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Abstract.

We design a fast parallel algorithm for decomposing an arbitrtary graph by
the clique separators. The algorithm works in O(log?n) parallel time and O(n*)
processors on a CREW-PRAM. It is the first sublinear parallel time (and therefore

sequential sublinear space) algorithm for this problem.

1. Introduction

For some time the problem of clique separator decomposition of a graph was
considered to be inherently sequential and very difficult to parallelize. The fastest
known sequential algorithm of Tarjan [Ta] works in O(nm) time and is based on a

"highly sequential’ subroutine for computing a minimal ordering of a graph.

In this paper we develop the first fast (polylogarithmic time) parallel (NC-)
algorithm for decomposing an arbitrary graph by clique separators. The algorithm
works in O(log?n) parallel time and O(n*) processors on a CREW-PRAM.

For the background of the clique separator theory and its applications we re-
fer to [Ta]. Since the other special problems mentioned in [Ta] of finding a maxi-
mum weight clique, maximum weight independent set and graph coloring are NC'!-
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reducible to the clique separator decomposition, all of them are also proven be in

NC.

We refer to [Ta] for general terminology on clique separators and chordal exten-

sions, and to [Co] for the basic models of parallel computation.

2. Parallel Clique Decomposition

We shall look for an N(C-algorithm satisfying the following 1/O property:
Input: A graph G = (V, F)

Output: The set of all minimal separating complete vertex sets, the so-called clique

separators.

Tarjan’s [Ta] technique was an inclusion minimal extension of the edge set to an
edge set F’, so that G' = (V, E') is a chordal graph. Then each clique separator of
( is also a clique separator of G'. Moreover, each clique separator is the intersection

of the neighbourhoods of two vertices.

The main step of Tarjan’s algorithm which is not easily parallelizable is the
construction of the chordal extension G’. We shall give an alternative construction
of the edge set of (&, such that each clique separator is the intersection of two
neighbourhoods. The idea is similar to the chordality test of Tarjan and Yannakakis
[TY] or Naor, Naor and Schaffer [NNS].

Algorithm Fill:
Input: a graph G = (V, E). Let n = #V

Begin: Let L)) := E.
For each z let N(z) := {y|lzy € E};

Repeat log, n times: all edges of E! are also in El(_l_l. For each z,y, z such that
vy € E! and yz € E! and each connected component of G| (VAN (y)), set zz € I’

if there are vertices o', 2’ € C, such that za', 22" € F.
End Repeat.

Output G' := (V, £) := (V, E,, ).

We have to prove the following

Lemma 1: Each clique separator of GG is also a clique separator of G'.



FAST PARALLEL DECOMPOSITION BY CLIQUE SEPARATORS 3

Proor: Consider a clique separator ¢ of G which separates vertices x and y.
We shall prove the lemma for each (V, E!.) by induction on m.
For ¢ = 0 it is true by definition. Assume x and y are not separated by ¢ in
(V,E;,41). Then there is a path p in (V, £}, ) from x to y not passing any vertex
of ¢, p contains an edge x,;_;x;, such that z;_; is in the Ej-component of 2 and z; is
in the Fj-component of y, x;_y x; € E; | \E]. The common FE; neighbourhood of
xj_y and x; must be in ¢. Otherwise one can reach ; by a path in (V, £),) without
passing c. Sincex;_yx; € E], 1 \FE,,, thereis a vertex u, such that z;_yu,zju € £,
and a path ¢ = (z;_1 = vo. Y1, ,Yk—1,Yx = ¢j), such that noy;, e =1,--- [k —1
is adjacent to u in G = (V| F). The vertex u must be in ¢, because u is in the
common neighbourhood of x;_; and z;. Therefore no y;, t = 0,--- ,k is in ¢. But
then ¢ does not separate x;_; and z; in (V, F) and therefore also not in (V, £, ).

Therefore x and z; are not separated by ¢ in (V, E]). This is a contradiction. [J

A second useful result is the following

Lemma 2: Let d:= (x1,--- , 2k, 2kyr1 = 1) be a chordless cycle of (7; that means
zix; € B iff |i — j| = 1 mod k. Then for all ¢ # j z;2; € E'. This means chordless
cycles are filled to a clique by the algorithm Fll.

Proor: We shall prove the following by induction over m.

Claim: For all i and all j < 2™ z,2;4; € E]

For m = 0 the claim is true by definition.

Let j < 2mt!. Then we find ji,52 < 2™, such that j = j; + Jjo.
By the assumption of the induction x;xiyj,, Tiyj, Titji+5, € L,. Consider the
path ¢ = ($i+j = Titji+jor Titj+i(modk+1)s Litj42(modk+1)s """ » Li—1(modk+1), Sliz)
All elements of ¢ with the exception of x; and x,1; are not in the neighbourhood
of z;4j, in GG. Therefore x; and x;4; are adjacent to the same neighbourhood of
G\N(2;4j, ). Since ;245 and v,y 124 € B 20405 € B, 4y,

END OF THE PROOF OF THE CLAIM

Since & < n = number of vertices, after log, n steps all vertices of the cycle d
are pairwise adjacent in (V, E') = (V, E|,, ). N
The key for the construction of all clique separators is the following
Theorem 1: All clique separators of G are intersections of two neighbourhoods
or a neighbourhood of one vertex of G/ = (V, E’), where £’ is defined as in the

algorithm Fill. For the proof of this theorem we consider two auxiliary results.

Lemma 3 (Tarjan): Let £ be a minimal extension of £, such that G" = (V| ")

is a chordal graph. Then each clique separator of (V| F) is also a clique separator



ELITAS DAHLHAUS AND MAREK KARPINSKI* DEPT. OF COMPUTER SCIENCE UNIVERSITY OF BONN

of G", and each clique separator of G" is a neighbourhood of one vertex or the

intersection of the neighbourhood of two vertices.

The second result is the following

Lemma 4: Let G" = (V,E") be a minimal chordal extension of G = (V, E =).

Then each edge e € E”\ E joins two vertices of the same chordless cycle.

ProoF: We consider for G" a tree T' and a family S of subtrees of 1', such that
the vertex intersection graph of § is isomorphic to G”. For each vertex v of G" let
T, be the corresponding subtree of T'. We may also assume that each vertex ¢ of T'

corresponds to a maximal clique, namely ¢; := {v|t € T, }.

Consider an edge uv € E”"\E. Then there is a cycle of G"” which has no chord
except uv. But such a cycle must be of length=4. Therefore « and v have a common
neighbourhood which is not complete. Hence u and v are in more than one maximal

clique of G”.

Let us remark that each maximal clique of GG" is of the form ¢;. Let ¢; and ¢ be
leaves of Ty := T, NT,. Since ¢;, and ¢;, are maximal cliques, we find vertices vy, vy

which are in ¢4 or in ¢4, respectively, but in no other ¢, such that ¢t € 13, N T5.
(see Fig. 1)

Figure 1

We consider the cycle Cy := (u,ve,v,v1,u). wv is the only chord of Cy. uv €
E"\E.
i) All chords of Cy are in E"\ E.
ii) Let # and y be neighbours in Cy. Then they have only one clique ¢; in Ty =
T, NT, in common.

iii) Suppose z and y are no neighbours in Cy. Then T, N T, C Ty.

We construct stepwise a sequence (C;,7T;), such that T; C T;41 and V(C;) C
V(Ciy1) and 1), ii), and iii) are satisfied where Cy, Ty is replaced by T;, C;, and
for the last member (7;, C;) of the sequence, C; is a cycle of G. The sequence is

constructed as follows:
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Let C; and 7T} be just constructed. Let x,y be neighbours in C; and zy ¢ F.
Let ¢; be the common clique of  and y in 7;. Tiyqy = T; U (T, N Ty). Let ¢
be a leaf of T, N T}, but ¢’ # ¢. This exists since « and y have more than one
common clique. Then ¢’ is a leaf of T;1;. Since also ¢4 is a maximal clique, we
find a vertex z, such that T;4y N7, = {t'}. let C; = (x,y,uy,--- ,u;,x). Then
Ciy1 = (2,9, z,u1,-- ,u;,x). It is easily seen that also (7;11Ciy1) satisfies i)-iii),
if (T3,C;) does.

From the last lemma we can conclude the following
Lemma 5: Let G := (V, E’) be the output of Fill(G) = Fill(V, E). Then for any
minimal chordal extension (V, £") of G, K" C F'.

Since by the algorithm [ill all chordless cycles are filled to complete sets and
each clique separator of (¢ is also a clique separator of the output G’ of Fill(G),

the theorem is proved.

Now we change the algorithm Fill to an equivalent algorithm with an acceptable
time and processor number.
Algorithm Fill' :
Input: a graph G = (V, E), such that n = #V.
Begin
1) for each = € V, let C, be the set of connected components of
G (VAN(z)), (O(log® n) time and O(n?) processors).
2) for each € Vjy € V and each ¢ € C,, let (z,y,q) € Z iff v € q,yv €
E,(O(logn) time, O(n*) processors).
3) Initialize: Fy:= E
Repeat log n times: E, 11 = {y1y2|32 € V,3q € Co(z,v1,9),(x,y2,9) € Z U
TY1, TY2 € El} U E;.
(Each step of the repeat loop mneeds O(logn) time and O(n?) processors).
Output G := (V, ') := (V, Elog n).
End
Therefore

Theorem 2: The algorithm Fill' needs O(n®) processors and O(log? n) time.
Now we have to complete the set of clique separators of G.

Algorithm Cligue Sep:
Input G := (V. E),#V =n
1) Execute Fill' with output G' := (V, £')
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2) For each z,y € V,zy ¢ E'

Let ¢y := {v|zy € E' Ayv € E'}O(n?) processors and O(logn) time).

3) For each zy ¢ L' check whether c,, separates  and y in G, i.e. whether
and y are in different connected components of G|' V\c,, (O(n*) processors and
O(log® n) time).

Output all z and y separating cg,,.

Therefore, we formulate our main Theorem:

Theorem 3: The set of all clique separators of an arbitrary graph can be computed

in O(log? n) time by O(n*) processors on a CREW-PRAM. |
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