FAST PARALLEL ALGORITHMS FOR SPARSE MULTIVARIATE
POLYNOMIAL INTERPOLATION OVER FINITE FIELDS

DIMA Yu. GRIGORIEV
STEKLOV INSTITUTE OF MATHEMATICS
Sov. ACAD. OF SCIENCES
LENINGRAD 191011

MAREK KARPINSK] *
DEPT. oF COMPUTER SCIENCE
UNIVERSITY OF BONN
5300 BONN 1

MICHAEL F. SINGER
DEPT. OF MATIHEMATICS
N.C. STATE UNIVERSITY

RALEIGH, NC 27695

Abstract.

We design fast parallel deterministic algorithms (deterministic boolean NC) for interpolat-
ing arbitrary t-sparse polynomials over an arbitrary finite field GF(g] [x1,- -+ ,ra]. The Inter-

polation Algorithm works in a slight field extension GF [qrr2 '°3c(“”ﬂ+3] and uses O(log*(n#))
boolean parallel time and O(n?t® log? nt) processors. It is the first efficient deterministic poly-
nomial time algorithm (and moreover boolean NC-algorithm) for this problem, and together
with the efficient deterministic interpolation algorithms for fields of characteristic 0 (ef.[GK 87],
[BT 88]) yields for the first time the general deterministic sparse conversion algorithm wcrking
over arbitrary fields. (The reason for this is that every field of positive characteristic contains
a primitive subfield of this characteristics, and so we can apply our method to the slight
extension of this subfield). The method of solution involves the polynomial enumeration tech-
niques of [GK 87] combined with introducing a new general method of breaking the problem
of identity to zero of sparse polynomials over the (logarithmic) slight field extension.

*Supported in part by Leibniz Center for Research in Computer Science and the DFG Grant KA 673/2-1

1. Introduction.

The sparse interpolation algorithms over finite ficlds play a key role in the design of efficient
algorithms in algebra and their applications (cf. [G 83], [G 84], [K 85]; for applications in
coding theory, see [LN 86], [MS 72]). These algorithms constituted a bottleneck in the design
of cfficient algorithins, and in particular no deterministic polynomial time algorithis were
known for the sparse polynomial interpolation problems. The existing methods required large
extension fields of order GF|g"], so, for example, no effective procedures even for finding

primitive elements over an actual interpolation field were known withont using randomization.

Here we remedy the situation by considering what we call a ‘slight’ extension of fields, which

r ke |
is an extension logarithmic in nt, GF clogy(n) 1 The method of solution involves two major
g q J

steps: (1) breaking the zero identity problem of polynomials from GF [¢] over a slight extension

GFlq 2'98("+3] and (2) inductive enumeration of partial solutions for terns and coetficients
over GF[g] by means of recursion on (1). We develop a general method involving Cauchy
matrices to break the zero-identity in step 1, and combine this with the refined polynomial

enumeration techniques of [GIK 87] to solve step 2.

Because of the lower bound of (n'°8) (cf. [CDGK 88]) for the interpolation over the sane
field G F(q] without an extension, our slight field extension is in a sense the smallest extension

possible to carry out the efficient interpolation.

In what follows we shall use the basic notions of the theory of finite fields (cf.[LN86], [MS 71])
and algorithms for computing in finite fields (cf. [L 82]), and the basic models of parallel

computation (cf. [C 85], [G 82]).

2. Interpolation Problem over Finite Fields.

We consider the most general Problem of Interpolation for manipulating multivariate poly-
nomials given by black boxes (a very special case of it are the interpolations of polynomials
given by straight-line programs (cf.[K 85]), or polynomials given by determinants (cf. [L 79].
(GK 87]). In this setting we are given a polynomial f in GFlq] as a black box and information
about its sparsity ¢ (the bound on the number of its nonzero coefficients). Given this. we must
determine an extension GFl¢®] of GF[g], s as small as possible, and an efficient polynomial
time interpolation algorithm working over GF[¢%] to determine all coefficients of f in GF|q].

We say that the Interpolation Problem over a finite field GFlg] is in NC* (ef. [C 85)). if

0(1)_gize and O(log* n)-depth boolean cireuits with oracle nodes

there exists a class of wmform n
S (returning values of a black box over the field extension GF[¢°]) computing for an arbitrary
n-variate polynomial f € GFlg][z1,-- .74] all the nonzero coefficients and monomial vectors
of f, with the oracle Sf. defined by Sf(:i:l,- oo T y) iff f(2y,-0 ,zp) =y over GF[g%). If thie
computation of the extension field GF(¢5] and the computation of f(xy.:-- .x,) over GF{g%]

performed by a black box (straight-line program, determinant, boolean cireuit, ete.) are hoth

in NC (in P), then the Interpolation Problem is also in NC (in P).

We note that the Interpolation Problem over finite fields deals not only with the interpolation

of polynomials but arbitrary functions in their t-sparse ring snum expansion representatinn

(RSE) ([W 86]).

We shall develop an interpolation algorithm (for polynomials over GF[q]) for the slight
extension of a field of order s = "2log(nt) + 3". This allows us for the first time to find the
gencrators in GF(¢®], as the size of this field is polynomial in the size of the input polynomial
under interpolation. Our slight field extension is in a sense the best possible, as the efficient

3

interpolation over the same field (i.e. for s = 1) is not possible. In [CDGK 88] the tight lower
and upper bounds ©(n'°#!) have been established for the number of steps needed to determine

identity to zero of polynomials f € GF[2|[z1, -« ,2n].

3. The Algorithm.

We formulate now the Interpolation Theorem and the underlying Interpolation Algorithm

over Finite Fields.

Main Theorem. Given any t-sparse polynomial f € GFlgl[rs, - .7a]. For an arbi-
trary g, there exists a deterministic parallel algorithm (NC*) for interpolating f over a
slight field extension GF [qr""l"ﬂl‘"””-l] working in O(log®(ntq)) parallel boolean time and
O(n%%log?(ntq) + ¢** log® q) processors. For a fixed field the algorithm works in O(log?(nt))

parallel boolean time and O(n?t®log? nt) processors.

Sparse Interpolation Algorithm over Finite Fields.

Input: Black-box oracle allowing one to evaluate a {-sparse polynomial f € GF Uil |ESPRRERE

fors=1,.... (A t-sparse polynomial is a polynomial with at most ¢ nonzero cocfficients.)

~

Output: All (k,fg) such that f = Z-fk""k where 0 # f}, € GF[q] and ok = # 5E

We begin by first describing a Subalgorithm.

Subalgorithm (Identity-To-Zero Test):
Input: Same as above.

Output: Yes, if f =0; No, if f #0.

Step 1: Choose s so that ¢° —1 > 4ng(n —1)(4). So let s ="2log,(nt) +3".

Step 2: Construct the ficld G F[¢®] by looking over all polynomials of degree s with coefficients
in GFlq] and testing irreducibility with the help of the Berlekamp Algorithm (B 10].
We find an irreducible ¢ € GF{q)(z], and then G Fl¢®] is isomorphic to GF|g][:]/(#).

“I* in the following way.

i. We do this using the binary expansion of the exponent and by techniques from

We find an w that is a generator of the cyclic group GFlg

Factor ¢° — 1 = [p!", pi prime. For any a € GF[q°], calculate a for each

(L 82]. An element is a generator of the cyclic group if and only if all these powers
are distinct from 1.
L |
Step 3: Denote N = —‘24% Use the sieve of Eratosthenes to find a prime p with 2N < p <
4N.
Step 4: Construct now an N x N Cauchy matrix C (cf. [C], [PS 64], [MS 71}} over the ficld

zity;

GFplyi = v =i.1<i SN by C =[] =[] We have

[licicjcn(®i = i)Yy — i)

detC =
[Li<i.j<n(®i +¥35)

For any of its minors # 0, a similar formula holds. Therefore any minor of any size
is nonsingular.

Step 5: Compute, using the Euclidean algorithm ¢;; € Z, such that ¢;) = 1/, +j(m(:dp)
and 0 € ¢,; < p<4N.

Step 6: Denote by C = [&;;] an arbitrary submatrix of C of size N x n.

Step 7: Pick out in parallel any row & = (¢;).1 < j < n, of the matrix C and. for eachi
0.0 < € < t, plug w'™ for cach z; in the black-box (with s = "2log, (nt)+3") for the

3

polynomial f =3 fj oF = Efk:r] cakn where k = (ky, -+, kn) and the mmber

of k's is less than t, 0 < kj < ¢ —1, fi, € GF[q]. 0

We now pause to justify that if f # 0 then for some ;¢ as above f(w™) # 0, where W

has been substituted for z,. We first show that for a suitable vector @, 1 <1 € N, after
substituting w® for rj, any two monomials :ck, ¥ would give different clements of GFlg].
Suppose that for some pair k, k' and & we have W&k = & This means that S k6, =
S kT (modg® — 1) and so 3 (k; — k)ei; = 0(modg® —1). Since |k; — k)| < ¢ = 1.7 < 4N,
we have |Zl£3£ﬂ(k»' kel < (g—1)ndN < (¢* — 1), therefore 3 (k;, — ¥)c,; = 0. For

k K

any pair of monomials x . we consider all the “bad” vectors &;,1 £ 7 < N, i.e those &
for which lej:sn(ki —F)&i; = 0. There cannot Ie more than (n - 1) “bar” veetors for this
pair, since if there exist such n vectors &, -+ ,&,,, the corresponding n X » submatrix of T
would have determinant zero. As there are at most (;) pairs of monomials, there is a vector

&=, 1 < iy < N which is not “bad” for any pair of monomials k. k' since (!)n—-1)< N.
o Y 2

Let &;; be some vector such that distinct monomials xk K yield distinct clements of GFg®)
after substituting w®e. We now show that f(w) # 0 for some 0 < £ < t. If f(w) =0 for
all (,0 < € < t, then XV =0, where X = (fg)p and V = (wﬁ:‘k) is the ¢ x ¢ matrix whose

rows are indexed by {, 0 € { < t and columns are indexed by the k that appear as exponents

in f.

Note that det(V)? = [[pp (w Z Biarki _ 20 Thod k;) # 0 (it is a Vandermonde Matrix}, so

we have a contradiction. Therefore the identity-to-zero subalgonthm is correct.

We now continue with the main algorithm. Assume n = 2™ for simplicity of notation. Define

6

] o) ;
Sep = {(ky, - kga-r): .1";3,'2,,_1“-. i .-:r:ﬁ;";_ﬂ“o_,nccurs as a subterm in some nonzero term of £},

where 1 < @ <m+1and 0 < 8 < 2m+1=2 . We produce S, g recursively for @ = 1,--+ . m+ 1,

Basis Step: Let a = 1 .In parallel for each a € GFlq], substitute a for rg41 in
f. Find a vector us € (GF[g])? such that wue - (nf) = (0,-++,1,---,0) where all

cntries of this latter vector are 0 except for a 1 in the (" place. We then have
ue - (f(xy,-+- T8, 01,842, R PRI | . SURRREE. .7 W, P 7 X6 MURE «Ty)) = D¢ where f =
e $§+1Pg and P, € GF[g]lr1, " 28, Tp+2," " .rn). Using this last formula with black
box evaluations of f, gives us a new black box for each Pp. The identity-to-zero subalgorithim

now allows us to determine which P,'s are not identically zero, and so to determine Sy .4

Recursion Step: Assume that we have produced S, g for all 3,0 < B o=, We now
produce Sp41.p for fixed 8,0 < g <2M77 For each element from the set S, 24 and for each
clement from the set Sq 2441, consider the corresponding product :tffma‘ Lt g :':,’a, .+ ue Fotall
such products (observe that the number of them is at most 12 since | Sy 28l [Sa2a+1] S 1), wx

can find (in parallel) a vector v € IN?" as in step 7 such that v = (vy, -+ ,120). 0 < v, < 4N,
P P

where s; 1s chosen such that r-q;:l;—lj =Ny > (n=1) f;) sitil oty G productem e o5

1'251—{-20 and Izizam e T:i"i{:- poos P = U kivi=3 - kjvi). Letw, € GF[q*i] be a generator of
the cyclic group GF[¢®]*. Forany 0 <1 < t2, we replace z gz« with w!i’. Consider the 12 x 2
matrix B = (wiz" iy (bg,£). Note that det(B)? = nk#k.(wizi e JEZ,- K "’:‘*) £0

since ¢%1 — WX, kyv; — 3o Kjvj). Calculate vectors u; € (GF[g*1)" such that uj B =
(0,---,0,1,0,-+-,0) where this latter vector has 1 in the i-th position and zeroes everywhere

k

clse. We then have u, - Y = P; where f = Zk :t'kf’k where % = rga g O .r.:‘;?z‘;”a and

7

(' entry is

Py € GFlqllxy, -+ s xg2e X (grn)2o41,"* Tn] and ¥ is the 1 x t? vector whose
flary T pge, @l e Wi 2 s yg041, 0 v Tn). Using this last formmla with black box
evaluations of f gives us the new black boxes for the P;. The identity-to-zero subalgorithm

now allows us to determine which P; are not identically zero and so to determine Sq4q .

Notice that when a = m 4 1 we have determined all the terms of f in the form of (k. fj) such

that f = g feoF.0 # f € Flg] and 2F = 2}, ke, o

4. Analysis of the Algorithm.

rg—1"
Let N = —qq?q— Note that N < nt2q. The parallel timne of cur algorithi is Oflog® X,

This is because the identity-to-zero test takes O(log? N) parallel timne, the recuwsive step
calls this test and uses matrix inversion, which requires O(log? N) parallel time [M 86, and
the recursion depth is O(logn). Steps 1-6 take O(N log®(Nnq)) processors. Step 7 takes
O(Nntlog?(Nngq)) processors. Therefore the total cost (in processors) of the identity-to-zero

subalgorithm is O(Nntlog?(Nng)).

We now proceed to analyse the complexity of the rest of the algorithm.In the basic sicp, we
must invert the g x ¢ matrix (a!) over GF[q]. This requires O(¢? % log? q) processors by [M §6].

In applying steps 1-7 to test whether Pe is identically zero, we refer ¢ times to substituting w®

in a black box and calling the identity-to-zero test. Thus we need Nntqlog® Nng proces:ars.
: 2 D kv,
In the recursion step, we calculate Nit* sums 3. k,v; of length n and compute in

the field GF[¢g®!]. This takes N;#?nlog® N processors. Notice that Ny < nt‘q. Inverting
the ¢2 x 2 matrix B over GF[¢5!] requires t° log? N, processors [M 86]. Therefore the total
number of processors would be O(t®n?q log?(tnq) +¢** log? q). For a fixed field, the algorithm

8

works in O(log® nt) time and O(n?t® log* nt) processors.

5. Further Research.

Our parallel algorithm enjoys very good parallel time bound. Concerning the number of

processors, would it be possible to improve on the munber of processors of the Interpolation

Algorithm?

Acknowledgements.

We are grateful to Michael Ben-Or, Johannes Grabmeier, Michael Ralin. Volker Strassen,

and Avi Wigderson for a number of interesting conversations.

References.

(AL 80]

[B 70]

B 81]

[BT 88]

[C]

[C 85)

[CDGK 88)]

Adleman. L.M., and Lenstra, H.K., Finding Irreducible Polvnomiaiz over Fi-
nite Fields, Proc. ACM STOC (1986), pp. 350-355

Berlekamnp, E.R., Factoring Polynomails over Large Finite Fields, Math.
Comp. 24 (1970), pp. 713-735

Ben-Or, M., Probabilistic Algorithms in Finite Fields, Proc. 2271 JEEE FOCS
(1981), pp. 394-398

Ben-Or, M., and Tiwari, P., A deterministic Algorithm for Sparsc Multivariate
Polynomail Interpolation, Proc. 20'" ACM STOC (1988)

Cauchy, A.L., Exercises d’Analyse et de Phys. Math., Vol 2, Paris, Bachelier
(1841), pp. 151-159

Cook, S.A., A taxonomy of Problems with Fast Parallel Algoritlhme, Informa-
tion and Control 64 (1985), pp. 2-22

Clausen, M., Dress, A., Grabmeier, J., and Karpinski, M., On Zero-Testing
and Interpolation of k-Sparse Multivariate Polynomials over Finite Fields,
Research Report No. 8522-CS, University of Bonn, pp. 1-16 (May 1688)

9

(G 82]

(G 83]

G 84]

[GK 87]

(K 85]

[L 79]

[L 82)

[L 83]

[LN 86]

[MS 72]

IM 86]

[PS 64]

S 80]

(W 87]
(Z 79)

Goldschlager, L., Synchronous Parallel Computation, J. ACM 29 (1982), pp.
1073-1086

von zur Gathen, J., Factoring Sparse Multivariate Polynomials, Proc. 24th
IEEE FOCS (1983), pp. 172-179

von zur Gathen, J., Parallel Algorithms for Algebraic Problems, SIAM J.
Comput., Vol. 13 (1984), pp. 808-824

Grigoriev, D.Yu, and Karpinski, M., The Matching Problem for Bipartite
Graphs with Polynomially Bounded Permannets Is in NC, Proc. 28" 1EEE
FOCS (1987), pp. 166-172

Kaltofen, E., Computing with Polynomials Given by Straight-Line Programs
In Greatest Common Divisors, Proc. 17** ACM STOC (1985), 131-142

Lovasz, L., On Determinants, Matchings. and Random Algorithms , in: Funda-
mentals of Computation Theory, Akademie-Verlag, Betlin 1979, pp. 565-574

Loos, R., Computing in Algebraic Extensions, in: Computer Algebra: Sym-
bolic and Algebraic Computation, Springer-Verlag 1982, pp. 173-187

Lenstra. A.K., Factoring Multivariate Polvnomials over Finite Ficlds. Proc.
15" ACM STOC (1983), pp. 189-192

Lidl, H., and Niederreiter, H., Introduction to Finite Fields and Their Appli-
cations, Cambridge University Press 1086

MacWilliams, F.J., and Sloane, N.J.A., The Theory of Error-Correcting Codes.
North Holland, Amsterdam 1977

Mulmuley, K., A fast Parallel Algorithm to Compute the Rank of a Matnx
over an Arbitrary Field, Proc. 18" ACM STOC (1986), pp. 338-339

Polya, G., and Szegd, G., Aufgaben und Lelrsitze aus der Analysis, Vol 2,
Springer-Verlag, Berlin 1964

Schwartz, J.T., Fast Probabilistic Algorithms for Verification of Polynonual
Identities, J. ACM 27,4 (1980), pp. 701-717

Wegener, L., The Complexity of Boolean Functions, Wiley 1987

Zippel, R.E., Probabilistic Algorithms for Sparse Polynomials, Proc. EU-
ROSAM '79, Springer Lecture Notes in Computer Science Vol 72 (1879}, pp.
216-226

10

