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Abstract

Dirac’s classical theorem asserts that, if every vertex of a graph G on n vertices has
degree at least 2 then G has a Hamiltonian cycle. We give a fast parallel algorithm on a
CREW — PRAM to find a2 Hamiltonian cycle in such graphs. Our algorithm uses a linear
number of processors and s optimal up to a polylogarithmic factor. The algorithm works
in O(log* n) parallel time and uses linear number of processors on a CREW -PRAM. Our
method bears some resemblance to Anderson's RNC algorithm [An] for maximal paths:
we, too, start from a system of disjoint paths and try to glue them together. We are,
however, able to perform the base step (perfect matching) deterministically.

We also prove that a perfect matching in dense graphs can be found in N C?. The cost
of improved time is a quadratic number of processors.

On the negative side, we prove that finding an NC algorithm for perfect matching
in slightly less dense graphs (minimum degree is at least (3 — ¢)|V]) is as hard as the
same problem for all graphs, and interestingly the problem of finding a Hamiltonian cycle
becomes N P-complete.



1. Introduction

In recent years parallel computation has attracted a great deal of attention in the theory
of algorithms. Some problems, easy to solve sequentially in polynomial time, became non-
trivial questions in parallel computation. The maximal independent set problem was one
of them. The problem is now known to be in NC ([KW],[Lu],[ABI],{GS])).

Other important problems like maximum matching (matching of maximum size) are
still not known to be in NC. There exist methods ([Lol}, [KUW],[MVV]) which show
that matching is in RNC (random parallel polylog time) (in fact, in Las Vegas-NC [Ka]).
One relaxation of the maximum matching problem is maximal matching (maximal with
respect to inclusion). This is obviously in NC, as a consequence of the result for maximal
independent sets. A more efficient algorithm can be found in [IS].

In the case of maximal independent set we had an N P-complete problem (maximum
independent set) and we relaxed it. This way the problem became solvable in NC. There
are other questions that arise in this way. The Hamiltonian path problem can be relaxed
to the maximal path problem.

R. Anderson [An] presented a reduction of the maximal path problem to matching.
The reduction implies that the maximal path problem is in RNC. His algorithm starts
out from a system of paths and glues them together. This way one can reduce the problem
to smaller ones. He and A. Aggarwal [AA] extended this method to the problem of finding
a depth first search tree in NC.

Another simplification of a problem might be a restriction on the possible inputs.
Depending on the problem, different classes of input have been studied. For example
for maximum matching there are several NC algorithm which work for special cinsses
([DK1},[GK]). We call graphs G = (V, E) with minimal degree at least L;:i dense. Recently,
the complexity of problem for dense graphs has received growing attention ([Br],[Ed]).

The Hamiltonian circuit problem is N P-complete. There are known classes of graphs
where all the members are Hamiltonian. One class is the tournaments (complete oriented
graphs) (see [So]). Another class was found by Dirac ([Di],[Be],{Bo],[Lo2]) who showed that
dense graphs have Hamiltonian cycles. At FOCS’87 M. Goldberg proposed the problem: Is
there any N C algorithm which finds a Hamiltonian cycle for dense graphs? In this paper we
answer Goldberg’s question affirmatively, giving an optimal up to polylogarithmic factor
algorithm. The earlier papers [DK3] and [H] gave a non-optimal NC solution for this
problem. .

Although a Hamiltonian cycle induces a perfect matching (for even n), we shall present
a separate algorithm for the perfect matching problem. The reason is that ma:ximum
matching is a fundamental problem ([LP]) and the algotithm for it is simpler and is faster
(NC?), while the Hamiltonian cycle algorithm is in NC3. Although both problems, Hamii-
tonian cycle, and perfect matching can be computed in O(log* n) parallel time, and linear
number of processors, the perfect matching algorithm enjoys much better constant factors,
and deserves an independent analysis. On the other hand we present an NC reduction of



the perfect matching problem in a slightly larger class to the general case, showing that
our choice of input class is essentially at the border of what seems feasible in NC to date.
In the literature there are more known reductions this type ([KL],(DK2]).

Section 2 introduces basic notation and terminology. In Section 3 we discuss the
parallel complexity of maximal matching and describe our NC? algorithm for the perfect
matching problem in dense graphs. In Section 4 we present a parallel algorithm for the
construction of a Hamiltonian cycle in dense graphs.

2. Definitions and notation

We use standard graph theoretical notation and terminology. We refer the reader to [Lo2].
G = (V, E) will always denote the input of the algorithm, i.e., a simple graph, with vertex
set V, edge set E, and minimum degree at least %, where n = |V| is the number of nodes.
d(u) is the degree of the node u. For § C V we use dg(u) to denote the nuber of edges
joining the from node u to S. A matching of (V, E) is a subset M of disjoint edges. A
matching is mazimal if it is not a proper subset of any matching. It is rmazimum if it has
maximum cardinality among all matching of G.

3. Finding a perfect matching in dense graphs

We need as a subroutine, the following result of Israeli and Shiloach [IS]. We give a brief
account of their algorithm.

Procedure Approximate_matching

Given: G, a simple graph.

Compute: A vertex cover A of G and a matching M lying in 4 covering at lecast half of
the nodes of A.

After this it is easy to find a maximal matching of the given graph by iterating the
procedure above. The analysis is summarized in the following theorem.

Theorem 3.1. ([IS]) (i) Procedure Approximate_matching can be implemented in O(log® n)
parallel time with O(m + n) processors on a CREW — PRAM.

(ii) Program Maximal_matching can be implemented in O(log* n) parallel time with O(m+
n) processors on a CREW — PRAM. |

Now we present an NC?-algorithm constructing a perfect matching in dense graphs.

Find_perfect _matching
Given: A dense graph G = (V| E), where [V is even.
Compute: A perfect matching of G.

1) Compute a maximal matching M; of G.

{Each edge contains at least one vertex appearing in M;. At least ]%l vertices belong
to an edge of M. }



2) Let {zy, -+, T2k} be the set of vertices of G not belonging to an edge of M, and define
G' = (V' E') as follows:
The vertex set V' consists of the edges of M; and of the unordered pairs z2,-1%2;, 1 =
1,...,k. The edge set is defined as follows: z2i_172; and yz € M, are joired by an
edge in E' iff 2;;_1y and 29;z € E or iz and x5,y € E.
{Note that G' is bipartite.}

3) Compute a maximal matching M, of G.
{Each vertex of G' of the form zi-172: belongs to an edge of M;.}

4) For each i, 1 <t < k, consider uv € M, adjacent in M, to z3,-172,. W.lo.g.
Toi—1u,T2;v € E. Delete uv from M, and add z2;—ju and z;v to M;.
{M, is transformed into a perfect matching.}

5) Output M;.

End Find_perfect_matching

Theorem 3.2. (i) For each dense graph of an even number of vertices a perfect matching
can be constructed in NC?

(ii) For each dense graph of an even number of vertices a perfect matching can be con-
structed in O(log* n) time on a CREW — PRAM using linear number of processors.

Proof. In the algorithm Find_perfect.matching, the most expensive step is finding
maximal matching. If we use Luby’s algorithm for the line graph in order to accomplish
this we obtain an NC? implementation of our algorithm. If we use the maximal maiching
algorithm of Israeli and Shiloach then we use up O(log* n) time but save on processors,
yielding (ii). |

The next question we consider is the parallel complexity of matching for graphs of 2
minimal degree a|G|, where a < 3.

Theorem 3.3. Fora < % the existence problem for a perfect matching restricted to graphs
G = (V,E), s.t. the minimal degree is at least a|V|, is NC-hard for the general matching
problem. This means that an NC-algorithm for the matching problem restricted to graphs
of minimal degree a|V | would imply an algorithm for the general perfect matching problem.

Proof. Let G = (V,E) be any graph. We construct a graph G' = (XUY UV, £’) as
follows: X and Y are sets of equal size, Y is an independent set in G’ and & is an indused

subgraph of G'. Every node in X is adjacent to all nodes in G'. We choose the size of X
to be |X| = [5zIVI1. 1

A similar proof technique was used by A. Broder [Br], when he showed that determining
the permanent on “dense” bipartite graphs is #P-hard.

4. Finding a Hamiltonian circuit in dense graphs



4.1. The outline of the algorithm

First, our algorithm finds a Hamiltonian path in the given graph. Having done so it
will be easy to finish the algorithm, i.e., to find a Hamiltonian cycle.

The main idea of finding a Hamiltonian path is that we maintain a path system that
covers the graph, i.e., a set of disjoint paths covering the entire vertex set. The algorithm
consists of phases. In each phase we try to merge different paths. This way we can reduce
the number of paths by a constant factor. In order to merge paths we use a special
operation (to be defined later).

We want to merge several paths into others in parallel. We might have conflicts during
the parallel merging. To overcome this problem for each path we want to find several ways
to merge into another path.

{ P, }£_, will denote a set of paths in G such that U;V(P;) = V(G) and the V(5;) are
disjoint. We will refer to this as a path-cover of G.

4.2. Sociable paths

In this section we give the formal definition of our elementary merging operation sind
introduce different types of paths. The basic idea of these types comes from Lemma 4.2.%,
which says that if the endpoints of a path are connected with a lot of edges to another
path then there are several possible ways to merge that path into the other.

Definition 4.2.1. Let P = (uy,...,u;) and @ = (vy,...,vm) be two disjoint paths If w0
and ujv;4+; are edges of the graph then vy..vju;...uvi41...vm is a path. If uyviy; and u,
are edges of the graph then vy..vjui...u1vi41...u;m 1s a path. In either case we say that we
merged P into Q along the edge viviy1. We call this step an elementary merging operation.

We need some other operations too.
Definition 4.2.2. Let P and Q be two disjoint path. If there is an edge connecting an

endpoint of P and an endpoint of @, then we can use this edge to concatenate the two
paths. We call this operation a concatenation.

Definition 4.2.3. Let C and D be two disjoint cycles. If there is an edge connecting a node
from C and a node from D then we can use this edge to get a paths which passes through
all the vertices of C and D. We call this operation a cycle merging.

Definition 4.2.4. Let P be a path in G. Let u,v be the two endpoints of P. We call [
sociable if '

dy(py(u) + dy(py(v) +1 < [V(P)].
We say a path P is introverted if it is not sociable.

We need the following lemma.



Lemma 4.2.5. Let P and Q be disjoint. Let u,v be the endpoints of P. Let us assume
that there are no edges from any endpoint of P to an endpoint of Q. Then Q has at least

dy(q)(u) + dv(q)(v) + 1 = |V (Q)]

edges along which one can merge P into Q via an elementary merging operation.

Proof. Let Q@ = (q1,92,..»q1). Let d = dy(q)(u) and e = dy(q)(v). Let {qi,\..., qi, }
be the neighborhood of u in V(Q). By assumption, 1 < i; and 14 < I. Let F =
{ @i, =1, Qi 41> Qiz+1s - Gig+1 }- F contains d + 1 different nodes from Q. 1If v is adja-
cent to one of them then one can easily find an edge where elementary merging can be
performed. Actually we can assign different edges of Q to different elements of F' in such
a way that an edge between v and an element of F' gives a possible elementary merging
operation along the corresponding edge. If dy(g)(u) > [V(Q)— F| then one can find a way
to merge. Actually there will be at least e — (I — (d + 1)) edges joining v to F'. This proves
the lemma. 1

The lemma above has the following important consequence for the path covering.

Corollary 4.2.6. Let { P; }*-! be a path-cover of G. We assume that Py is sociable and
there are no edges going from its cndpomt to the endpoints of other covering paths. Then
there are at least k edges on USZ! P; along which one can merge Py into another path.

Proof. Let u,v be the endpoints of Py. Let d;(i = 0,...,k—1) be the degree of u toward
P; and let €;(i = 0,...,k — 1) be the corresponding degrees of v. Let n, be the number of
nodes on P,. Using this notation we have

k-1
S d; +Zc,-—d(u)+d( ) > %

1=0 i=0

Nl:s

After rearrangment we get

k-1

> (ditei+1-n)2k

1=0
We can delete the nonpositive terms in the sum and the inequality remains valid. We
assumed that P, is social so during the simplification above the term do + €9 +1 —n is at
most 0 and will be deleted. After the deletion we have

k=1
Zmax{d;-}-e;-{-l-ng,ﬁ} > k.

=1

By Lemma 4.2.5 we get the result. |



In the case of introverted paths we need an additional trick. We need the following
generalization of Corollary 4.2.6, a direct consequence of the proof above.

Lemma 4.2.7. Let S be a subset of V(G) and { P, }%= be a path-cover of V(G) — S. Let
P be a path in S with endpoints u,v. Let us assume that ds(u)+ds(v)+1—1|5| <0 and
that there are no edges { u,v} to any endpoint of the path-cover. Then there are at least
k edges on US=] P; along which P can be merged into a covering path. 1

4.3. Introverted paths

First we prove that an introverted path can be closed to a cycle, i.e., the graph induced
on the vertex set of an introverted path has a Hamiltonian cycle.

Lemma 4.3.1. Let P be an introverted path between endpoints u and v. Then one of the
following three statements is true:

(a) P is a single node or edge.

(b) There exists an edge between the two endpoints of P.

(c) There exists a neighbor u/ of u on P and a neighbor v/ of v on P such that ui and v/
are adjecent via an edge of P and u! is between v/ and v on P.

Proof. Let us assume that P has more than 2 nodes. Let { wy,...,w:} be the vertex
set of P (wy = u and w; = v). The order on the path is the same as the order of the
indices. Let d = dy(p)(u) and e = dy(p)(v). We can assume that there is no edge
between u and v. Let {ws,w,,,...,w;, } be the neigborhood of u. If (c) is not valid then
{ w1, Wiy—1, -y Wi,—1,wr } cannot be adjecent to v. This means that [ —(d+1)>e. So P
is social. This contradicts our assumption. |

In Case (a), the path has only endvertices. In the other two cases one can easily find »
Hamiltonian cycle in the graph induced by the introverted path. This allows cycle merging.



4.4. The general case

We need some additional tricks to handle the general case.

The algorithm starts with an initial path-covering. We shall require each path to have
at least 2 nodes. Because of this, the initialization step is not totally obvious. After
initialization, using the results of the previous sections, we reduce the number of paths by
a constant factor.

Procedure Initialization
Given: G, a graph of minimal degree at least 3 where n is the number of nodes in G.
Compute: A path-cover of G such that each path in the cover has at least two points.

1) In the case of odd vertex set add a new node to the graph and connect it to all old
vertices.

2) Find in paralle]l a perfect matching in the extended graph.

3) In the case of even vertex set output this matching as a patb cover. If the vertex set is
odd then the perfect matching found gives us a partial matching of the original graph.
Adding one edge we extend this to a path cover.

End Initialization

Procedure Reduce_path_cover

Given: G, a graph of minimal degree at least J where n is the number of nodes in G, and
a path-cover of G with at least 2 paths.

Compute: A new path-cover with at most 1§ as many paths.

1) In parallel classify each path as sociable or introverted.
2) Arbitrarily divide the set of introverted paths into pairs of mates (with at most one
path left alone). Call two mate linked if there is an edge between them.
3) Repeat until there are only unlinked pairs of introverted paths.
For all linked pairs of introverted path do a)-d):
a) For each pair find an edge between a path and its mate.
b) Find a Hamiltonian cycle on the vertex set of each introverted path having at least
3 nodes.
¢) Do cycle merging.
d) Devide the set of new introverted paths into pairs of mates.
{ When we exit this loop we have a path-cover of G. The cover consists of sociable
paths and pairs of independent introverted paths. We will refer to the sociable paths
and to the pairs of introverted paths as generalized components of the cover.}
4) Consider the subgraph induced by the endpoints of the covering paths. Find an ap-
proximate matching in this subgraph. Using these edges concatenate paths. Kill all
resulting cycles by deleting one new edge of each.
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{ The approximate matching procedure (see in Section 3) in addition gives us a vertex
cover. We refer to a generalized component that lies outside this vertex cover as an
untouched component. At this point there are no edges between endpoints of different
paths belonging to untouched components. In the rest of the algorithm, we shall
attempt to merge untouched paths into other paths. }

5) For every untouched component do the following: If it is a pair of introverted paths

then take the smaller one, otherwise take the component itself (a sociable path). Now
we have a path and we want to merge it into another one. Find all the edges on the
path system along which an elementary merging can be performed.

6) For each untouched component we have many possible merging operations. For dif-

ferent untouched components find a merging from Step 5 which uses different edges.
We will see that this can be solved in the following way. We construct an auxiliary
bipartite graph H; between the untouched comporents and the edges along the paths.
A component will be connected to an edge iff along it there is 2 possible merging (found
in Step 5) into the corresponding path. An approximate matching of H, will give the
1-1 map from a constant fraction of untouched components into edges.

7) Perform as many elementary operations, found above, as possible. This can be done

as follows. Make the following auxiliary directed graph Hz. The nodes will correspond
to paths in the cover. There is an edge going from a path P to a path @ iff one of the
merging operations, found in Step 6 merges P into Q. In this digraph every node has
outdegree 1 or 0. Each component of such a digraph contains at most one cycle. We
kill one edge of each cycle and perform the merging operations corresponding to the
remaining edges in parallel.

End Reduce_path_cover

Program Find _Hamiltonian_circuit

Given: G, a graph of minimal degree at least 3 where n is the number of nodes in G.
Compute: A Hamiltonian circuit of G.

1) Initialization
2) Repeat while there are at least two paths
a) Reduce_path_cover
{At this point of the algorithm we have a Hamiltonian path {vi,...,vn } of G.}
3) If v1vn is not an edge of G then find a pair of edges of the form v;viy; and vav.
{We will see that in this specific case this kind of edge pair exists in the graph.}

4) Output the cycle v1...va01 OF Vi—1...V1Vig1...UnVi¥im according to the case in Step 3.

End Find _Hamiltonian_circuit

At several points of the proof of correctness we will need the following very simple but

useful remark,
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Lemma 4.4.1. Let H be a bipartite graph between sets A and B. Let us assume that every
node in A has degree at least |A|. Then every maximal matching of H covers the whole
set A. 1

The following lemma shows how the number of paths in the path-cover changes during
the procedure Reduce_path_cover.

Lemma 4.4.2. Let us run the procedure Reduce_path_cover once. Let p be the number of
paths at the beginning. Let p/ be the number of paths and ¢ be the number of generalized
components after executing Step 3. Let t be the number of components touched in Step
4. Then

(i) In Step 4 after log p = O(logn) iterations we stop with ¢ 2> %’ generalized components.
(ii) The procedure outputs a path-cover with at most {-g-p paths. |

The previous lemma implies the correctness of the algorithm.

Theorem 4.4.3. The program Find_Hamiltonian_cycle terminates in O(log* n) time on a
CREW — PRAM, uses linear number of processors and, outputs a Hamiltonian cycle of
G. 1

4.5 Lower densities

Now we consider the class of a-dense graphs G = (V,E) for e < 1, i.e. graphs with
minimal degree of at least a|V|.

1

Theorem 4.5.1. For every a < i, the Hamiltonian cycle problem restricted to a-dense

graphs is N P-complete.

Proof. We reduce the existence problem of a Hamiltonian path in a graph G to the
existence problem of a Hamiltonian cycle in an a-dense graph G'. We construct G' =
(V',E') from a given G + (V, E) as follows:

e the vertex set of G' is a disjoint union of the Vertex set of G and two other sets,

V' = VUXUY, where | X| = [Y]|+1=k=[Z(V]+ DI

e the edge set of G consists of: (i) the edge set of G, (ii) thge complete bipartite graph:
between V and X, (iii) the complete bipartite graph between X and ¥

Each Hamiltonian cycle in G' must have a subpath ziy;z2y2 ... Zk-1Yk=1Zk, wher:
X ={z1,..,zx} and Y = {y1,... k=1 }. The rest of the Hamiltonian path passes
through G. Therefore G has a Hamiltonian path if and only if G' has a Hamiltonian cvcle.
Easy to check that G' is a-dense by setting the size of X and ¥ as we did.  §



12

5. Conclusion and open problems

The sequential deterministic algorithm computing a Hamiltonian cycle for any dense
graph seems related to the probabilistic solution of Angluin and Valiant [AV] which com-
putes a Hamiltonian cycle with high probability for any graph if it has one. One would
hope to be able to turn Frieze's [Fr] probabilistic parallel algorithm into a deterministic
algorithm. But we were not successful in dividing any dense graph into two dense graphs
of nearly equal size by an NC-algorithm.

There are more sufficient conditions for having Hamiltonian cycles ([Be],[Bo},[Lo2}). It
would be desirable to extend our results to the corresponding classes of graps.

Another relaxation similar to the Hamiltonian path probiem is 2 maximal cycle prob-
lem. One can fix some elementary operations for enlarging a cycle. One example is the
following. Let us assume that some node not on the cycle is adjacent to two neighbors on
the cycle. One can then easily merge this node into the cycle. Is there any NC algorithm
which finds a maximal cycle in a graph, maximal respect to this operation?
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