 3.3. O

The given algorithm is non-adaptive, because the choice of the evaluation points is fixed; they
are not determined successively depending upon the values attained at previous evaluations.
When restricted to non-adaptive algorithms the given algorithm is optimal concerning the
number of evaluation points:

Theorem 3.6 Any non-adaptive algorithm reconstructing ¢-sparse polynomials in n vari-
ables requires at least 2¢ evaluations of the polynomial.

Proor: We consider the univariate case. Assume there is a non-adaptive algorithm A using
only [ < 2t evaluations. Suppose the evaluation points are vy,...,. Consider the univariate
polynomial p:
I i
p(z) = H(z —-y;) = Za;x‘.
1=1 1=0

p has at most [ + 1 < 2¢ + 1 non-zero coefficients. Let

L5) !
pﬂx):Za;x‘ and po(z) = — Z a;z’.

1=0 i=| 4] +1

p1, P2 have at most L%J + 1 non-zero coefficients. Since [ + 1 < 2t + 1, p; and p, are i-sparse.
Furthermore p(z) = pi(z) — pa(z), hence 0 = p(vi) = p1(vi) — pa(vi). Therefore p; and p;
coincide at the points »;,7 = 1,...,/. Hence, the algorithm .4 cannot distinguish p; and p;. O

It should be pointed out that the algorithm [BT 88] does not need the a-priori knowledge
of d, d influences only the complexity of the algorithm. The problem of interpolating a t-
sparse polynomial p in deterministic polynomial time without the &-priori knowledge of ¢ is
not solvable because it can be proved that it is impossible to obtain an upper bound t for
the number of occurring monomials in polynomial time. However, if it is guaranteed that
all coefficients of p are positive then, the algorithm [BT 88| yields a reconstruction of p in
polynomial time.

Lemma 3.7 Let a t-sparse polynomial f € IK[z1,...,2,] with deg(f) < d and positive
coeflicients be given by a black box. Suppose that ¢ and d are unknown. Then there exists a
polynomial (in n,t,d) deterministic algorithm reconstructing f.

Proor: Apply the algorithm [BT 88] for t = 1,2,.... The stopping rule is given by Lemma
3.4 since if all coefficients a; are positive, then det (V;) # 0 for [ < k. Hence det (V;) # 0 and
det (Vi41) = 0 implies ¢t = [. o

However, the stopping rule is not correct in general:

Lemma 3.8  If the rank of (V}) = k, then the number of the monomials occurring in f is
either exactly k or at least 2/ — k.
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4 Polynomial Interpolation over Finite Fields

4.1 Bounds on the Number of Evaluation Points

An important aspect for the reconstruction of polynomials and for the test of polynomials to
zero, is the necessary number of requests to the black box.

The main reason making interpolation over finite fields GF(g) harder than interpolation over
fields of characteristic zero, is the limited number of elements in GF(gq). Thus, the information
concluded from a function value in GF(q) is worth less concerning the reconstruction of the
polynomial. This yields a large number of evaluation points required for interpolation.

Assume we are enabled to use some finite extension GF(¢™) of GF(q). That is, we look at a
polynomial in GF(q)[z1,...,,] as a polynomial in GF(¢™)[z1,...,%,] and assume the black
box to be capable of evaluating the polynomial in GF(¢™). Then, more information can be
extracted from a function value in GF(¢™) yielding a smaller number of necessary evaluation
points. However, we have to take into account that the arithmetic in GF(¢™) is harder than
in GF(q); the larger the degree of the extension the more expensive the arithmetic.

To obtain an efficient reconstruction algorithm, we have to compromise according to the degree
of the extension, such that the number of evaluation points is yet small and the arithmetic in
the field extension can still be performed quickly.

This section gives upper and lower bounds on the number of evaluation points using techniques
suggested in [CDGK 88].

The finite field GF(g) with ¢ = p™ is isomorphic to the splitting field of z? — z over GF(p).
Therefore, the ring of polynomial functions over GF(q) in n variables is isomorphic to the poly-
nomial ring GF(gq)[z1,. .., z,) modulo the ideal generated by (2 - z;,...,2% —2,). An element
in GF(g)[z1,...,2x] can be identified with an element f € GF(g)[z1,...,2,] with deg, (f) < g.
Therefore, we assume that the black box represents a polynomial f € GF(g)[zy,...,z,] with
deg, (f) < gfor1 <i<n.

The general problem, where a black box for f € GF(¢)[z1,...,2,] is given and we have to
construct efficiently a black box for f mod (z{ — z1,...,2% — z,), is non-trivial for the case
when the black box is evaluated in some proper extension of GF(gq). The problem of lifting the
black box from GF(q) to GF(¢*) efficiently is still unsolved.

Let Pf*(g) be the set of {-sparse polynomials from GF(g)[z1,...,2,] with deg, (f) < g for
1 < ¢ < n. We are interested in minimal test sets separating polynomials in P?(¢) and in
minimal test sets distinguishing polynomials in P}*(q) from the zero-polynomial.

Let P be the set of polynomials in P*(g) considered as mappings from [GF(g™)]" to GF(¢™).
Let

Bi(gym) := {B | BCGF(g™); Vf,geP 3beB (f(b)#g(b))}
be the set of all test sets in GF(g™) separating polynomials in P}*(q) and let
Ailgm) = {A | ACGF(g™); YgeP\{0} JacA (g(a)#0)}

be the sets of all test sets in GF(¢™) distinguishing polynomials in P?(g) from the zero-
polynomial. These sets are closely related:
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Lemma 4.1  Bf(g,m) = A},(q, m)

ProoOF:

'D" Let B € B(q,m) and h € P3(q),h # 0. Then there are polynomials f,g € P(q)
so that h = f — g. While h # 0 there exists some b € B with f(b) # g¢(b) therefore
h(b) = f(b) — g(b) # 0, too. Hence B € A}, (q, m).

"C" Let A € A3,(¢,m) and f,g € PP(q) with f # g. Then h = f— g € PL(g) and h # 0.
Therefore there exists some a € A where h(a) # 0, thereby f(a) # g(a). Hence A €
Bt (g, m). a

We construct upper and lower bounds for
¢i(gym) = min{#A | A€ Ai(q,m)},

the minimal number of evaluation points required to separate a polynomial in Pf(gq) from the
zero-polynomial. The corresponding bounds for B}(g, m) are obtained with Lemma 4.1.

4.1.1 Upper Bounds

In Section 4.2 we present a zero test for a t-sparse polynomial f € GF(q)[zo,-..,Zn-1] With
deg, (f) < g for 0 < i < n, using only a small number of evaluation points. This zero test
works in the field extension GF(¢") of GF(¢) and requires the function values

fii= f(w ', W) for 0<i<t, g fi and £(0,...,0),
where w is a primitive element in GF(¢™). We denote this set by A}:

A} = {a, ={05)ogen € G | a5 =w'", 0Zi<t, ¢[i}
u  {(0,...,0) € GF(g")" }. (7)

Theorem 4.12 implies A} € A}(q,n) yielding an upper bound for ¢}(g,n):
g < #AT =1+t | 2] (®)
However, we are also interested in upper bounds for ¢f'(g,m) for 1 < m < n.

As mentioned above we know sets in AT (g, m), i.e. zero test sets in GF(¢™) for polynomials
fr over GF(gq) in m variables, f, T-sparse, for arbitrary r. By splitting the problem into the
known zero test sets A" € A™(g,m), we construct a zero test set T*(g,m) € A}(g,m) for a
polynomial f € GF(g)[zo,...,Zn-1].

Let f € GF(q)[z0,...,2Zn-1], t-sparse and n = ny + ny. We assume that zero test sets in

GF(g™) for polynomials in n;, ny variables are known, i.e. A7} € A} (q,m), A7? € AP?(q,m),
for arbitrary t;, t;. From these sets we construct a zero test set AT € AP(g,m).

Lemma 4.2 Let n = n; +ny, A7} € A7 (¢, m) and A}? € AP?(q,m) for all t; -1 < t. Then

U AP x AR € A¥(g,m).

i1+t <t



4.1 Bounds on the Number of Evaluation Points 17

Proor: Let f € GF(g)[zo,...,2n-1] be a t-sparse polynomial. We have to show:

F£0 = 3(@Ma®)e |J AR x 4P : f(a®,a®) 3 0.

1<t

Let f # 0. Rewrite f as
f Zﬁt "Bﬂls" xﬂ— ) xgo'...xz:liil"

with coefficients §; € GF(q){¢n,,...,2Zn-1]. Trivially, 1y < . Furthermore, there is some j,
such that 8, # 0 is m-sparse with 7 < [t/m] (or 1y < t). Hence, there exists a(?) € Al
with 3;(a®) # 0. Let fi = f(20,...,Zn;—1,a(?). fy is 7y-sparse and f; # 0 since B;(a®) # 0.
Hence, there exists a!) € A7 with fi(al)) # 0, i.e. f(al?),a(®)) # 0. ]

Lemma 4.2 implies

Corollary 4.3 Let # = (7g,...,ms—1) be an arbitrary partition of n (7 |= n). Let AT €
A™ (g, m) for 7 < t. Then

U AT x ATl x o x ATem) € AP (g, m).

To T Tam1 St

We use this corollary to construct a zero test set T*(¢, m) € A?(q,m). By Theorem 4.12 zero
test sets AT € A*(g, m) for arbitrary T are known. Therefore we consider the partition

7=( m,...,mym; ) where m; <m.
e, st

s=[ ] components

Then
Mg, m) = U AR x - x AT x AT1 € AY(q,m).

Ts—1
To* Ty et Tay Sf,

We choose A7) to be the set {(ag,...,8m;-1)(@0s. .1 Gmy—1,8m; ..., 8pm—1) € Aﬁ:_l} because

a polynomial in m; variables can be interpreted as a polynomial in m variables.

Let w be a primitive element in GF(¢™). Hence, by equation (7)

AT = { @i = (ai;)o<jcm € GF(¢™)™ | ai, = Wi Ogiu<rg,

iu:{i 1fq,h. }

0 otherwise

u {(0,...,0) € GF(g™)" } (9)

To indicate T} (q,m) we have to form all pairs of elements a, € A7, p = 1,...,s for all
combinations 7o+ Ty - ... Ts_1 < L.

If (0,...,0) € AT, represents a component of an element in T7*(q, m), the corresponding 7, is

at least 2 (since Am does not contain (0,...,0)); if a, € A7 \ {0} is chosen, ie. g, = wi?’,
then 7, is at least i, + 1, because i, < 7.
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Based on this consideration, we can avoid the term 79 -7y - ... 74—y < ¢ in T*(q,m), by
constructing the set T*(g, m) 2 T*(g, m):
Ti(g,m) ={ a= (av)053<n € GF(y™)" :
v=p-m+j (pisindex of the component A% )
a, = €,w*?,  ( by equation 9 )
€, € {0,1}, (eu=0ifa, =0€ A7)

2#{.“:6;,:0} ) H (1 i 3“) S 1 }!
{p euv0}

where w is a primitive element in GF(¢™). Since T7(q,m) 2 T(g,m) (we dropped the re-
quirement ¢ fi), it holds that T}*(g, m) € A?(g, m). We conclude

Theorem 4.4 Let f € GF(g)[zo,...,Zn-1] be a t-sparse polynomial, ¢ > 2, where
deg, (f) < g for every 7. Then

f=0 — fla) =0 for every a € T{*(q, m).

Estimating the number of elements in T7*(q, m) yields upper bounds for ¢}(g, m).

For m = 1 we have:

T(g,1) =4 a= (au)03u<n € GF(q)" :
a, =gw*, 0<1,<t
€, € {0,1},
a#lwe=0t. TT (1+id,) <t}

{urey#0}

Let w be a primitive element in GF(q), w generates GF(g) \ {0}.
Let GF(q) = {a9,...,als"1} with a(® = 0 and a(+1) = &, 0 < i < ¢ — 2. Hence
Tg.1) ={ a = (au)ogs<n € GF(g)" :
a,=0o0ra,=w,0<i<qg-—1 where
o#{uau=0} H (1+4)<t}.
{raou=uw}

Let x; be the number of occurrences of al) € GF(¢q) in a = (ao, . soylger) € T 1):

Kit=#{a,]a=(a)ocucn i 0y = adV} 1<i<q.
g=1

It holds Z K; = n; therefore k = (Ko,...,K4-1) is a partition of 7.
=0

We calculate #77*(g,1) from the number of possibilities to distribute «; elements a() among
the n components of a = (ag,...,an-1) € T/*(g,1) where
=g
o#{n:an =0} H (144) < ¢

{n:ap=uw')
S e’

=r 1
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Kg—1
= 2%0. ]‘[(0+1) 1‘[ 1+41)- H(2+1) cJJe-241) <t
i=1 i=1
= 2*0.1"1 D B (q—l)"‘q-l <t
= Qrotmz . gms . L (g—1)%-t £ 4,

Let#T{(q,1) =: ®(n,t,q). Then

n n— Kg n—Kg— K Kg—-1
Q(n, t, q) ) Z ( ) . ( ) . ( ) R ( )
w=(xg, Kg-1)FEn Ko 1 K2 Kg—-1

25052 353 (g-1)"e-1 <

> >
o ] 1 !
Kpg:*Rir* ...t Kg=1:
k=(Kg, ‘nq_1)|=r; 0 K1 q 1
2/50tK2 3853 (g-1)fa—1 <t

n
cn % o)

29052 3x3 | (g—1)"a-1 ¢t

Similarly, we can estimate T}*(¢,m) for 2 < m < n to obtain an upper bound for ¢?(g,m).

An element a € T}*(g, m) consists of [ 2] components a, with:

Gy = (Qur)o<r<m resp. my © Gpr = Wi fora t, with0<i,<¢, ¢ fi,
or a,=(0,...,0) € GF(¢™)™ resp. GF(¢g™)™
Let w be a primitive element in GF(¢™). w generates GF(g™)\ {0}, therefore we can substitute

aur bY @y = W with 0 < i < ¢™ — 1. The component a, is determined by the choice of i.
Let x; be defined as above by

Kit1 = #{a, = (wiqr)!)(r«(m resp. my -

a; is component of a € T{*(¢,m)} 0<i< g™ -1
0,...,0) € GF(¢g™)™(resp. GF(g™)™) :

a(O] is component of a € T{*(g, m) }

and kg := #{al®

with Z ki = [Z], because a € T{*(g, m) consists of [ 2] components a;.

=0

Then

#T7 (g, m) < 5 ([ 1) 8121, k,q™)

K
w=(rg, wgm_1 )R]
280+#2 383 (qm_.l)"qm-l <t

In summary, we have proven:

Corollary 4.5 Let

®(n,k,q):= Z (:)

K=(rg. Kg—1)En
2%0+k2 383 (g-1fe-l g

Then n
c?(% m] S (I,( |-g-| ] k'.! qm)
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In the following, two cases are studied where lower and upper bounds coincide.

Consider polynomials over GF(2), i.e. boolean expressions over {A,®,0,1} (RS E-expressions).

Corollary 4.6 Let f € GF(2)[xo,...,%n—1] be a t-sparse polynomial with deg, (f) < 2,
0 <t < n. Then

f=0 — f(a) =0 for every a € Ay = T7*(2,1).

Ay consists of all elements in GF(2)" having at most |log, t| zero components. Then

[log, t] %
(1)< Y (i)

i=0
PRroOOF:
A ={ a = (a,)ogucn € GF(2)" :

a, =0ora, =1 with
o#{miau=0} H 1€t )
{pau=1}
={ a = (au)ogucn € GF(2)"
a, =0ora, =1 with

#{n:a, =0} < [logyt] }.

Therefore A; consists of all elements in GF(2)" having at most |log,t| zero components.

Furthermore
n[ |.I082fJ n
aE<e(n k)= Y = Y (0)

| !
r=(xg.%1)EN L Kkg=0
270 <¢

Next we consider binomials:

Corollary 4.7  Let w be a primitive element in GF(q). The set

n .  _ J Oorw forexactly one v
{(1,...,1)}u{a € GF(q) .a,,_{ ; sthorwice }

is a zero test set for a binomial. Then

i l+n if g=2

Proor:
T7(¢,2) ={ a = (au)ogu<n € GF(q)"

a,=0o0ra,=w"',0<t<qg—1with
2#{#ﬂu—0} H (1+4)<2)

—Cf {pau=1}
=0

Consider the possible values of o and 3:
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a=1,8=1 No a, equals zero, i must be zero, hence a, = w® =1
25 g = 10nsy L)

a=1,8=2 No a, equals zero, 1 must be zero, hence a, = w!

=% g ={lzevs lywslyong L

a=2,8=1 Exactly one a, equals zero,  must be zero, hence a, = w® =1 for u # v
= &= (105105 Ly 1)

For ¢ = 2 we have w = 1. a

4.1.2 Lower Bounds

We want to develop lower bounds of ¢(g, m), i.e. the minimal cardinality of a set of evaluation
points in GF(¢™)" separating ¢-sparse polynomials from the zero-polynomial.

The most important result with regard to efficient interpolation algorithms is the fact that in
the case of m = 1 (interpolation in the ground field), it is not possible to perform a zero test
using only a polynomial number of evaluation points.

A rough lower bound is obtained by the following observation:

Every t-sparse polynomial f can be rewritten as the sum of a [%J-spa,rse polynomial f; and a

[£]-sparse polynomial f,. If f # 0, then there is an @ € GF(¢™)" with fi(a) # fa(a). Therefore,
a zero test set A € A*(q,m) for a t-sparse polynomial has to contain elements enabling us
to distinguish all pairs of pairwise different |%]-sparse polynomials f;, f2. Since the mapping
#Pp — GF(g™)*4 with p— (p(a1),...,p(aga)) is injective,

#P7(0) < #GF(g™)*. (10)

We calculate the number of polynomials in 'PFLJ (g)- There are ¢™ different monomials; the
2
number of possibilities to form a polynomial with exactly i non-zero coefficients is

(q?) . (g—-1)
) N e

t coefficients # 0
choice of { monomials

Then
3] /o |
#PF%J(Q)z Z(t) '(q_ 1)"
i=0

Let A be a minimal zero test set, i.e, #4 = ¢}(g,m). Then
RGR(g)#4 = (qm)Flem).
We obtain a lower bound by (10):

15)

i-10
m 8q 3

(qn) (g—- 1| < P(g,m).

i=0
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In general, it is difficult to find better lower bounds for arbitrary m. Therefore we examine
some special cases in the sequel.

First, we derive the result for m = 1 mentioned above.

Theorem 4.8  Let A € A%(q, 1), i.e. A distinguishes f in GF(g) from the zero-polynomial.
Let T be a subset of {0,...,n — 1} with #T < [log, t]. For each T let aT = (af,...,al_,) be
an element in GF(q)" with (a7 =04 i € T). Then

VT‘ #T<|log, t] : GT € A.

llog; ¢)
Hence, A consists of at least z () elements and

1=0
[og; t] .
> () < (g, 1)

1=0

Proor: For every T with #T < |log, t| we define a polynomial pr by:
pT(Iﬁa ol “sxn—l) = ]__I(x?*l o 1) ' ]:[ T,
i€T igT
pr has the following properties:
1. pr is t-sparse:
The number of non-zero coefficients of pr corresponds to the number of coefficients of

[[(ef" -1 =27 <2lbetl < g,

€T

2. pr(a)20<=(g;=0&i€eT)
(i.e. we can distinguish pr from the zero-polynomial only at the point a7 ):
The elements in GF(g)\ {0} form a cyclic group of order ¢— 1. Therefore, Ya € GF(¢)\ {0} :
a?"1 = 1. This implies that the first factor is non-zero if Vi € T : a; = 0. The second
factor is non-zero iff Vi € T : a; #£ 0.

Therefore for every T C {0,...,n — 1}, #T < |log,t| A contains an element a”, hence
[log, ¢]
Y (”) < #A.
1=0 $

Combining Corollary 4.6 and Theorem 4.8 we derive ¢}(2,1):

Corollary 4.9

[log, ¢] -
gal= ¥ (z)

1=0

Likewise, the declared upper and lower bounds coincide for n = m = 1, i.e. univariate polyno-
mials:
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Theorem 4.10

min{t+ 1,q}, fori>2
c}(q,l):{l { 7 fort=1

Proor: Fort =1 wehave(f=0¢ f(1)=0). Let ¢ > 2. As an upper bound we have by

(8)
g 1)< 14t— H_IJ ,

matching the stated formula, since univariate polynomials over GF(q) have at most ¢ terms,
therefore t < g.

We obtain a lower bound as follows: If t = ¢, then every mapping GF(¢q) — GF(q) is in
P;(q), hence all elements in GF(g) belong to the minimal zero test set. If ¢ > ¢ > 2 and
AC GF(q),A € Al(q,1) with #A =t then 0 € A, since f = 297! — 1 is t-sparse and vanishes
for all elements in GF(q)\{0}. Then f = H (z —a) is a non-vanishing polynomial of degree

acA\ {0}
at most ¢ — 1, and therefore {-sparse. (2 - f) is also ¢-sparse, but vanishes as well for a = 0 as

for a € A\ {0}. Therefore A must consist of at least t + 1 elements. o

Theorem 4.11 Let ¢ > 2 and w be a primitive element in GF(g). Let A € A3(q,1) be

a zero test set for a t-sparse binomial f = ¢,2® + cgz? with deg, (f) < ¢ for all i. Then A

comprises n elements a(#) = (a{"),...,a*),) where

M =0=pu=v (11)

and n + 1 pairwise different elements a(#), n < u < 2n with no zero component, i.e.

0<tW g1 ol =M 0<p<n (12)

In particular c(g,1) = 2n + 1.

Proor: Let A € A3(q,1) and A; be a set of n elements satisfying (11) and A, C A be the
set of elements in A satisfying (12). We have to prove that A being a zero test set for binomials
implies (1) A; C A and (2) the number of elements in A5 is at least n + 1.

[PrinfirkirotyoteoPheem@5013 we define a polynomial p, enforcing that the elements a(¥),
0 < 1 < n belong to A. Let p, defined by:

v=n-1

pui=(zh - 1) [ 2, €PP(gQQBK u<n.
=0

v

Consider the arguments a = (ag,...,an—1) where p, does not vanish:
(a) a, =0, because for all r € GF(q)\ {0} it holds that 9! = 1.
(b) a, #0,0 < v < n,v#p, thereby the second factor of p, does not vanish.
Hence: a, = 0 <= pu = v for 0 < u < n. Therefore 4; C A.
(2) Let @ := [A2| be the number of elements in A,. With (12) let 4, = {a(™,...,a(r+7-1)},

We have to show that the assumption @ < n, leads to a contradiction. Let a binomial f
be defined by

fi=x0 ... Ty (2% — %),
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Thereby o € {0,...,¢ — 2}"\ {(0,...,0)} and 0 < d < g — 2 are defined such that
a® = w? holds for all a € A;. The existence of a and d with this property follows from
the following:

Consider for 2 < n the following system of equations in a:

n—1
a® = Ha‘;" =w? foralla€ A,
v=0

= 1

n—1
()
= Hubvp @y = yd for0 < pu<

v=0

=

— wz;‘:—;bs’p)'a" =w? for 0< p < (13)

Since w is a primitive element in GF(g), there exists a unique representation y = w? where
0 <d< g—1 foreach y € GF(g)\ {0}. (13) is equivalent to

n-1

bej‘)-a, =d for0< pu<f, hence

v=0

(b,(f"])ogpqa (e Jogucn = (d,. .y d)t in Z,-1.
0Lr<n

=:B
B defines a linear map (Z,—1)" — (Z,-1)" If B is not injective, then the kernel of B
does not equal {0}, therefore there exists some non-trivial a # (0,...,0) with B-a = 0.

If B is injective, and therefore bijective (since # equals n), there exists for any d # 0 a
non-trivial solution a # (0,...,0) with B-a = (d,...,d).

f(a) = 0 for all @ € A because first if a € A\ A,, then there exists some a; = 0, hence
f(a) = 0 and second if @ € A,, therefore a® = w?, thereby the second factor of f vanishes.
For i < n we have A ¢ A%(q, 1), therefore a zero test set A in GF(¢q) for a binomial must
contain at least n 4 1 elements satisfying (12). O

4.2 Efficient Algorithms with few Evaluation Points

In this section we present an interpolation algorithm for -sparse polynomials developed by
Clausen, Grabmeier and Karpinski [CGK 87]. This algorithm uses only a number of evaluation
points linear in £. However, it works in the large field extension GF(g") of GF(q). This field
extension is too large to obtain an algorithm lying in NC.

Grigoriev and Karpinski [GK 87] utilize the uniqueness of the prime factorization to separate
monomials and evaluate polynomials at points (p, ..., p,_;), where the p;’s are pairwise dis-
tinct primes. Different monomials have different values at these points.

In [CGK 87] this idea is transferred to the case of finite fields (polynomials over GF(g) in
n variables). We represent monomials by the g-adic expansion of their exponents and use the
uniqueness of the discrete logarithm to the base of a primitive element w in GF(¢"). Monomials

e |

i 0 ook
are separated by the points w'? ,w'? ..., w*

Theorem 4.12 Let f € GF(g)zo,...,Zn—1] be a t-sparse polynomial, ¢ > 2 with

deg:, (f) < gfor 1 < j < n and let w be a primitive element in GF(q"). Let f; :=
f@ ', " Y for0<i<t—1andq fifori> 0. Then for ¢ > 2,

f=0 <= f(0,....,00=0and fy=0for0<i<t—1andgq Jifori>0,
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and fort=1, f=0 & f(1,...,1)=0.

PrOOF:  The case t = 1 is trivial, therefore let t > 2. Let q” := {0,...,¢— 1}{1++"} be a set

of multiindices. f is a linear combination of the ¢" monomials z* := - SR i
— o
I = E tax™,
caeqn

Let f(0,...,0) = ¢(o,..0) = 0, otherwise f # 0.
Consider the mapping Q: q" \ {(0,...,0)} — GF(¢")\ {0} defined by

n=1

-1 {Z aug¥)
Qa) = Q4 = h W = v=o ;

v=0

Since w is a primitive element in GF(¢"), the mapping  is bijective because of the uniqueness
of the g-adic representation of elements in GF(g"). Thereby different monomials are assigned
different values in GF(¢") by means of Q.

[ is t-sparse, hence there are at most ¢ non-zero coefficients of f. Let supp(f) := {a : ¢ # 0}
be the support of f. Then |supp(f)| =: k < t.

Let A = {a®,...,al*~1} be any k-subset of q" \ {(0,...,0)} with supp(f) C A. Since

€(0,..,0) = 0, it holds:
5= Z Bt z caz”

aEqn a€A
hence, we haveforall 0 <t < k < t
(1] S | ;T =1
fi == f(wﬂ? 1w‘q 1-*-9“’"; )
= D ¢t Wl L L on-1ig"
aEA

We obtain the following linear system of equations:

(Q:’) ogic " (Ca)aea = (flogick - (14)

at A
=V
Since § is bijective we have Q. # Qg for & # . Therefore V is a non-singular Vandermonde
matrix, and the linear system of equations (14) has a unique solution:

fE0 & (taca=0 < (flogick =0.

It remains to be proved that the values f; for ¢ /i can be derived. Consider the Frobenius
automorphism ®(y) = y? in GF(q?). It holds f;., = (f,)? for all i < ¢", since

f_',l-q = an'ggq = ch_gé‘q = Z(Ca'Qja)q = (ZCO'Qé)q = (f.‘.')q'

a€A a€A aEA aEA

Let i = j.q,ie. gli and ¢ [ j. Then f; = (f;)9, therefore we can compute the missing f;. O
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Theorem 4.13 Let f € GF(q)[zo,...,Zn-1] be a t-sparse polynomial with deg, (f) <
gfor 1 < j € n and let w be a primitive element in GF(¢™). The function values f; :=
f(w"qo,w"‘i‘l, e .,w“?"_l) for 0 < i < 2t satisfying ¢ {7 for 2 > 0 and the value f(0,...,0) enable
the reconstruction of f.

Proor: We use the notation of Theorem 4.12. Suppose that f(0,...,0) = ¢q,..00 = 0,
otherwise we reconstruct f — f(0,...,0). Let

fi= Z o

a€q™\{(0,...0)}

and let A = {ag,...,;} be any subset of q™ \ {(0,...,0)}. Let €;(A4),0 < ¢ < [ be the i-th
elementary symmetric polynomial in |A| indeterminates evaluated at (4 )aca (this is well-
defined, since (0,...,0) & A).

60@4) =
e1(A) = Qag+ oy +---+ Qg
ea(A) = Qag Doy + Lag *Qag + o0 o+ Qo+ Doy +

Qai 'Qag+"‘+QO‘1 .QO‘]+"‘+QCH_1 .Qal

e(d) = Qo Uy oor Qoo

Let
Az):= [](z — Q) € GF(¢")[z].
BeA

By means of Newton’s Formula (s. [LN 86]) we have:

|4]

Alz) =Y (-1 e q_5(A) 2.
3=0" 4

3(4)
The roots of this polynomial are just (24 )ae4. This yields the generalized Newton identities:
4]
0= X(A)-Q, acA

=0

Multiplying the equation corresponding to a by ¢, - 2%, for fixed i,0 < i < ¢g" and summing
over all a € A results in:

14|
Yo 0ca- = YD A(A) co- QLT
aEA «€A j=0
||
0 = D X(A):- D ea- QP
7=0 acA
A

0 = > XA(A): fisje
=0
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Since Aj4) = eo(A) = 1 it holds

[A]-1

D MA) firs = =N fa

J:O

= —f,j+|A| forall 0 <7< |A|.

We obtain the following linear system of equations:

(f‘+})0$;‘J<EA] % ('\J(A))osjq,q[ = ('“fs’+|A|)09,<|A{ ) (15)
Consider the matrix ( fi4, Joci <)l
fivy = an-ﬂf;” & Z QL en -

aEA aEA

T e
— = b4 ) . 2
(fﬂ'.? )05:,3<|A| i (Qa) 0<i<|A| D4 (Qa) 05:<l4|
aEA ag

where Dy = dia.g((ca)aEA)'

Hence the rank of (fi+3)0<‘-»j<[14| equals rg(D4) = |supp(f)| =: k < &.
Therefore we conclude that for 4 = supp(J) (fi+3)o<s ,<x 18 nON-singular.
Then the linear system of equations (15) has a unique solution and we obtain the coefficients

A;(supp(f)), 0 < j < k of the polynomial A(z) = H (z — Qp).
Besupp(f)

Determining the roots of this polynomials supplies (£, )aesupp(f)- Since £ is bijective we can
hereby determine supp(f).

The matrix V of the system of equations (14) is completely determined. We compute the
coefficients (¢a)aesupp(s) Of f. Hereby f is completely reconstructed.

As shown in the proof of Theorem 4.12, we can conclude that the values f; where ¢ |7 can be
computed from the known values f, where ¢ J j by means of the properties of the Frobenius
automorphism. Altogether we need 1 + ¢ — LQ‘Q—'IJ evaluations. a

Theorem 4.12 and Theorem 4.13 yield the following algorithm reconstructing a t-sparse poly-
nomial f € GF(q)[zo,...,Zn-1] with deg, (f) < g for all j.

Interpolation Algorithm [CGK 87]

Input: A black box for f.
Step 1: Take a primitive element w in GF(q™).

Step 2:  Query the black box for the 1 + ¢ — Lz’q;lj values f(0,...,0) and
fizs f(w“fo,w"‘?l,...,w“*"-‘) for 0 < i < 2t satisfying ¢ fi fori > 0.
If the constant term f(0,...,0) is non-zero interpolate f — f(0,...,0).

Step 3: For all 0 < i < 2t which satisfy i = ¢° - ip,1 < 3,8 maximal, calculate the missing
fi= 15
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Step 4: Determine k = rg (( fi+;)o<i,j<t)-

Step 5:  Solve the linear system of equations
(fe+j )DSMJ(’C : (’\J )053<k = (_fi+k)053{k §

Step 6: Determine the roots of the polynomial
k-1
Alz) =zF+ Z’\J v,
1=0

We obtain ( 3 )cx €supp(f)*

Step 7: Calculate the g-adic expansion of the exponents of Q, with respect to w. This yields
supp(f) := A.

Step 8: Solve the linear system of equations

(Q;) ocick *(Ca)aga = (fi)og;d:

aEA

to Obtaiﬂ (CQ)QESHP‘P(f)'

Output! (Cma)aEsuPP(f}'

Suppose a primitive element w € GF(¢") is given. By [Mu 86] we can perform the steps 4,
5,7 and 8 with O(#*%) processors in O(log?t) parallel time. The same complexity holds for
factoring the univariate polynomial in step 6 by means of the algorithm suggested in [Ga 84].

Theorem 4.14  The interpolation algorithm [CGK 87] is N C?-reducible to the computa-
tion of discrete logarithms in GF(q").

Remark: The algorithm of Mulmuley [Mu 86] works for arbitrary matrices. The question
arises whether we can make use of the special structure of the maintained Vandermonde ma-
trices to gain a better complexity of this algorithm.

By Cramer’s rule we have to compute determinants of Vandermonde matrices where one power
is skipped. Let

e T AHT L Eh

CH) =det | : : 3 ; for 0<k<n+1,ne N
W e B0 bl L anE

Then
C,{lk)zo'?(lk)-]__.[(t,—fj) for0<k<n+1, nelNg
1>}

where cr,(f] is the k-th elementary symmetric polynomial in the variables ig,...,t,. If we can

compute olF efficiently, we could reduce the effort of the algorithm. It holds

AP = b0, + ol

however, from this recursion formula, similar to that for binomial coefficients, an efficient
computation is not quite obvious since we need n recursion steps.
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Theorem 4.15  For univariate polynomials the interpolation algorithm [CGK 87] is optimal
concerning the number of evaluation points.

PrRoor: We have to consider the case n = 1 and 2t < g. Let A be an arbitrary subset of
GF(g) with at most 2t elements. Then 0 # A := [[(z —a) € GF(q)[z] is a polynomial of

a€A
degree at most 2t < ¢ and with at most 2¢ monomials. Therefore h has a representation f — g
where f, g are t-sparse. Since h vanishes in A, f and g coincide in A. Hence A is not suitable
to reconstruct t-sparse polynomials. a

4.3 Development of the first NC-Algorithm

In this section the first NC-algorithm for the interpolation of sparse polynomials over finite
fields developed by Grigoriev, Karpinski and Singer [GKS 88] is introduced.

The algorithm [CGK 87] (cf. Section 4.2) requires the computation of discrete logarithms in
GF(q™). At present, no efficient algorithms for this purpose are known. In order to develop
an NC-algorithm, we determine an extension GF(g¢®) of GF(g), s as small as possible, such
that arithmetic in GF(g®) lies in NCand a polynomially number of function values in GF(g*)
provides enough information to reconstruct the polynomial.

By Theorem 4.8 the number of required evaluation points over the ground field GF(q) is
not polynomially bounded. Therefore there is no polynomial interpolation algorithm working
in GF(g). In [GKS 88] it is shown that a slight extension of logarithmic degree suffices to
reconstruct the polynomial using only a polynomial number of evaluation points. Since NC-
interpolation in GF(g¢) is not possible, this slight field extension is in a sense the smallest
extension to carry out efficient interpolation.

Theorem 4.16 Let f € GF(q)[zy,...,%,] be a t-sparse polynomial for arbitrary g. Then
there exists a deterministic parallel algorithm (NC 3) to interpolate f over the slight field exten-
sion GF(g/4%98a(")+31) by means of (O(gn?t%)) evaluations. The algorithm takes O(log3(ntq))
parallel time and O(n?t8¢®log®°(ntq) + ¢%°log?q) processors.

One of the major algorithmic aspects is the problem of how to determine evaluation points
so that distinct monomials are separated. In Section 4.2 this problem is solved by means of
the uniqueness of the g-adic expansion and the uniqueness of discrete logarithm, at the cost of
going to the field GF(¢™). A small number of evaluation points is needed, however, there are
no effective deterministic procedures known even for finding primitive elements.

The idea suggested in [GKS 88] is to permit a larger number of evaluation points where not all
of the evaluation points actually separate distinct monomials. However, they are constructed
such that enough of them have this property in order to reconstruct the polynomial efficiently.
To guarantee this property we make use of Cauchy matrices.

Definition 4.17  (Cauchy matrix)
Let z;,3 for 1 < i, < N be fixed values. An (N x N)-matrix C = (¢j5)1<ij<n is called a
Cauchy matriz, if

& = forall 1 <4, < N.

T, yJ
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Lemma 4.18 Let C be a Cauchy matrix. Then:

det C = ]-_-[ISKJSN(:":J - ;) - (y,' - )
Mhijen(@i + )

A similar formula holds for any non-vanishing minor of C.

In the sequel we use a Cauchy matrix C defined by ¢;, := % mod pfor1<4i,7 < N wherepis
a prime. If 2N < p, then by Lemma 4.18 C and any non-vanishing minor of C' are non-singular.

The algorithm [GKS 88] involves two major computational steps: (1) efficient zero test for
polynomials in GF(g)[z1,...,zn] over the slight field extension GF(q[?18s(")+31) and (2) so-
lution of the interpolation problem by means of inductive enumeration of partial solutions for
partial monomials and coefficients obtained by recursive application of the zero test mentioned
above.

4.3.1 The Zero Test

We assume that the black box is capable of evaluating f € GF(q)[z1,...,%,] in an arbi-
trary field extension GF(g¢*). We present a zero test for f working in (the slight extension)
GF(qO(los(nt))),

Zero Test [GKS 88]

Input: Black box for f € GF(g)[z1,...,z,], t-sparse.

. Yes if f=0
Clutput: { No if f#0
Step 1:  Determine a minimal s satisfying ¢* — 1> 4¢n - (n — 1) (}).

Step 2:  Construct the field GF(g*) and a primitive element w in GF(g*) with the help of the
Berlekamp algorithm [Be 70].

Step 3: Let N = [9‘:7'5-1. Use the sieve of Erastosthenes to find a prime p with 2N < p < 4N.

Step 4:  Compute ¢,; := 7= mod p for 1 < ¢, < N by means of the Euclidean algorithm.

Let C' = (e:))1<in<n
Step 5:  Denote by C = (&;;) an arbitrary (N x n)-submatrix of C.

Step 6:  Query the black box in GF(g?) for the points
whes = (w"é",wi'é'z,...,w"f‘") for 1= Ty N L =000yt =1

and for the zero-point (0,...,0). If all evaluations are zero then f = 0.

Theorem 4.19  The zero test [GKS 88] is correct.
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Proor:  Let f(0,...,0) = ¢(,.0) = 0 otherwise f # 0. We have to prove the following:
f£0 < W<i<t,1<i<N: f(o)#£0.

Let q" be defined as in the proof of Theorem 4.12. f is a linear combination of the g™ — 1
monomials 2% := z{ - ., .- zn;

f= z Eug™
aegy\{(o.....e)}

S L A
Let o = (ofy.rey0), & = (a?,...,aj{) and ¢, = (&,,...,C,). First, we want to prove
the property of the evaluation points mentioned above, i.e. we have to show that there is an
evaluation point separating a fixed pair of monomials " and 2*” where o/ # o”. That means
that there exists some row ¢; of the matrix C so that the monomials z®' and z*" take distinct
values at the point w®. Let

"

(Z C'J‘Ei_.,)

oy BB Sk ;

We have to show, that 31 < i < N : Qu, # Qun, for any o' # o”. A row ¢ of the matrix C
is called bad for o' # a”, if & does not separate the monomials z®' and z%”, i.e. if Qs ; = Qon s,

that is w®® = w&", u is a primitive element in GF(¢*), hence w generates the cyclic group
GF(q*)\ {0} of order ¢* — 1. Then

whre' = yiva

> ¢ =¢-a" (mod ¢* — 1)

k) n
S ZE,J n; = ZE,J o” (mod ¢* - 1)

=1 J=1

n

< Y (a)-a")-& =0 (modg® - 1) (16)

j:].

It holds 0 < o, @) < g—1, therefore we have |, — /| < ¢—1 and also by step 4 |&; | < p < 4N.
Hence

n ™
1> (e —a)) &, | < |- o] |e,| <n-(g—1)-4N. (17)

=1 =1
By step 3 N = Ii:%l, therefore we continue estimating the inequality (17)
| 2 (e —8)) 8] & ¢ = L
=1
This yields a characterization of bad ¢;’s:

¢ bad <= > (o) —al)-&, =0 (18)
1=1

Let z', 22" be a fixed pair of monomials. Assume that there are n distinct vectors E'(-l},. e EE”‘}
which are bad for z*',z%". Then, by (18), the submatrix C built from EEU, - .,E}n) would be
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singular, because:

Thereby the kernel of C would not equal {0} and C would be singular. But this is a contradiction
to Lemma 4.18. Hence, we are guaranteed, that for a fixed pair of monomials ', z®" there
are at most (n — 1) bad vectors.

While f is t-sparse there are at most (%) distinct pairs of monomials, therefore there are at
most (n — 1) - (3) bad vectors for arbitrary o’ # o”. Since

t\ _ 4ng-(n-1)-(3) _ [¢*-1] _
(n—l)-(2) - 4dng = < dng i

we are guaranteed that there exists an 4,1 < o < N satisfying Qo 5, # Qqn 4, for any o # o”.
Hence ¢;, separates all monomials.

Let Qo = Qa, and f; := f(w"®). Then for all 0 < < |supp(f)| < t we have

f; = Z Co ® :I.‘alwl %
a€supp{ f)
= ) car(we)
a€supp{f)
= Z Cs QL

a€supp(f)

We obtain the following linear system of equations:

(Q{*) o<i<isupp(nl * (Co)aesupp(s) = (f)ogiclsupp(s)] (19)
a€supp(f)

bl

=Y

L

V is a non-singular Vandermonde matrix (because a # (0,...,0)), and the linear system of
equations (19) has a unique solution. Hence:

f=0 = (cadampnn =0 = (Mogiciouppn =0

This concludes the proof. o

4.3.2 The Enumeration Technique

In the following, we intend to determine partial solutions of the interpolation problem by
reduction to the zero test. We solve the prime interpolation problem by the efficient composition
of the partial solutions (cf. Section 2.3). Assume n = 2™ for simplicity of notation.

The partial solutions are of the following form:

Saip = {(krsssniksasn] | 3:2{ pasiigy s zg'*f";_,_{_za_l occurs in some monomial of f}
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with 1 <a<m+1land 0< g < 2mtli-a
Fora =1 and 0 €< 8 < n we have:

San = {kil xf31+1 occurs in some monomial of f}
= set of exponents of £ occurring in f.

a=m+1,ie B =0 yields the solution of the interpolation problem:
Sma1.0 = {(k1,...,ka) |25 ... 2F" occurs in some monomial of f}.

Given the sets §; g we want to construct the sets S, g for @« = 1,...,m + 1 recursively.

$10 S11 S1.2 513 S1.4 S15 S1.6
{z1} {z2} {z3} {24} {25} {z6} {z7}

NSNS NS

S2|0 82‘1 5‘2'2 52,3
{z122} {z3z4} {I536} {ET}
53,0 -93'1
{31$2$3$4} {zszez7}
S4,0
{z17223T4252627}

Figure 1: recursion scheme for n = 7,m = [log, n] = 3

4.3.3 The Basis Step

We determine Sy g for 0 < 8 < n, i.e. for all variables we determine the corresponding exponents
occurring in f. Rewrite f according to powers of zg.1:

gq-1
f(z) = be+l *Prgsi(z,. .. 128, TB+425 - - -1371)1

I:D el I
=2’ =g’

where P; g1 € GF(g)[z’, z"]. Then

S1.8 = {l|Prp+1 # 0}.

We intend to apply the zero test [GKS 88] to P g+1. Therefore we have to construct a black
box for P41 from the given black box for f. Let GF(q) = {a1,...,a4}. Then for 1 < i < ¢:

g—1

f(x,s i, xn) = Z ﬂ.£ t Pf‘ﬁ+1($’, xﬂ)‘
=0
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We obtain the following linear system of equations:

af ai™! Pog1(z,z") f(z',ay,2")
a ag™! Pr-rper(z! 2’} f(z',aq,2")

v

=it A =P, =F

A is a non-singular Vandermonde matrix, therefore the system of equations has a unique
solution. With

H‘ﬁi.](l",x”) = (0,...,0,1,0,...,0}‘191
= By 1y 0ay QA - F
=
we are given a black box for P;g41, where u; has 1 in the [-th position. o

4.3.4 The Recursion Step

Assume that for fixed @ < m + | the sets Sap for 0 < 8 < 2m+1- are determined. We
determine Sy41,6 from Sy 25 and Su25+1. Consider the construction of the partial solutions:

k € Sat1.8
Ikl . . xkga—] . ch:—‘.I.H . . zkga
3 2a41 3. 2a4.2a-1 G 20 42a-147 **° 8- 2a42e
= xkl i i xkza_l i zki f . xk;a—l
T J2B- 207141 Tt T2pe gal4ge=1 T T(2041) 20-141 T T Y (2041)- 291 4201

ke 50"23 kK e 53‘25.1.1

Let § := Sa‘zg X Sa,23+1, ie.
S {u v I U e Sa‘zg,?} € 50‘26.{-1}.

Obviously § 2 So41,8 and Sa41.8 = {u € S| w occurs in some monomial of f}. Since f is
t-sparse |S,.24] <t and |Sq25+1| < ¢, hence |§] < t2.

The further proceedings are similar to the basis step. Rewrite f according to the elements in
S, i.e. according to the corresponding polynomials in 2% variables. Then we have to decide
whether the corresponding coefficient polynomials are identical to zero. This is carried out by
solving a system of equations with matrices whose entries are powers of values of elements in
S, i.e. values of monomials in 2* variables. In order to guarantee that the resulting systems
of equations are solvable these values have to result in a non-singular matrix, i.e. we have to
separate the monomials. This was easy for the basis step since monomials in one variable are
separated by the elements in GF(g). For the recursion step we proceed similar to the zero test.

For this purpose determine a minimal s, satisfying ¢** — 1 > 4-¢-n-(n—1)- (‘;), ie.
s1 < [4log,(nt) + 3]. Construct the field GF(¢*) and a primitive element w; in GF(g*). Let

N = I%-, thereby Ny > (n—1)- (‘;) Find a prime p; satisfying 2N; < p; < 4N;. Construct
the (N; x N;1) Cauchy matrix C' = (¢;,) with ¢;; := % mod p; for 1 <¢,7 < Ny. Let V be an

arbitrary (N; x 2%)-submatrix of C.
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Then, as shown in Theorem 4.19, there exists some row vy of V such that the elements of § are

separated at point w®. Let 2% = 2! sy *+ . " 252%a 00 and Qy = :c“lwro =w;™ foru € S.
Then
U, Uz € §, 1y # Uy —> QU; -75 ng- (20)
Let 2’ = z;-...-74. 20 and 2" = Z(B41)- 2241 " -« - * Tn. Rewrite f according to the elements of
S
a2 = Z g uBlwt ), (21)
ugS

where P, € GF(q)[z,z"]. Then So415 = {u| P, # 0}.

Similar to the basis step we intend to apply the zero test [GKS 88] to P,. Therefore we construct
a black box for P, from the given black box for f. We evaluate (21) at the points z = w;’“" for
0 i< |S]:
f(.'l:’, w;’”"i, - ’wi—'oza ‘f’ :c”) — Z QL . Pu(l", xh‘).
ueS
We obtain the following linear system of equations:

(QL) SeiiE * (Pu(xrv'v"”))ues — (f(z" w;’o-i T
WES N—— e/

‘ ”))Ds;dst (22)

.

e

=B Rl = F

By (20) B is a non-singular Vandermonde matrix, hence the system of equations (22) has a
unique solution. With

P,(z',2") = (o0,...,0,1,0,...,0)-P
= (05w 051 By 0) - B~V F

- -

we are given a black box for P,, where s, has 1 at the position corresponding to the position
of uin S.

For @ = m + 1 all monomials occurring in f are determined. The corresponding coefficients
are given by the solution of (19) O

4.3.5 The NC-Interpolation Algorithm for Sparse Polynomials

Interpolation Algorithm [GKS 88]

Input:  Black box for f € GF(¢®)[z1,..., ), t-sparse.
Output: Sparse Representation of f: (Cus U)uesupp(f)- _
Step A: Execute Step 1-5 of the zero test and put the zero test set
W = (Whet Whee o whBie) for0< i< N, 1<I<t
at disposal.
Step B: For the purpose of the basis step compute the matrix

A7 = (af) ::GGF[Q) -

0<i<q
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Step C:

Step 1:

Step 2:

Step 3:
Step D:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:
Step 9:

Step E:
Step F:

Step 10:
Step 11:

4 POLYNOMIAL INTERPOLATION OVER FINITE FIELDS

Execute the basis step in parallel for any 0 < 8 < n.

Basis Step

Query the black box with s = [log,(4gn(n — 1)(;) + 2)] for the values

f‘_{";c) = f(wf‘l‘?“] - .1w£-6,.5’ ak’wl-f,.lﬁ.}g‘ . ’wf‘(_-“_n)
for0<i<t, 1<i< N, 1<k <qand for the values

élf? = f(O‘?""O!akaO\-'-aO) for 1 S ks q.

Compute in parallel for 0 <1< ¢, 0 < i < N the vectors

Py=A""" ( “['T))lékﬁ‘?.

Let Sy.5={k|3(,0) : PP #0).
Prepare the recursion step:
Determine a minimal s; satisfying ¢*t — 1 > 4gn-(n - 1) (‘;), ie. let

s1 = [logy(4gn(n — 1)(3) +2)1.

Construct the field GF(g*') and a primitive element w; in GF(g*) using the
Berlekamp algorithm.

Let N; := [ﬁ;,ﬁl]. Use the sieve of Erastosthenes to find a prime p; with 2N; <
p < 4Ny

Compute ¢;, := ;Jlr—J mod p; for 1 <4, j < Ny by means of the Euclidean algorithm.

Let C = (C,J)]S,"JSNI.
Denote by V' = (v;,) an arbitrary (N1 x n)-submatrix of C.
Put the test set

l"u“‘] I'-u,.z

W™ = (@™ ™) for0< i< N, 0T <t

at disposal.

Let m = [log, n]. Execute step F in sequential fora = 1,...,m.

Execute the recursion step in parallel for any 0 < 8 < 2™,

Recursion Step

Let 5 := 8428 X Sa,28+1

Determine in parallel for 1 < j < Ny and u € § the sums

-2(.'!
Ouj = Zm Ve
l=1

Determine a row v, of V such that the set {o,, | u € S} consists of pairwise distinct
elements. Compute Q, = wi*’, u € §S.
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Step 12: Compute the matrix
B~ = (Qﬁ) ;;ks’.lsl :
ueS
Step 13: Query the black box with s = s; for the values
fi{:} s f(wt'e"l N Jhensaa , w;c‘v,_; —— w:c-w..rjgﬂ J s+ 2041 . w;.gm)

for0<i<t, 1<i<N,0<k<|S| and for the values
8= £0,. ., 0,08 L w2 0,...,0) for0 < k< |S].
Step 14: Compute in parallel for 0 <[ <t, 0 < i < N the vectors

Pz’,f = B_l * (f"('?})ues i

Step 15: Let Soqp1p={u]|3(51) : P:(,?) #0}.

Step G: Output supp(f) = Sm+10. The coefficients of f results from the components of a
vector P, of the last recursion step.

4.3.6 Analysis of the Algorithm

We start with estimating the order of s, sy, N and N;. We note that s < [3+2 log,(nt)], hence
s = O(log,(nt)). From the definition of N we derive N < gnt? and similar for Ny, Ny < gnt*.
Furthermore |GF(¢*)| < Nng and |GF(¢g*)| < Ning.

Analysis of the zero test

In order to construct the field GF(¢*), we search for an irreducible polynomial & € GF(q)[z]
of degree s. Testing reducibility for the ¢**! univariate polynomials of degree s using the
algorithm of Berlekamp [Be 70] yields an irreducible ®. This takes ¢*+t1O(log®°(Nngq)) =
O(Nng?log®°(Nng)) processors and O(log?(Nng)) parallel time. GF(¢*) is isomorphic to
GF(q)[z]/®. The arithmetic in GF(¢*) is represented by the arithmetic for polynomial in GF(q)
of degree s and modulo reduction according to ®. If the polynomials are e.g. represented by
their companion matrices, the factor for the arithmetic in GF(¢*) compared to GF(q) is at
most O(log?®(ntq)) processors and O(log(ntq)) parallel time.

In order to find a primitive element w in GF(¢*) we compute the prime factorization of ¢* — 1.
Let ¢* — 1 = []p{*. This takes O((Nng)®" log(Nngq)) processors and O(log(Nnq)) parallel

time using the sieve of Erastosthenes. Then we test for any a € GF(q®) whether the powers
g-1
a P are distinct from one. In this case a is a primitive element of GF(¢®). Calculating the

powers for all a € GF(g®) takes at most O(( Nng)log®>®(Nnq)) processors and O(log?(Nngq))
paralle] time.

The next major step is the calculation of the evaluation points, that is we have to calculate
Nnt powers of w taking O(Nntlog?3(Nng)) processors and O(log?(Nnqt)) parallel time.

In summary, the zero test takes O(Nngqtlog>*(Nnq)) processors and O(log?(Nnqt)) parallel
time.
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Analysis of the basis step

The complexity is determined by the complexity of the zero test and the complexity for in-
verting the (g X ¢)-matrix A = (a}), ccr(g)- This takes O(q%®log? ¢) processors and O(log?q)

0<s<q

parallel time using [Mu 86]. Hence the complexity of the basic step is O(Nngtlog33(Nng) +
q*3log? q) processors and O(log?(Nnqt)) parallel time. We query the black box in parallel for
tgN arguments.

Complexity of the preparation of the recursion steps

We have to construct the field GF(¢*) and to put the test set at disposal. As above this takes
O(Ningtlog®>(Nyngq)) processors and O(log?(Nyngt)) parallel time.

Analysis of the recursions step

The recursion step is executed in parallel for 0 < 8 < 2™~2_ In order to construct the black box

for P,, we have to compute the matrix B in (22). For this purpose we compute the Ny -t? sums
2“

Cuj = z u;-v;; foru € § and 1 < j < N, and test whether these sums are pairwise distinct
=1

for a fixed j. Denote this row by vp. With @, =w{*° for u € § we obtain the (¢2 x 2)-matrix

B. This takes O(N112 log?®( N1ng)) processors and O(log?( Nynqt)) parallel time. Inverting the

matrix B takes O(° log?®(Nynq)) processors and O(log?t) parallel time. Step 13 queries the

black box for O(#3N) evaluations. In step 14 tN vectors of length O(t?) over GF(g*) are

computed in parallel. This takes O(Nt3log?(Nyng)) processors and O(logt) parallel time.

Hence the the complexity of one recursion step is estimated by 2™~%(O(N,#2 log?3(Nyinq)) +
O(t®log?®(N1ng))) processors, O(log?( Nyngt)) parallel time and 2™=*(O(t3N)) queries.

Complexity of the algorithm

Summing over O(log n) recursions and using the estimates of N and N; yields

o O(t®n%¢>log®5(ntq) + ¢*%log? q) processors,
o O(log®(ntq)) parallel time and

e O(gn?t5) queries

as claimed in Theorem 4.16. 0
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5 NC-Interpolation of Rational Functions

In this chapter we consider the problem of the rational interpolation. Let

Plz1,...,2q)
Q(z1,...,2n)

be a nonreducible representation of f, with P,Q € IK[zy,...,%,), t-sparse with deg, (P),
deg, (Q) < dand (P,Q)=1.

f(z1,...,20) =

While (f = 0) <= (P = 0) the test of f to zero can directly be reduced to the zero test for
t-sparse polynomials of [GK 87] and [BT 88] (cf. Section 2.1, 3.2), i.e.

f=0 <= f(ph,....p)=0 forallO<I<t
for pairwise distinct primes pq,..., ps.

Similarly, we can easily solve the problem whether two rational functions fi= 511- and f = 52—
are identical. It holds:

fi=h <= P-Q=P-Q1 < P-Q-P-Q =0.
Nt Nt e ~

tz-sparse t?.sparse 2t2-sparse

Again, we can apply the zero test for 2¢2-sparse polynomials:

fisf = A@Loh) = fBl...,0h) forall 0 <1< 22

The problem of reconstructing rational functions is much harder to solve. Until recently it was
unknown whether this problem is efficiently solvable, e.g. Ben-Or and Tiwari ([BT 88]) reduced
the reconstruction to the determination of sparse vectors in the null space of a certain matrix,
however, for general matrices this problem is known to be NP-complete.

Eventually, Grigoriev and Karpinski ([GK 88]) made the breakthrough. They show that the
techniques introduced in the previous chapters for the separation of monomials ([GK 87],
[BT 88]) and the technique for the enumeration of partial solutions ([GKS 88]) are sufficiently

powerful to construct a deterministic NC-algorithm for interpolation of t-sparse rational func-
tions.

Theorem 5.1  Let f € Z(zy,...,2,) be arational function with the representation f = £,
where P,Q € Z[z1,...,z,] are t-sparse polynomials with deg_ (P), deg, (Q)<dfor1 <i<mn
and (P,Q) = 1.

Then there exists a deterministic parallel algorithm (NC?3) interpolating f. The algorithm
takes O(log®(ndt)) parallel time and O((ntd"® + n3d?t175) log(ntd)) processors.

The algorithm involves two major tools: (1) the efficient zero test for t-sparse polynomials
([GK 87], [BT 88]) and (2) the recursive composition of partial monomials used in Section 4.3.

By Theorem 3.1 a t-sparse polynomial P is identical to zero iff P vanishes at the points
(Piy...,ph) for 0 < i< t, where the p;’s are pairwise distinct primes.
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We determine partial solutions of the interpolation problem by reduction to the zero test. The

partial solutions are composed to the total solution of the interpolation problem as in Section
4.3.

Assume that the number of variables is a power of 2 for simplicity of notation. Let n = 2™ and

P
f=§! WithP,QEZ[J:],...,.Z!n],
where P, () are t-sparse and relatively prime, with deg, (P),deg, (Q) <dforall1< i< n.

Define partial solutions for P and @ (cf. Section 4.3):

1 . + a .

55.33 = {I=(.vigam) | 2] gamypyg - :3'*’ ga-140—1 OCCUTs in P} and
2 ; ; Jzamt ;

.S'CE% = {J =01 Joan1) | 2], gt gq “o " TG aciga=y OCCUTS in Q}

withl <a<m+1and 0< 8 < 2mtl-o

Starting with Sﬂg and Sl(:?, we determine Sél and S{z,)g recursively for a = 1,...,m + 1.
In addition, we have to guarantee that the partial solutions correspond to the nonreducible
representation of f.

5.1 The Basis Step

For each variable we determine the set of exponents occurring in P and @ corresponding to

the nonreducible representation of f, i.e. we determine in parallel the sets .5'(” , and 5{2;_
for some fixed j with 0 < j < n.

Rewrite P and () according to powers of z;. Let 2’ = 24, ... 221 and TV =@ udy. o ey T

in. (1) )

flz) = where P‘-{I),Q?) € Z[z',z"). (23)
> 23 Qo)
1=0

We are interested in black boxes for P‘-“) and Q‘P). However, substituting distinct values a; for
z; and considering the system of equations derived from (23) does not lead in general to the
nonreducible representation of f.

Therefore we consider the following representation of f for 0 < ky, ks < d (this representation
is perhaps invalid).

ky
> 7y Pal,a")
flz) = ‘;‘3‘ with P, Q; € Z[z',z"]. (24)
Z 33 . Q,’(l‘", xn)
1=0

Among the valid representations we fix the one with the minimal k;. This representation
corresponds to the nonreducible representation of f: Suppose there are two different valid
representations of f with k; and k{ where k; < k{ and consider the unique factorization of the
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numerator polynomial of both representations. Then k| cannot corresponds to the nonreducible
representation because its factorization must contain an additional factor compared with the
factorization of the representation with k;.

Let a; € Z, 0 < | € 2d be pairwise distinct numbers substituted in (24) for z; then we have
forall 0 <1 < 2d:

Za; (z',a1,2") - Za; Qilz! ;2" (25)
i=0

We show in proof of Lemma 5.2 that validity of (25) implies that (24) is a valid representation
of f.

Interpreting Po, ..., Pk,, Qos- - -, Qk, as indeterminates yields the following system of equations.
The coefficients are determined by means of the given black box for f.

a ... a Py > 0 a ... af Qo
: : i 1= : : : (26)
k
8l ... Bgy Py, 0 Fisi A% on agﬁ @k,
=‘¢A! =_-VAH
where f,, = f(z',a;,2") and P;, Q; corresponds to Pi(z',z"), Qi(z',z"). Let

SU (k)= (| P #0} and S (k) = {i| Qi # 0}

If P,, # 0,Q, # 0. then the pair ky,k, fits (there exists a representation P/Q = f with
deng(P) = kl: degr,(Q) = k'Z)

Using the zero test supplied by Theorem 3.1, we test P; (z',z"), @Q,,(z,z") to zero for 0 <
11 < k1, 0 € 41 < ko. We need to know whether P; , @;, vanish at the points (phyesoaphiy) for
0<i<t.

Consider the system of equations (26) for (z',2") = (phy-..,Phy) for 0 < i< t. Let fi; denote
fa(PYs- . Do) and Py i, Qi denote Py (Pl .. Phq)s Qin(Phy -+ s Proa)-

( Poi \
ad ... af —foi-a} ... fOz ag? :
) Pus | 20, 0<ict. (@)
d ;q L " g s QO,:
azd —_— azd _f2d.i " azd LR 'Hfzd.t * a‘zd o .
=: A \ kai‘ }

Let a;0,@i1,...,8ik +k,+1 De the rows of A. Then we can represent (27) by:
o @i0+ €1 i+ oot Chydkytl - Biky ka1 = 0, (28)

where the coefficients ¢; correspond to the evaluations of the coefficient polynomials P, @i,
at points (pi,...,p,). By means of the representation (28) the zero test for the coefficient
polynomial with index s is equivalent to the test whether the vector a;, for 0 < i < ¢ is linear
independent from the vectors @i g, ..., @i s—1, Qi st1s- -+ Biky+ha+1-
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This is tested by examining whether the rank of A changes when the column a; , corresponding

to s is canceled from A. The computation of the rank can be done by means of the efficient
NC-algorithm of Mulmuley ([Mu 86]).

Among all fitting pairs (ky, k2) where the corresponding representation of f by (24) is valid,
we choose the minimal pair (e.g. the pair with the minimal k1), and set

51[3;)—1 = 5%.13}-1("“!) and 5{‘2}_1 = §19 1 (k2).

1,3~

Lemma 5.2 The basis step is correct.

Proor: Let ki, k; be the minimal fitting pair. Consider the polynomials p;i, p2 in the vari-
ables z; over the polynomial ring Z[z’, z"]:

k1
m(z;) = {Z-’B; Z:c (2} and po(z;): Zx Qi) - Z ) P‘(l}).

1=0 1=0 1=0

The degree of p;, p, is at most 2d since ky,k; < d. By (23) P,-(U,QE?) correspond to the
nonreducible representation of f. Furthermore P;, @; satisfy the equation (24) for 2; = a;, 0 <
1 € 2d, hence:

d k1
Z aj ’ P}”(:B",I”) Z af . Py(z', ")
1=0 = 1=0

d B kq ] )
z a: ; QEI)(xr1z::) z ai s Q{(I',J;‘")
=0 1=0

Thereby p; and p; coincide at 2d + 1 points, hence they are identical. Therefore
kq .
Z ) - P!z
Z I‘ I" xn

f(z) =

Since (ky,k2) is chosen as the minimal pair, Sff}_l(kl], 51(?_1(&2) correspond to the nonre-

ducible representation of f. o

5.2 Recursion Step

Suppose that the sets Sc(xli; and Sf}i are determined for 0 < ﬁ < 2mtl-a TForeach 0 < 8 <
2m= we construct in paralle] the sets Silll‘ﬁ, Sﬁzi p from .S'a 2 and Sa 26+1> and from Sf’%g
and Sfﬂﬁ_ﬂ (cf. Section 4.3).

Let S(1) := Sc(,l‘%ﬁ X Sé\,l.%ﬁ.}_] and ) := Sig.%ﬁ i Sc[f.%5+l‘

SW = {u-vlueS)sve s}
§SO = {u-v|ue S ve st ).
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P and Q are t-sparse, therefore |S(1)|,|5(2)| < ¢2. We have .S'S_?_lﬁ c s, Sf_!)_]ﬁ C 5, in

the following we eliminate those multiindices £ € S(1), k € 52 whose corresponding partial
monomial
k;a

k — kl . .
X* = ZTghayy oo Thhayga
does not occur in any monomial of P, Q.

Let 2’ = z1,...,%420 and 2" = Z(G4+1)294+1+- - > Tn. Rewrite P and @ according to the partial
monomials in §(1), S(2). We obtain the nonreducible representation for f:

k1 .pkm(xr,zrr}

k(1) gs(1) - .
flx) = i ey O (@ ) where Py, Q) € Z[z', 2"]. (29)
k()

k(2) e s(2)

20’
Let |k for k(1) € SO be defined by [k(V)] := Zkg” and |k®?)| for k(2 ¢ S similarly. It
=1

holds 0 < [k(M], [k(®)] < 29d, since deg,, (P) < d, deg, (Q) < d.

In order to obtain the nonreducible representation for f we test in parallel similarly to the
basis step whether for some pair ky, k; the representation

Z ol Py (a!,z")
1K) <ky

Z xk® | Qe (2!, 2)

[£(2)| <k,

f(x)

where Pk(l)’ Qk("’) € ZZ[x’, J:N] (30)

is valid.

In the basis step we substitute pairwise distinct numbers a; € Z, 0 < I < 2d for the variable &5
in order to guarantee that the matrices A’ and A" of the resulting system of equations (26) have
Vandermonde structure. Similarly, in the recursion step we have to separate the monomials

in §1), S at evaluation points. Using the idea from [GK 87] we substitute powers of 2*
ssgan atisn . (1) k(g)
pairwise distinct primes pi,...,pha, 0 <1< 243 for x. Let Q) = pf‘ veroa Doat and let Qs

be defined analogously.

Then by (30):

!
Z Qk(n 'Pk(”
[£(1)|<ky

Y. Uy Qe

k)| <k

f = f(&8h ke ™ forall 0 <1< 23, (31)

Again, solvability of (31) implies validity of (30). We obtain the system of equations:

Jo 0
(Qi(l)) 0<1<2e3 '(Pktl))lk(l}jgki = - (Qim) ogi<atd ‘(Qk(z))[k(mgkﬂ (32)

k(1) 1<ky 0 fors 1k(2) | <ky
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and

Jo 0
(%) osican = g (Ohen) ogrens |+ [ RO IwNgh
k(1) | ogigae . k(2) J ogl<2t (Qk(z})|k(2)|gk2

151 1<k 0 fa 1%(2) | <ky

):& (33)

; AR

e

=: 8B
Let
1 2
SO sk = (kW | Py #0} and S, 4(k) = (K2 | Qe # 0}

If Py, Queay Z O for some |k(1)| = ky, |k(®)| = k; the pair ki, k; fits (there exists a representa-
(B+1)2~ (8+1)2%

tion P/Q = f with Z deg, (P) = ki, Z deg, (Q) = k2).

F=/32% 41 J=p2a 41

Consider the system of equations (33) for (2’,2") = (p},...,ph_sa) for 0 < i < ¢t and apply
the zero test to Py;y and Q) supplied by Theorem 3.1. We determine those indices such that
the rank of B changes when the column corresponding to the index is canceled from B. The
rank is computed using the NC -algorithm of Mulmuley ([Mu 86]).

Among all fitting pairs ky, k; we choose the minimal one (e.g. the pair with minimal &;) and
set

Sotia=500 s0k) and 805 = 51 (k).

Lemma 5.3 The recursion step is correct.

Proor: Let ky,k; be the minimal fitting pair. Then we have to show that equation £30)
corresponds to the nonreducible representation (29) of f. P and Q are t-sparse, so are Py

and Q_k(g).

Consider the polynomials p;, p; in the variables 2g9a41 *. .. Zg2a424 Over the polynomial ring
Z[z', z"):
KD K2 =
n(x) = ( Z x - Puy) - ( Z X Q)
k(D] <ky k()< d2e
k(2) K1) 5
paAx) = ( Z X Qray) - ( Z X" Pyyy)-
[k(2) | <ka |k(1)|<d2a

Since P and @ are t-sparse the number of Py # 0, Qu2 # 0 is at most ¢t. Furthermore
|S(M)],152)| < ¢2, hence p; and p; have at most t3 terms in the variables Zggay1 ... Tgzaqza.
Let S be the set of the occurring multiindices. Rewrite p:= p; — py as

p= Z x* - Ty with Ty € Z[z',z"].
kes

Py, Q 2y satisfy the equation (30) with zggaty ...  Tpza42e = ph,.. ., pha forall 0 <1 < 23,
Then

(Qi) 0<ig2td ‘(Tk)kes = 0.
kES  Sm———
S ——

ey = il
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According to the construction, U is a non-singular Vandermonde matrix, hence 7 = 0. There-
fore p; = p; and

Z k1 'Pk(l)(xfm z") Z w1 Pk(n(:c',x”)
[k()|<dza DR

z k() Qk(z)(z",x”) Z Xk, Qk(ﬂ(r‘e ')
[k(2)|<d2e |2 [ <k

This proves validity of (30).

Since (ki,k3) is chosen as the minimal fitting pair, Sil.l].l,,@(kl) and .S'f_zl‘ﬁ(kg) correspond to

the nonreducible representation of f: Consider two distinct valid representations for f:

1)
Z <KD Py (2!, 2") Z xH P;;m(x’,x”)
k1) es(1) k(1) egs(1)
f(.?:' x i-.."”] gk N |k(1)t$ki
kl 1 =T —_— 5
Y. X Que(ala”) Y. =500, o)
K(2) es5(2) K2)gs(2)
1&(2} |k, 15(2)]<k?

and assume that k; < k,. Hence there is some variable z; from x occurring with a larger
exponent in the second representation than in the first one. Therefore the corresponding fac-
torization contains a factor which does not occur in the factorization of the first representation.
Since the nonreducible representation of f is unique, we conclude that the second representa-
tion is reducible. We fix the minimal fitting pair (ki,k,) and are guaranteed that the largest
occurring exponent of each variable from (x) is less or equal than in all other fitting represen-
tation. So the minimal pair (ky, k2) corresponds to the nonreducible representation. m]

5.3 The Rational NC-Interpolation Algorithm

Rational Interpolation Algorithm [GK 88]

Fut 2= f(Bee o os Bimrs @ty B 1 P)

Input: Black box for a t-sparse rational function f € Z[xy,...,z,). Let £ be the nonreducible
representation of f. Then deg, (P) < d,deg, (@) <dfor1<i<n.

Output: Sparse representation of P, Q.

Step A: Let m = [logn]. Use the sieve of Erastosthenes to find pairwise distinct primes
P1y.-.Pn.

Step B: Execute the basis step in parallel for 1 < j < n,

Basis Step

Step 1:  Let ag,...,azq be pairwise distinct numbers in Z \ {0}.
Let S{'l}_l(kl], 55‘2_3_1(392] = () for any pair 0 < ky, k9 < d.
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Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

5 NC-INTERPOLATION OF RATIONAL FUNCTIONS

Query the the black box for the values
fi,f = f(p‘ls '-!pf-:i-laa'hp_‘-;i-l»ls“‘!p:;) O S I S 2da 0 S i < t

Execute Step 4-6 in parallel for each pair 0 < kj, ks < dand for0 < i < &

4 s a,g‘ ~fio-ad ... =fio- aﬁz
'Akl h2 = . (34)
k
a; ... afy —fiog-ady ... —figa-a¥

Determine the rank of Ay, x,.

Let Ak, k,(7), 0 < 7 < k1 + k3 + 1 be the matrix resulting by canceling the 7-th
column from Ag, k,. Determine in parallel the set R of those indices r satisfying
rg(Aky k) > rg( Ak, k, (7))

SO (k) = SO (k)U{reRI0<T <k} and
S}%L (k2) = S{?J}_ (k)U{reR|ky+1<r <k +ko+1}.

Lev: 88 =80 (k) and 5B | = 52 (ky)
where k; is minimal and k; € ,5'(1) (K1), ko € 51 J.},_1(3'92).

1,5—

Step C: Execute StepD fora=1,...,m

Step D: Execute the recursion step in parallel for 0 < g < 2m—2,

Step 8:

Step 9:

Step 10:
Step 11:

Step 12:
Step 13:

Recursion Step

Let 50 ;=5 % 900 and BR800 % 50,
Let S&), (1), SP), 4(kz) = @ for any pair 0 < ky, ky < 2%(d — 1),
Query the black box for the values

fi.f = f(pia e 1p§32“vp‘1'r T 1pt2‘11p'(:ﬁ+1)2a+11 e '!p:z)
for0<I<2t3and 0< i< t.
' KD Ky K2 K2
Let Q1) = pl . ,pza and Qo) = p1 >
Execute Step 11-12 in parallel for each pair 0 < ky, ka < 2%(d — 1).
Let {k(V) € 5(1} D] < k)= {61, kD) and {k@) € SO ||k@)]| < ko) =
(kP?,... KDy,

Execute Step 13-15 in parallel for 0 < i < ¢.

fio 0

- l .
Bk;.kg = (Qk(l)) ogigatd 5 (Qi(z)) ogigad | - (35)
1) |<8y 0 o k() |<ky
1,2t

Determine the rank of By, x,.
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Step 14: Let By, k,(7), 0 < r < ry 4 75 the matrix obtained from By, x, by canceling the
r-th column. Determine in parallel the set R of indices r satisfying rg(Bg, x,) >

rg(Bk; &y (7))

Step 15:
590, (b)) = sgtimkl)u{remogru]} atid
Sc(x-i-lﬁ(k?) . Salm U{reR|r <r<ry+r3}.

Step 16: Let S{l) Sc(x+l (k1) and 5(_')_1 B 5,2.31 g(kz

for ky mmlmal and ky € Sa-[-l s(k1), k2 € Sf,,_gl (k2).

Step E:  supp(P) = Sjr:-)u.o» supp(@Q) = st -)H o The coefficients of P, ) are given by a non-
trivial solution of the homogeneous system of equations (35) for @ = m and the minimal

pair kq, ko.

5.4 Analysis of the Algorithm
Basis Step:  O(ntd"® log?(ntd)) processors, O(log? d) parallel time, since

o Step 2:  O(dtnlog(nt)logd) = O(dtnlog(ntd)) processors, O(logt) parallel time.
o Step 4:  O(d*®) processors, O(log? d) parallel time ([Mu 86]).
o Step 5:  dO(d*®) processors, O(log? d) parallel time ([Mu 86]).

e Step 3:  d*t- (number of processors for the Steps 4-6) = O(td"*®) processors, O(log
parallel time.

Step 7: By means of logarithmic search O(logd?) parallel time.

Step B:  O(ntd™%) log(ntd) processors, O(log? d) parallel time.

Recursion Step:  O(n?d?t'7% log(ntd)) processors, O(log?(ndt)) parallel time, since

o Step 9:  similar to Step 2: O(¢3nlog(ntd)) processors, O(logt) parallel time.
o Step 13: O((t*)*®) = O(#!3®) processors, O(log? t) parallel time ([Mu 86]).
o Step 14: O(t3t135) = O(¢165) processors, O(log? t) parallel time ([Mu 86]).
e Step 10: O(n?d%t13-5) processors, O(log? t) parallel time.

e Step 16: By means of logarithmic search: O(log(ndt)) parallel time.
Step D:  O(n3d?t!75 log(ntd)) processors, O(log?(ndt)) parallel time.
Step C:  O(log nlog?(ndt)) = O(log3(ndt)) parallel time.
Totally:  O((ntd"® + n3d?¢17-5) log(ntd)) processors, O(log®(ndt)) parallel time.

Hence we obtain the statement of Theorem 5.1.

2d)
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5.5 Handling pathological situations

Performing the basis and recursion step the algorithm looks in parallel over all pairs 0 <
k1, ks < nd and considers for every pair kq, k2 the linear system of equations

) (2)
> p* Py (2! 2") = f(2',pha") . DD P Qua(z'2") (36)
[E(1) | <ky [k(2)| <k,
. () (+)
for 0 < I < 2d (basis step) and 0 < I < 2¢3 (recursion step) where p“‘( ) = ;ﬁik‘ R fagf,?“ with

pairwise different primes ;. We obtain black-boxes for Py and @ ). Involving the zero test
of Tiwari we test whether Py # 0, Q) # 0 by solving (38) for (z',2") = (pi,. .., Pp_ga) for
0 < i < t where p; are pairwise different primes and pairwise different from p,.

If the evaluation points coincide with roots of the numerator or denominator, this approach does
not work. We denote these situations pathological (cf. [Sc 80]). In the following we show how to
overcome these difficulties using an extended Vandermonde argument. A t-sparse polynomial
p is identical to zero iff there are iy,...i, with p(p{,...,pi) =0for 0 < j< 1.

We assume that the black-box for f indicates undefined function values, i.e. roots of the
denominator by a special symbol, say ”L”.
First we check whether f # 0 and f # L. Query the black-box for the values

fi=f(pt,...,ph) for0 <i<2t.
Then by the aid of the extended Vandermonde argument
f#L < [|{i:fi=1} <t and

J#0 <= [{i:fi=0}| <t
Hence we assume that f # 0 and f # L.

Let us return to the situation above. Let f,; = f(z',p¥,z") where (2/,2") = (pi,..., Ph_2a)-
We have to guarantee that all evaluations of f are different from 0 and L by involving the
extended Vandermonde argument. Since f # 0 and f # L we conclude that among some
indices 3g,...,12:—1 there is some index i with f; ; # 0, f;,; # L. To preserve the extended
Vandermonde argument for the zero-test of Py and Q) we choose i; = i+7-tfor 0 < j < 2¢.

Checking consistence for each ! we can state that among the indices ig,. .., 4¢d (basis step)
and 4g,...,144 (recursion step) there is i, with f, 1 # 0, fi,1 # L for each .

We can extent our argument to the ¢ linear equation systems considered in order to perform
the zero-test for Py and Q). We sum up to get a very rough upper bound for the number
of required evaluation points.

o Basis step: n(2dt? + 8d%t)

e Recursion step: 2m+1-2(2¢4 + 8t7)
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6 Conclusions

Recently, Kaltofen and Yagati ([KY 88]) designed fast sequential algorithms for solving linear
systems of equations with Vandermonde matrices and Toeplitz-matrices for fields of character-
istic zero. The complexity of the algorithms introduced in Chapter 3 is reduced.

Unfortunately, these algorithms are not applicable to finite fields. Therefore it is still open
how to improve the interpolation algorithms given in Chapter 4 by making use of the special
structure of the apparent matrices.

Kaltofen and Trager ([KT 88]) succeed in designing efficient probabilistic algorithms for the
reconstruction of t-sparse rational functions as well as a probabilistic polynomially factorization
algorithm for sparse polynomials. To accomplish this they use the polynomial interpolation
algorithm introduced in Chapter 3.2. The & priori knowledge of an upper bound d on the
degree is not necessary. However, this does not prove that the interpolation of sparse rational
functions lies in P.

This is achieved by the algorithm of Grigoriev and Karpinski presented in Chapter 5, given an
upper bound on the degree. This puts the problem in P and in deterministic boolean NC.

The problem of rational interpolation is also connected in an interesting way to the seminal
problem of Strassen [St 73] of computing the numerators and denominators of general functions
given by straight-line programs. The algorithm of Grigoriev and Karpinski transforms deter-
ministicly arbitrary sparse rational straight-line programs into equivalent programms where
only one division is allowed at the end of a computation.

The algorithm lies in NC, however when implemented sequentially (cf. Appendix A.4) the
algorithm is not practical due to the large number of processors. Consequently, the important
practical problem arises to improve substantially the number of processors of the algorithm.

The most promising attempt is to make use of the structure of the apparent matrices in order to
reduce the effort for computations of ranks and to develop a logarithmic method to determine
linear independent columns,
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A Implementation in Scratchpad II

A.1 The Computer Algebra System Scratchpad II

Scratchpad II is a language featuring parameterized abstract data types and generic operators
particularly suited for computer algebra. It is currently developed at the IBM T.J. Watson
Research Center.

The abstract data type concept of Scratchpad Il is based on categories, allowing the algorithms
to be written for algebraic objects at their natural level of abstraction. The essential entities in
the Scratchpad II language are objects created and manipulated by functions. There are four
kinds of objects in the language:

¢ Computational objects
¢ Functions
¢ Domains

¢ Categories

Objects which are members of domains are called computational objects. One can look at
domains as abstract (algebraic) data types of computational objects. A domain consists of

¢ a set of generic operations,
e a set of functions, which implement the operations and

e a set of attributes, which designate properties of the operations.

Domains are organized in a hierarchy; for the representation of an abstract data type one can
refer to the representation of existing domains.

The generic operations indicate the possible manipulations of members of the domains. These
operations are specified by functions in the local, not accessible declarative part of the domain.
By means of attributes the generic operations are assigned properties in order to classify a
domain according to categories.

Domains are created by special functions (domain constructors).

A category is an abstraction of a class of types. It specifies those properties which some
collection of domains have in common. A category determines a class of domains with common
operations and attributes but which may well have different functions and representations. All
categories have:

¢ a set of generic operations and

e a set of attributes.

A domain is a member of a category iff it supplies the generic operations on the one hand
and these generic operations have the demanded attributes. Categories are created by special
functions (category constructors). They can be organized in a hierarchy.
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Example : Let Set be a category with the generic operation
O=0:($, $) -> Boolean .

Any domain containing a test to equality belongs to the category Set (The symbol
§ is used to determine "this domain”, i.e. the one which has the categories).
By means of the category Set the category SemiGroup can be constructed:

SemiGroup : Category == with Set
O+«0 : (8%, 8) >8

associative(O x O)

A domain belongs to the category SemiGroup iff it belongs to the category Set
and a associative multiplication is defined for the members of the domain.
The category to which a domain belongs is thus not unique.

The facility for categories is unique to Scratchpad II. By means of this concept to it is possible

to formulate polymorphic implementations of algebraic algorithms which is crucial to computer
algebra.

Example : Consider the Euclidean algorithm for computing the greatest common divisor of
two integers:

ged(x,y) == if x=0 then y else gcd(y,remainder(x,y))

Although this algorithm was originally designed for integers, a closer examination
shows that this algorithm can be applied for any integral domain which has an ap-
propriate remainder function with the property (attribute), that a remainder se-
quence generated by any two elements. Thereby, the category Euclideandomain
can be defined. Then

gcd(x:R,y:R) : R where R : Euclideandomain ==
if x=0 then y else gcd(y,remainder(x,y))

is a specification of the Euclidean algorithm in the algebraic most general form
and is defined for all domains belonging to the category Euclideandomain.

Scratchpad II contains an extensive library of algebraic algorithms. In addition to the poly-
morphic concept this language makes it possible to implement an algebraic algorithm quickly
without the technical overhead which arises in usual programming languages in order to prepare
the implementation of abstract algebraic data types and operations.

A.2 The Interpolation Algorithm [CGK 87]

First we present the implementation of the interpolation algorithm von Clausen, Grabmeier
and Karpinski introduced in Section 4.2,

Let f € FF[zy,...,2,] be a t-sparse polynomial over the finite field F'F and let FFX be the
extension field over F'F' of degree n. f is given by a black box which returns the evaluation of
the polynomial f in the extension FFX for an argument from FFX™. Thus, the black box is
interpreted as a mapping (e.g. a straight-line program):

black : List(FFX) -> FFX
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The necessary parameter are the basis field FF of type FiniteField, n and t of type
NonNegativeInteger (NNI) and the black box black of type Mapping (FFX,List (FFX)). The
sparse representation of the polynomial which is to be reconstructed is implemented as a list
of coefficients and exponents.

SREP == List(Record(coeff : FF, alpha : List(NNI)))

If the black box evaluates the point zero to a non-zero value a then f(z,...,2,) — a is inter-
polated, i.e we have to subtract the value a from the evaluations of the black box. Furthermore
we use the fact that in this case the resulting polynomial is (¢ — 1)-sparse.

The package CGK(FF,n) provides the function interpol computing the sparse representation
of the polynomial with regard to the algorithm [CGK 87]:

Jabbreviation package CGK InterpolationClausenGrabmeierKarpinski87

InterpolationClausenGrabmeierKarpinski8?
(FF : FiniteField , n : Positivelnteger) :
public == private where

FFX ==> FiniteFieldExtension(FF,n)

N ==> PositiveInteger

NNI ==> NonNegativeInteger

v ==> Vector

L ==> List

MREP ==> Record(coeff : FF, alpha : L(NNI))
SREP ==> L(MREP)

UP  ==> UnivariatePoly

SM  ==> SquareMatrix

SUP ==> SparselUnivariatePolynomial (FF)

public == with

interpol : (Mapping(FFX,L(FFX)),N) => SREP
++ interpol(blackbox,t) ‘generates the sparse representation
++ of the t-sparse polynomial in n variables over the
++ Galois-Field with q elements. The polynomial is given by
++ the function blackbox evaluating the polynomial in the
++ field extension of degree n

private == add
== local functions

zeros : UP(X,FFX) -> L(FFX)
-- zeros(p) lists all roots of p using Horner evaluation
-=- to find a root, divides p by the linear factor and iterates

disclogarithms : (FFX,L(FFX)) -> V(NNI)
—- disclogarithms (omega,1ffx) computes the discrete logarithms
== for all elements of the list 1ffx by comparing these elements
—- with successive powers of omega

getEvaluations : (Mapping(FFX,L(FFX)),FFX,NNI)} => V(FFX)
-- evaluate the blackbox for the 2#t+1 evaluation points
-- £(0,..,0) is stored in the last component of the result vector
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pAdic : (NNI,NNI) -> L(NNI)
== pAdic(a,p) calculates the p-adic expansion of a

interpol(blackbox,tsparse) =

sparserep : SREP  := nil$SREP

coefficients : V(FFX) := new(1,0$FFX)

omega : FFX = primitiveElt ()$FFX

fvector : V(FFX) := getEvaluations(blackbox,omega,tsparse)
q : NNI i= gize()$FF

lambda : V(FFX)

bchpoly : UP(X,FFX)

b : V(FFX)

k + NNI

constflag : Boolean := false
t : NNI := tsparse::NNI
if fvector(2xt) "= O0$FFX then
constflag := true
t 1= (t - 1)::NNI

== construct the matrix containing the evaluations
fmatrixt : SM(t,FFX) := new(t,t,0$FFX)
for i in 0..t-1 repeat
for j in 0..t-1 repeat
fmatrixt (i, j):=fvector(i+j)

== k is the exact number of monomials in the polynomial
k := rank(fmatrixt)$SM(t,FFX)
coefficients := new(k,0$FFX)
lambda new(k,0$FFX)
b := new(k,0$FFX)
if k = 0 then return sparserep == zero polynomial
fmatrixk : SM(k,FFX) := new(k,k,08$FFX)
for i in 0..k-1 repeat

for j in 0..k-1 repeat

fmatrixk(i,j):=fmatrixt(i,j)

W

== calculate the coefficients of the auxiliary polynomial
for i in 0..k-1 repeat b(i):=-fvector (k+i)

fmatrixk := (inverse(fmatrixk)$SM(k,FFX))::SM(k,FFX)
lambda := (fmatrixk *$SM(k,FFX) b)::V(FFX)

== construct the auxiliary univariate polynomial and its zeros
helppoly : UP(X,FFX)
el : FFX
bchpoly := (monom$UP(X,FFX)) (k,1$FFX)
for i in 0..k-1 repeat
el := lambda(i::NNI)
helppoly := (monom$UP(X,FFX)) (i::NNI,el)
bchpoly :=bchpoly + helppoly
roots := zeros(bchpoly)

-- get the discrete logarithms of the roots
alphas := disclogarithms(omega,roots)

== add the p-adic expansions of the alphas to the result
monomial : MREP
for j in 0..k-1 repeat

monomial := [O$FF, (pAdic(alphas(j::NNI),q))]

sparserep := append(sparserep,list(monomial)$SREFP)



A IMPLEMENTATION IN SCRATCHPAD II

== compute the coefficients of the polynomial
for i in 0..k-1 repeat
for j in 0..k-1 repeat
fmatrixk(i,j) := roots(j)#*i
for i in 0..k-1 repeat
b(i):=fvector(i)
fmatrixk := (inverse(fmatrixk)$SM(k,FFX))::SM(k,FFX)
coefficients := (fmatrixk *$SM(k,FFX) b)::V(FFX)
for i in 0..k-1 repeat
(sparserep(i)).coeff := retract(coefficients(i))$FFX
if constflag then -- add the constant term to the result
monomial := [retract(fvector(2#t+2))$FFX, (pAdic(0,q)}]
sparserep := append(sparserep,list(monomial)$SREP)
sparserep

~- definitions of local functions

getEvaluations(blackbox,w,t) ==

evalvector : V(FFX) = new(2#*t+1,08FFX)
argument : L(FFX) := nil$L(FFX)
computed : V(Boolean) := new(2*t,false)
helparg ¢ V(FFX) = new(n, 0$FFX)
helphelp : NNI =1

valueatzero : FFX

q : NNI := gize()$FF

sold : NNI

snew : NNI

—-- generate the null argument
for j in 0..n-1 repeat
argument := cons(0$FFX, argument)
valueatzero := blackbox (argument)
evalvector(2#t) := valueatzero
if valueatzero "= 0 then t := (t - 1)::NNI
-- generate the first argument
for j in 0..n-1 repeat
argument  := cons(13$FFX, argument)
helparg(j) := w ** helphelp
helphelp := helphelp * q
evalvector(0) := blackbox(argument) - valueatzero
for i in 1..(2%t-1) repeat
-- generate the next argument
for j in 0..n-1 repeat
argument (j: :NNI) := argument (j)+helparg(j)
if not computed(i) then
evalvector(i) := blackbox(argument) - valueatzero
sold := i
snew :=q ¥ i
while (snew < 2%t) repeat
evalvector(snew) := evalvector(sold) #* g
computed (snew) := true
sold := snew
8nev != snew * q
evalvector

zeros{unipoly) ==

rootlist : L(FFX) := nil$L(FFX)

val,mval : FFX

eonval : UP(X,FFX)

mon : UP(X,FFX) := monom(1,1)$UP(X,FFX)

—- generate the list of all roots of the polynomial unipoly
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for i in 1..size()$FFX while degree(unipoly) >0 repeat

val := index(i :: PositivelInteger)$FFX

mval := HornerEval(unipoly,val)$UP(X,FFX)

mval "= 0$FFX => "next value"

monval := mon-(val :: UP(X,FFX))

rootlist := cons(val,rootlist)

unipoly := (unipoly exquo monval) :: UP(X,FFX)
rootlist

disclogarithms(w,1ffx) ==

v : FFX = v

log : NNI 1= 1

k : NNI i= $1ffx
number : NNI = k

vleg : V(NNI) := new(k,0)
help : V(Boolean) := new(k,false)

while number > 0 repeat
for i in 0..k-1 repeat
if not help(i) then
if 1ffx(i) = v then
vlog(i) := log
help(i) := true
number := (number - 1)::NNI
¥V i=V ¥ W
log := log + 1
vlog

pAdic(a:NNI,p:NNI) ==
padic : L(NNI) := nil$L(NNI)
for i in 0..n-1 repeat
digit := (a div p).remainder
padic := append(padic, list(digit::NNI))
a := (a div p).quotient::NNI
padic

The package CPFF provides the functions createpoly to generate a random polynomial over
finite fields and convertrat to generate a mapping (black box) which gives the evaluations in
the corresponding field extension:

)abbreviation package CPFF CreatePolynomialsOverFiniteFields

++ CreatePolynomialsoverFiniteFields contains functions for

++ generating polynomials over finite fields in order to test the

++ polynomial interpolation algorithms of Clausen, Grabmeier, Karpinski
++ and of Grigoriev, Karpinski, Singer

CreatePolynomialsOverFiniteFields
(VarList:List(Expression),FF:FiniteField,s:Positivelnteger) : with

createpoly : NNI -> MP
++ createpoly(t) creates a random t-sparse polynomial
++ over the ring R in the variables given by VarList

convertpol : MP -> Mapping(FFX,List(FFX))
++ convertpol(poly) generates a black box representing
++ the polynomial poly evaluated in the finite field extension
++ FFX of FF of degree s

Examples:
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1. Let = 2.6=3, ff =2 GF(3)
poly := createpoly(3)$CPFF(vl,ff,2)
T1T9 + 2 Type: P[x[1],x[2]]GF 3
black:= convertpol(poly)$CPFF(vl,ff,2)
theMap(%G15989,111) Type: (L FFX(GF 3,2) -> FFX(GF 3,2))
interpol(black,3)$CGK(ff,2)
[[coeff= 1,alpha= [1,1]], [coeff= 2,alpha= [0,0]]]
Type: L Record(coeff: GF 3,alpha: L NNI) .338 sec (EV)
2. Letn=2,t=35, ff = GF(3)
poly := createpoly(5)$CPFF(vl,ff,2)
(223 + 1)x3 + (23 + z2)z; + 223 Type: P[x[1],x[2]]GF 3
black:= convertpol(poly)$CPFF(vl,ff,2)
theMap(%G15989,396) Type: (L FFX(GF 3,2) -> FFX(GF 3,2))

interpol(black,5)$CGK(ff,2)

[[coeff= 1,alpha= [2,0]], [coeff= 1,alpha= [1,2]],
[coeff= 2,alpha= [0,2]], [coeff= 1,alpha= [1,1]],
[coeff= 2,alpha= [2,2]]]

Type: L Record(coeff: GF 3,alpha: L NNI) .802 sec (EV)
3. Letn=4,t=17, ff = GF(7)
poly := createpoly(7)$CPFF(vl,ff,4)

3242828 + 528232224 + 52352823 + (5z3a3z§ + 32423 + 22dadcy)2?
Type: P[x[1],x[2],x(3],x[4]]1GF 7

black:= convertpol(poly)$CPFF(vl, ff,4)
theMap (}G15989,450) Type: (L FFX(GF 7,4) -> FFX(GF 7,4))
interpol(black,7)$CGK(ff,4)
[[coeff= 3,alpha= [6,6,0,1]], [coeff= 2,alpha= [2,1,4,4]],
[coeff= 5,alpha= [4,2,3,6]], [coeff= 5,alpha= [2,6,3,31],

[coeff= 3,alpha= [2,5,0,1]], [coeff= 5,alpha= [3,6,5,3]]1]

Type: L Record(coeff: GF 7,alpha: L NNI) 28.822 sec (EV)
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A.3 The NC-Interpolation Algorithm [GKS 88]

In this section we give the implementation of the NC -interpolation algorithm of Grigoriev,
Karpinski and Singer for t-sparse polynomials over finite fields GF(q).

The polynomial which is to be reconstructed is given by a black box. It enables us to evaluate
the polynomial over an arbitrary field extension of GF(g).

We implement the black box as a mapping (cf. A.2) parametrized with the degree of the field
extension.

Since it is not (yet) possible to specify mappings with parametrized domain and codomain, we
assume the black box to evaluate the polynomial in the field extension GF(¢*) for some fixed
degree s.

The given implementation works in the logarithmic field éxtension GF(g*) with

s = [log,(4gn(n - 1) (t;) +2)].

We abstain from the possibility to carry out the zero test for coefficient polynomials in the
slight extension GF(¢%) with 3 = [log,(4¢n(n — 1)(;) + 2)]; we also use the extension GF(g*).

The package GKS(FF,s) provides the function interpol.
interpol(black,t,n) computes the sparse representation of the ¢-sparse polynomial in n
variables over the finite field F'F given by the mapping black.

The set of partial solution in each recursion step is implemented by a list of lists of the occurring
exponents. This list is initialized in the basic step by computing the occurring exponents for
Z1,...,Tyn. By padding this list by nil we accomplish that the algorithm is also usable for values
of n not representing some power of two.

While doing the recursion step, we place the (2 - 3)-th component in to the (8)-th component
as the new partial solution, if the (28 + 1)-th component of the list is nil.

Furthermore, we make use of the fact that in the last recursion step the coefficient polynomials
corresponding to the partial solutions are constants. So we can omit the loops for the zero test
of the coefficient polynomials (cf. step 13 in 4.3.5); only the vector Py, has to be calculated.
The non-zero components of this vector give us the coefficients of the polynomial.

Jabbreviation package GKS InterpolationGrigorievKarpinskiSinger88

InterpolationGrigorievKkarpinskiSinger88
(FF : FiniteField , s : Positivelnteger) :
public == private where

FFX ==> FiniteFieldExtension(FF,=s)
I ==> Integer

BO ==> Boolean

SI ==> Smalllnteger

NNI ==> NonNegativeInteger

v ==> Vector
L ==> List
MREP ==> Record(coeff : FF, expon : V(NNI))

SREP ==> L(MREP)

UP  ==> UnivariatePoly
M ==> Matrix

SM  ==> SquareMatrix
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SUP ==> SparseUnivariatePolynomial (FF)
E ==> Expression

DS ==> DisplayPackage

OUT ==> QutputPackage

public == with

interpol : (Mapping(FFX,L(FFX)),NNI,NNI) -> SREP
++ interpol(blackbox,t,n) generates the sparse representation
++ of the t-sparse polynomial in n variables over the
++ Galois-Field with q elements using the NC-Algorithm
++ of Grigoriev, Karpinski and Singer. The polynomial is
++ given by the function blackbox evaluating the
++ polynomial in the field extension of degree s

private == add
-- local functions

cauchy : (NNI,NNI) -> V(D)
-- cauchy(N,n) constructs the (N#n) Cauchy matrix
== the relevant elements are stored in a vector

test set : (NNI,NNI,NNI,FFX,V(I)) -> M(FFX)
-- test set(N,n,t,omega,C) generates set of evaluation points
-- stored like the Cauchy matrix C in a space efficient way

kartprod : (L(V(NNI)), L(V(NNI))) -> L(V(NNI))
== build up S(alpha,2*beta) # S(alpha,2%beta+1i)

interpol(blackbox,t,n) ==

sparserep : SREP t= nil$SREP
coefficients : L(FFX) := nil$L(FFX)
SetofExp : L(L(V(NNI))) := nil$L(L(V(NNI)))
candidates : L(V(NNI)) := nil$L(V(NNI))
omega : FFX := primitiveElt () $FFX
q : NNI := size()$FF

qs : NNI _ := size() $FFX
fvector : V(FFX) := new(q,03FFX)
localExp : L(V(NND)) := nil$L(V(NNI))

-- calculate the dimension N
N := (ceil((qa-1)/(4*n*q))$QuotientField(I)): :NNI

-- get the cauchy matrix
C := cauchy(N,n)

== get the set of test points
TestSet := test set(N,n,t,omega,C)

-~ list the elements of FF
gfq : V(FFX) := new(q,13$FFX)
for k in 0..9-1 repeat
gfq(kx) := (index((k+1)::PositiveInteger)$FF)::FFX

-=- generate the transformation matrix of the basic step
A : SM(q,FFX) := new(q,q,13FFX)
for j in 1..9-1 repeat
for k in 0..q-1 repeat
A(k,j) := gfq(k) * A(k,j=1)



A.3 The NC-Interpolation Algorithm [GKS 88]

A := (inverse(A)$SHM(q,FFX))::SM(q,FFX)
for beta in 0..n-1 repeat
-- basic step

localExp := nil$L(V(NNI)) -- §(1,beta)
added : V(BO) := new(q,false)
temp : FFX
for 1 in 0..t repeat
arg := nil$L(FFX)
if 1 = 0 then
for j in 0..n-1 repeat
arg := cons(13$FFX,arg)
if ({1 > 0) and (1 < t)) then
for j in n-2..0 by -1 repeat
arg := cona(TestSet(l-1,j),arg)
if 1 = t then
for j in 0..n-1 repeat
arg := cons(0$FFX,arg)
for i in 0..N-1 repeat
if ((1 > 0) and (1 < t)) then
temp := TestSet(l-1,n+i-1)
arg := append(arg,list(temp)$L(FFX))
old := arg(beta)
for k in 0..q-1 repeat
arg(beta) := gfq(k)
fvector(k) := blackbox(arg)
fvector := (A *$SM(q,FFX) fvector)::V(FFX)
for k in 0..q-1 repeat
if fvector(k) "= 0 then -- member of S(1,beta)
if not added(k) then
localExp := cons([k]::V(NNI),localExp)
added(k) := true
arg(beta) := old
arg := drop(arg,1)
if (1=0) or (1=t) then i := N
-~ end of i-loop
-=- end of 1-loop
SetofExp := append(SetofExp,list(localExp)$L(L(V(NNI)}))
-- end of beta-loop and basic satep

== calculate number of recursion steps
m: NNI :=0
pow := 1
while n > pow repeat
Bi=m+ 1
pow := pow * 2
for i in nt+1..2#%*m repeat -- padding with nil
SetofExp := append(SetofExp,list(nil$L(V(NNI}))$L(L(V(NNI))))

for alpha in 1..m repeat
for beta in 0..(2#%x(m-alpha)::NNI-1)::NNI repeat
if SetofExp(2#beta+l) = nil$L(V(NNI)) then
SetofExp(beta) := SetofExp(2+beta)
else

-= recursion step

-- construct the set of candidates, i.e the set S



60

A IMPLEMENTATION IN SCRATCHPAD II

candidates := kartprod(SetofExp(2*beta),SetofExp(2+beta+1))

lenofcan := #candidates(0) -- length of elements in S
numofcan := #candidates -- number of elements in S
vhelp = new(lenofcan, 1$NNI)

SetofExp(2%beta) := nil$List(V(NNI))
SetofExp(2*beta+1) := nil$List(V(NNI))

== find a row of the cauchy matrix which seperates the
-- elements of candidates
sepind : NNI := 0 —-- index of seperator row
found : BO := false
while not found repeat
sum : V(NNI) := new(numofcan,0)
found := true
for j in O..numofcan-1 repeat
if found then
for i in 0..lenofcan-1 repeat
ad := (C(sepind+i) # (candidates(j)(i)))::NNI
sum(j) := sum(j) + ad
for i in 0.. j-1 repeat
if sum(i) = sum(j) then
found := false
sepind := sepind + 1
~= end of if
-- end of for
-- edn of if
== end of for
-- end of while

-- construct the transformation matrix
Omega : V(FFX) := new(numofcan)
for k in 0..numofcan-1 repeat

Omega(k) := omega ** sum(k)
B : SHM(numofcan,FFX) := new(numofcan,numofcan, 1$FFX)
for i in 1..numofcan-1 repeat

for j in 0..numofcan-1 repeat

B(i,j) := Omega(j) * B(i-1,j)

B := (inverse(B)$SM(numofcan,FFX)})::SM(numofcan,FFX)

-- construct the seperator set
SepSet : M(FFX) := new(numofcan,lenofcan, 1$FFX)
for i in 1..numofcan-1 repeat
for j in 0..lenofcan-1 repeat
SepSet(i,j) := ( omega ** C(sepind+j) ) * SepSet(i-1,j)

fvector := new(numofcan,0$FFX)
for 1 in 0..t repeat
arg := nil$L(FFX)
if 1 = 0 then
for j in 0..n-1 repeat
arg := cons(1$FFX,arg)
if ((1 > 0) and (1 < t)) then
for j in n-2..0 by -1 repeat
arg := cons(TestSet(1-1,j),arg)
if 1 = t then
for j in 0..n-1 repeat
arg := cons(03FFX,arg)
for i in 0..N-1 repeat
if ((1>0) and (1 < t)) then
arg := append{(arg,list(TestSet(1-1,n+i~1))$L(FFX))
old := arg(beta)
for k in 0..numofcan-1 repeat
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for r in 0..lenofcan-1 repeat
arg(beta*lenofcantr) := SepSet(k,r)
fvector(k) := blackbox(arg)
fvector := (B *$SM(numofcan,FFX) fvector)::V(FFX)
for indexu in 0..numofcan-1 repeat
if fvector(indexu) "= 0 then -- member of S(alpha+1,beta)
vhelp := candidates(indexu)
if not member(vhelp,SetofExp(beta)) then
SetofExp(beta) := cons(vhelp,SetofExp(beta))
if alpha = m then -- solutions are the coefficients
coefficients := cons(fvector(indexu),coefficients)
arg(beta) := old
arg := drop(arg,1)
if (1=0) or (1=t) then i := N
-- end of i-loop
if alpha = m then 1 := t -=- partial polynomials are constants
== end of l-loop
-— end of else clause
-~ end of beta-loop
== end of alpha-loop

—- convert into elements of FF and build up the sparserep
listofExp : L(V(NNI)) := SetofExp(0)
k : NNI := ¥listofExp
monomial : MREP
for j in 0..k-1 repeat
monomial := [retract(cocefficients(j))I$FFX,listofExp(j)]
sparserep := append(sparserep,list(monomial)$SREP)

sparserep

cauchy(N,n) ==
P := (nextPrime(2*N)$IntegerPrimesPackage)::SI
Cauchy : V(I) := new((N+n-1)::NNI,0$I)
for i in 0..n+N-2 repeat
temp := ((i+2)::I)::SI
temp := invmod(temp,p)$SI
Cauchy(i) := convert(temp)$SI
Cauchy

test set(N,n,t,omega,C) ==
tset : M(FFX) := new(t-1i, (n+N-1)::NNI, 13FFX)
if t>1 then
for i in 0..N+n-2 repeat
tset(0,i) := omega *x C(i)
for 1 in 1..t-2 repeat
for i in 0..N+n-2 repeat
tset(l,i) := tset(1l-1,i) * tset(1,i)
tset

kartprod(11 : L(V(NKNI)), 12 : L(V(NNI))) ==
1 : L(V(NNI)) := nil$L(V(NNI))
v : V(NNI)
vl: V(NNI)
v2: V(NNI)
for i in 0..(#11-1) repeat
for j in 0..(#12-1) repeat
vl := 11.i
v2 = 12.j
v = new(#vi+#v2)
for k in 0..(#v1-1) repeat

61
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v(k) := vi(k)

for k in #vi..(#vi+#v2-1) repeat
v(k) 1= v2(k-#v1)

1 := cons(v,1l)

Examples:

l.Iletn=2,g=3,1=838=T7
poly:=createpoly(t)$CPFF(vl, ff,s)
(223 + 229)af + 223 Type: P[x[1],x[2]1GF 3

black:=convertpol{(poly)$CPFF(vl,ff,s)
theMap(’G15851,922) Type: (L FFX(GF 3,7) -> FFX(GF 3,7))
interpol(black,t,n)$GKS(ff,s)

[[coeff= 2,expon= [2,2]], [coeff= 2,expon= [2,1]],
[coeff= 2,expon= [0,2]]]

Type: L Record(coeff: GF 3,expon: V NNI) | 19.893 (EV)
2. Letn=4,¢g=3,t=4s=9
poly:=createpoly(t)$CPFF(vl,ff,s)
z3zdz? + (2223 +2)z1 + Iwgrdnt Type: P[x[1],x[2],x[3],x[4]1]GF 3
black:=convertpol(poly)$CPFF(vl,ff,s)
theMap(}G15851,196) Type: (L FFX(GF 3,9) -> FFX(GF 3,9))
interpol(black,t,n)$GKS(ff,s)

[[coeff= 1,expon= [1,2,0,2]], [coeff= 2,expon= [1,0,0,0]],
[coeff= 1,expon= [2,2,1,0]], [coeff= 2,expon= [0,2,2,1]1]]

Type: L Record(coeff: GF 3,expon: V NNI) 3846.092 (EV)
3. Letn=3,¢=7,t=3s58=5
poly:=createpoly(t)$CPFF(vl,ff,s)

e3z3z] + 3232822 Type: P[x[1],x[2],x[3]]GF 7
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black:=convertpol (poly) $CPFF(vl,ff,s)

theMap(%G15851,181) Type: (L FFX(GF 7,5) -> FFX(GF 7,5))
interpol(black,t,n)$GKS(£ff,s)

[[coeff= 1,expon= [4,5,2]], [coeff= 3,expon= [2,6,5]]]

Type: L Record(coeff: GF 7,expon: V NNI) 507.061 (EV)

A.4 The rational NC-Interpolation Algorithm [GK 88]

The enumeration technique used in the interpolation algorithm of Grigoriev and Karpinski
for sparse rational functions corresponds to enumeration technique of the NC -algorithm for
sparse polynomials implemented in the previous section. The used data structures for partial
solutions can be directly transferred.

Our task is to generate a nonreducible representation of the rational function. This is accom-
plished by selecting the minimal pair (ki, k2) (cf. 5.3) corresponding to a valid representation.
In the presented implementation we make use of the fact that only pairs (ki, k2) have to be
considered which corresponds exactly to existing candidates of partial solutions. For this pur-
pose we sort the candidates according to the sum of their exponents. The occurring values
correspond to the pairs (kq, k) which must be tested.

The package GKRAT() provides the function interpol. interpol(black,n,t,d) computes the
sparse representation with respect to the algorithm [GK 88]:

)abbreviation package GKRAT RationallnterpolationGrigorievKarpinskiss
RationallnterpolationGrigorievKarpinski88() : public == private where

NNI ==> NonNegativelnteger

RN ==> RationalNumber
I ==> Integer

v ==> Vector

L == List

MREP  ==> Record(coeff : I, expon : V(NNI))

SREP ==> [ (MREP)

RATREP ==> Record(numerator : SREP, denominator : SREP)
VLI ==> Record(num : V(L(V(NNI))), den : V(L(V(NNI))))

public == with

interpol : (Mapping(RN,V(I)),NNI,NNI,NNI) -> RATREP
++ interpol(blackbox,n,t,d) reconstructs the rational function
++ over the integers given by the blackbox using the NC-algorithm
++ Grigoriev and Karpinski. n is the number of variables,
++ the degree in each variable is bounded by d and t is a bound
++ of the number of non-zero terms in the denominator and numerator.

private == add

-- local functions
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firstprimes : I -> V(I)
—-- firstprimes(n) calculates the first n prime numbera

norm : V(NNI) -> NNI
-- norm(vector) is the sum of components of vector

less? : (V(NNI),V(NNI)) -> Boolean
-- less?(v1,vl) <=> ( norm(vl) < norm(v2) )}

kartprod : (L(V(NNI)), L(V(NNI))) -> L(V(NNI))
-~ constructs S(alpha,2+beta) * S(alpha,2*beta+1)
-- and sorts the resulting list according to less?

interpol(blackbox, n, t, d) ==

== declarations
ratfuncrep : RATREP
SetofExp : VLI

S1 : LCV(NNI))  := nilSL(V(NNI))
52 : L(V(NNI)) := nil3L(V(NNI))
primes : V(D) 1= firstprimes(n)
coeffind : L(NNI)

numnum : NNI

numden : NNI

-- calculate the number of recursion steps
m : NNI :=0
pow : NNI :=1
while n > pow repeat
mi=m+1
pow := 2 * pow
SetofExp := [ new(pow,nil$L(V(NNI)}), new(pow,nil$L(V(NNI))) ]

for j in 0..(n-1) repeat
== basic step

SetofExp(num) (j) := nil$List(V(NNI))
SetofExp(den) (j) := nil$List(V(NNI))

—-— determine function values
EvalRes : Matrix(RN) := new(t,2xd+1,1) -- results of the evaluations
EvalArg : V(I) := new(n,1) -- argument for the blackbox
for i in 0..(t-1) repeat
for 1 in 0..(2%d) repeat
EvalArg(j) := 1+1
EvalRes(i,1) := blackbox(EvalArg)
for r in 0..(n-1) repeat -- next prime power
EvalArg(r) := EvalArg(r) * primes(r)

-- test all pairs ki1,k2

minflag := false -- a pair corresp. to the nonreducible repres. has been found
for X1 in 0..(d-1) repeat
for k2 in 0..(d-1) repeat
if not minflag then
TestSetl : L(V(NNI)) := nil$L(V(NNI))
TestSet2 : L(V(NKI)) := nil$L(V(NNI))
for i in 0..(t-1) repeat
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-- construct the matrix A(ki, k2)
A : Matrix(RN) := new(2#d+1,k1+k2+2,0)
for 11 in 0..2#%d repeat
A(11,0) := 1
for 11 in 0..2#d repeat
for 12 in 1..k1 repeat
A(11,12) := (1li+1)*A(11,12-1)
for 11 in 0..2%d repeat
A(11,k1+1) := -EvalRes(i,11)
for 11 in 0.,2%d repeat
for 12 in ki+2..k1+1+k2 repeat
A(11,12) := (11+1)*A(11,12-1)

-- determine the rank of A(k1,k2)
mainrank : NNI := rank(A)
—-= test if the s-th row is linear independent
vhl : V(NNI)
vh2 : V(NNI)
tempvec : V(RN) := new(2%d+1,1)
for s in ki+1+k2..0 by -1 repeat
for 11 in 0..2%d repeat
tempvec(l1) := A(11,s)
AQ11,8) = 0
testrank : NNI := rank(A)
for 11 in 0..2%d repeat
A(1l1,8) := tempvec.ll
if mainrank = testrank then
if 8 < k1+1 then
vhl := [8]::V(NNI)
if not (vhl in TestSetl) then
TestSetl := cons(vhl,TestSet1)
if 3 > k1 then
vh2 := [(=s-k1-1)::NNI]::V(NNI)
if not (vh2 in TestSet2) then
TestSet2 := cons(vh2,TestSet2)
-- end of i-loop
-- does k1,k2 correspond to the nonreducible representation 7
vhl := [k1]::V(NNI)
vh2 := [k2]::V(NNI)
if member(vh1,TestSet1) and member(vh2,TestSet2) then
SetofExp(num) (j) := TestSetl
SetofExp(den) (j) := TestSet2
minflag := true
-- end of if not minflag
-= end of k2-loop
-=- end of ki-loop
-- end of basicstep
-- end of j-loop

for alpha in 1..m repeat
for beta in 0..(2**(m-alpha)::NNI-1)::NNI repeat
if SetofExp(num)(2#beta+1) = nil$L(V(NNI)) then
SetofExp(num) (beta) := SetofExp(num)(2*beta)
SetofExp(den) (beta) := SetofExp(den) (2%beta)
else

== recursion step

-- construct the sets S1 and $2

65
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S1:=kartprod(SetofExp(num) (2sbeta) ,SetofExp(num) (2%beta+1))
S2:=kartprod(SetofExp(den) (2¢beta) ,SetofExp(den) (2¥beta+1))
lenofcan := #51(0)

vhl := new(lenofcan,1)

vh2 := new(lenofcan,1)

SetofExp(num) (2#beta) := nil$List (V(NNI))
SetofExp(den) (2%beta) := nil$List(V(NNI))
SetofExp(num) (2#beta+1) := nil$List (V(NNI))
SetofExp(den) (2#beta+1) := nil$List(V(NNI))

-- determine the occurring norms of the candidates in S1, S2
index1 : L(NNI) := nil$L(NNI)
for r in (#81-1),.0 by -1 repeat

help := norm(S1(r))

if not(help in index1) then indexl := cona(help,indexi)
index2 : L(NNI) := nil$L(NNI)
for r in (#82-1)..0 by -1 repeat

help := norm(S2(r))

if not(help in index2) then index2 := cons(help,index2)

-=- evaluations of the black box
EvalRes := new(t,2«t#%3+1,1)
EvalArg := new(n,1)
for i in 0..(t-1) repeat
for 1 in 0..(2%t*#3) repeat
for kx in 0..(beta*lenofcan-1) repeat
EvalArg(k) := primes(k)#*i
for k in (beta*lenofcan)..((beta+1)*lenofcan-1) repeat
EvalArg(k) := primes(k-beta*lenofcan)#*#*1
for k in ((beta+i)*lenofcan)..(n-1) repeat
EvalArg(k) := primes(k)#*i
EvalRes(i,1) := blackbox(EvalArg)
if alpha = m then i := t -- last recursion only once

—= construct the vectors omegal and omega?2
omegal : V(NNI) := new(#S1)
omega2 : V(NNI) := new(#52)
for k1 in (0..#51-1) repeat
omegal(kl) := 1
for k in 0..lenofcan-1 repeat
help := S1(k1) (k)
help := (primes(k)*+help)::NNI
omegal(kl) := omegal(kl)xhelp
for k2 in (0..#32-1) repeat
omega2(k2) := i
for k in 0..lenofcan-1 repeat
help := S2(k2) (k)
help := (primes(k)#*xhelp)::NNI
omegaZ(k2) := omega2(k2)*help

-- test all pairs k1i,k2 in index1,index2
altnumkl : NNI := 0
minflag := false
for k1 in index1 repeat
if not minflag then

—-— calculate number of elements in S1 with norm <= ki

numkl : NNI := altnumkl

flag : Boolean := true

while flag and (numkl < #S1) repeat

if norn(Si(numki)) <= ki
then numki := numkl + 1
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else flag := false
altnumkl := numkl
altnumk? : NNI := 0
for k2 in index2 repeat
if not minflag then
-- calculate number of elements in 82 with norm <= k2
numk2 : NNI := altnumk2
flag := true
while flag and (numk2 < #52) repeat
if norm(S2(numk2)) <= k2
then numk2 := numk2 + 1
else flag := false
altnumk2 := numk2
TestSetl := nil$List(V(NNI))
TestSet2 := nil$List (V(NNI))
if alpha = m then
coeffind : L(NNI) := nil$L(NNI)
numnum : NNI := 0
numden : NNI := 0

for i in 0..(t-1) repeat
-- generating the matrix B(k1,k2)
B : Matrix(RN) := new(2%t##3+1, numkl+numk2,0)
for 12 in 0..numki-1 repeat
B(0,12) := 1$RN
for 11 in 1..2%t**3 repeat
for 12 in 0..numkl-1 repeat
B(11,12) := (omegal(12))::RN#B(11-1,12)
for 12 in 0..numk2-1 repeat
B(0,12+numkl) := -1$RN
for 11 in 1..2%t**3 repeat
for 12 in 0..numk2-1 repeat
help := 12+numki
B(11,help):=(omega2(12)) : :RN*B(11-1,help)
for 11 in 0..2%t**3 repeat
for 12 in 0..nuxk2-1 repeat
help := 12+nuwrkl
B(11,help) := EvalRes(i,11)*B(11,help)
== evaluating the rank of B
mainrank := rank(B)

== Test if the s-th column is linear independent
tempvec : V(RN) := new(2xt#x3+1,1)
for s in numkl+numk2-1..0 by -1 repeat
for 11 in 0,.2#t**3 repeat
tempvec(1l1) := B(1l1,s)
B(11,s) := 0
testrank := rank(B)
for 11 in 0..2#%t**3 repeat
B(11,8) := tempvec(l1)
if mainrank = testrank then
if alpha = m then
coeffind := cons(s::NNI,coeffind)
if 8 < nuwkl then
if alpha = m then numnum := numnum + 1
vhl := Si(s)
if not (vhl in TestSetl) then
TestSetl := cons(vhl,TestSet1)
if s > numkl-1 then
if alpha = m then numden := numden + 1
vh2 := $2(s-numki)
if not (vh2 in TestSet2) then
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TestSet2 := cons(vh2,TestSet2)
if alpha = m then i := t
-- end of i-loop
-- does the pair (k1,k2) correspond to the nonreducible representation
if ( #TestSetl > 0 ) and ( #TestSet2 > 0 ) then
vhl := last(TestSet1)
vh2 := last(TestSet2)
if (norm(vh1)=kl) and (norm(vh2)=k2) then
if alpha = m then
coeffmatrix : Matrix(RN)
coeffmatrix := new(2#t**3+1, numnum+numden,0)
help := 0
for s in coeffind repeat
for r in 0..2%t**3 repeat
coeffmatrix(r,help) := B(r,s)
help := help + 1
minflag := true
SetofExp(num) (beta) := TestSetl
SetofExp(den) (beta) := TestSet2

—-- end of if not minflag in k2-loop
-- end of k2-loop
-- end of if not minflag in ki-loop
== end of kil-loop
-- end of recursion step
-- end of else clause
-- end of beta-loop
-~ end of alpha-loop

-- determine the coefficients
coefflist : V(RN) := nullSpace(coeffmatrix).0
numcoeff : V(I) := new(numnum,0)
dencoeff : V(I) := new(numden,0)
-- transform coefficients into integer values
scalar := 1
for 8 in 0..numnum+numden-1 repeat
scalar := lem(scalar,denom(coefflist(s)))
for s in 0..numnum+numden-1 repeat
coefflist(s) := scalar * coefflist(s)
for s in 0..numnum-1 repeat
numcoeff(s) := numer(coefflist(s))
for s in numnum..numnum+numden-1 repeat
dencoeff ((s-numnum) ;:NNI) := numer(coefflist(s))

== transform the results into output format
sparserepnum : SREP := nil$SREP
sparserepden : SREP := nil$SREP
monomial : MREP
listofExp : L(V(NNI}) := SetofExp(num) (0)
for i in 0..numnum-1 repeat
monomial := [numcoeff(i),listofExp(i)]
sparserepnum := append(sparserepnum,list(ronomial)$SREP)
listofExp : L(V(NNI)) := SetofExp(den)(0)
for i in 0..numden-1 repeat
monomial := [dencoeff(i),listofExp(i)]
sparserepden := append(sparserepden,list(monomial)$SREP)
ratfuncrep := [ sparserepnum, sparserepden]

ratfuncrep

== definitions of the local functions
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norm(v) ==
sum : NNI := O
for i in 0..(#v-1) repeat
sum := gum + v(i)
sum

le=s?(vl : V(NNI), v2 : V(NNI)) ==
(norm(v1) < norm(v?2))

kartprod(l1i : L(V(NNI}), 12 : L(V(NNI})) ==
1 : L(V(NNI)) := nil3L(V(NNI))
v : V(NNI)
vi: V(NNI)
v2: V(NND)
for i in 0..(#11-1) repeat
for j in 0..(#12-1) repeat
vl = 11.i
v2 = 12.j
v = new(#vi+#v2)
for k in 0..(#v1-1) repeat
v(k) = vi(k)
for k in #vi..(#vi+¥v2-1) repeat
v(k) := v2(k-#v1)
1 := cons(v,l)
sort(l,less?)

firstprimes(n) ==
1 : Vector(Integer) := new(n::NonNegativelnteger,1)
flag : Integer := -1
if n > 0 then 1(0) := 2
if n > 1 then 1(1) := 3
k : Integer := 2
m : Integer :=5
while k < n repeat
if prime?7$IntegerPrimesPackage m then
1(k) :=m
ki=k+1
m:=m+ 3 + flag
flag := -flag
1
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In analogy to the previous implementations we use the operation createrat(t,d) for gen-
erating a random rational functions and the operation convertrat for converting a rational
function into a mapping (black box). The package CR(z,,...,2,) provides these operations.

Examples:

1. Let n=2,1=2d=2
rf:=createratf(t,d)$CR(vl)

33:42.;]1 +i§!3l‘2 Type: QF P [x[1],x[2]1]1

black:=convertrat(rf)$CR(vl);
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interpol(black,n,t,d)

[numerator = [[coeff= 9,expon= [0,1]], [coeff= 3,expon= [1,1]]],
denominator = [[coeff= 1,expon= [0,0]], [coeff= 4,expon= [1,0]]1]1]

Type: Record(numerator : L Record(coeff: I,expon: V NNI),
denominator: L Record(coeff: I,expon: V NNI)) 2.58 (EV)

.letn=3,t=3d=4

rf:=createratf(t,d)$CR(vl)
(2z329+1522)z4 .
black:=convertrat(rf)$CR(vl);

interpol(black,n,t,d)

[numerator
denominatoer

[[coeff= 2,expon= [1,1,1]], [coeff= 15,expon= [1,0,2]]1],
[[coeff= 4,expon= [0,0,0]], [coeff= 3,expon= [1,0,1]],
[coeff= 3,expon= [1,2,2]]]]

Type: Record(numerator : L Record(coeff: I,expon: V NNI),
denominator: L Record(coeff: I,expon: V NNI)) 2220.605 (EV)

Letn=2,t=4d=2

rf:=createratf(t,d)$CR(vl)

(ﬁ% Type: QF P[x[1],x[2]]I
black:=convertrat{rf)$CR(vl);

interpol(black,n,t,d)

[[coeff= 2,expon= [1,0]], [coeff= 14,expon= [0,1]]1],
[[coeff= 9,expon= [0,0]], [coeff= 3,expon= [1,0]],
[coeff= 3,expon= [0,1]], [coeff= 6,expon= [1,1]]1]]

[numerator
denominator

Type: Record(numerator : L Record(coeff: I,expon: V NNI),
denominator: L Record(coeff: I,expon: V NNI)) 164.642 (EV)
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