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Abstract

Given a Dlack box which will produce the valne of a k-sparse mul-
tivariate polynomial for any given specific argument, one may ask for
optimal strategies (1) to distinguish such a polynomial from the zcro
polynomial, (2) to distinguish any two such polynomials {rom cach
‘other and (3) to (nniformly) reconstruct the polynomial from such
an information soutce. While such strategics arc known already for
polynomials over ficlds of characteristic zero, the equally important,
but considerably more complicated case of a finite ficld K is studied
in the present paper. The result is that the time cowmplexity of such
strategics depends critically on the degree m of the extension field of
K from which the arguments atc to be chosen; e.g. if m equals ihe
number n of variables, then (1) can he solved by k41 and (2) as well
as (3) by 2k + 1 querics, while in case m = 1 cssentially 2'0%" ok
qneties are needed.

Introduction

The question of how to interpolate polynoinials has a long history in ina-
thematics. The interpolation formulac by Newton and Lagrange for poly-
nomials in one indeterminate over ficlds of characteristic 0 of degree d laid
the foundation of numeric interpolation. Many generalizations, c.g. allow-
ing cocfficients from finite fields and more than one indeterininate, related
subjects, e.g. the Chinese Remainder Theorem, and applications, e.g. vari-
ous multiplication algorithms having better asymptolic behavionr than the
school multiplication method, have been studied.

In addition, the question of how to specify appropriate data structures to
storc polynomials cfficiently, plays an iinportant role, wherever polynomials
occur in algorithms. The methods of sparse representation, i.e. representing
a polynomial by a list of records containing a non-zero cocfficient and the
corresponding exponent, or by straight-line programs - sce (IM83] or [K85)
- proved to be very successful. In this context, the problem of finding
conversion algorithms from one representation to another one, gave further
motivation to study interpolation of polynomials from a slightly different
point of view. Here, rather than the degree, the number of terms of a
polynomial is of itnportance.



Closely rclated to the interpolation problem is the somewhat casier
problem to decide by appropriate evaluations in a minimal number of steps
whether a k-sparse polynomial in n indeterminates is the zero polynomial.
Here we assume the polynomial'te be given by a straight-line program or,
more generally, as an oracle, i.c. a black hox with as many inputs as there
arc indeterminates and one output. For any evalualion point as input, it
produces as its ontput the value of the polynomial at that point. Schwartz
has constructed a randomized NC-algorithm for this problem in [S80]. The
corresponding interpolation problem was solved also by randomized algo-
rithms by Zippel [279] and Kaltofen [K85). Unfortunately, for finite ficlds
their results need strong restrictions on the degree of the polynomial, com-
pare also [BT88].

A crucial step for the construction of detlerministic algorithms for these
problems was the work of Grigoriev and Karpinski [GK87] on finding match-
ings for bipartite graphs. In [T87] and [BT88| Ben-Or and Tiwari employed
their ideas to usc n different primes (pg, ..., pa-1) to solve the *f = 07’-prob-
lem over ficlds of characteristic 0 using only k queries, namely (ph, ..., Ph—y)
for 0 € i < k, and the interpolation problem over ficlds of characteristic 0,
using only the 2k queries 0 < i < 2k. The crucial point is the nniqueness of
the prime factorization of integers. A Arst application of these algorithms
was an algorithm for computing the sparse representations for all k-sparse
irrcducible factors of such polynomials, see [KT88].

In our paper we consider these problems for k-sparse multivariate poly-
nomials over finite fields with cssentially no restriction on the degree of
the polynomials. Secctions 2 and 3 are devoted to the *f = 07’-problem.
In Theorem 2.4 test sets in extension ficlds GF(q™) of GF(q) arc con-
structed for any given m, the asymptotic behaviour of their cardinality
being O((n/m)‘“"] for small m. If the degree of the extension ficld equals
the number of indcterminates, we find a test sct of cardinality k 4 1 in
Theorem 2.3 which is proved to be optimal in case n = 1 in scction 3.

In the next scction various lower bounds for the necessary number of
querics arc determined. We show that Z}:;' g (':) is a lower bound for the
important casc where no proper ficld extensions are allowed, which turns
out to be optimal for the field with two clements, sce Corollary 2.6 and
Theorem 3.2.

Scction 4 is devoted to the interpolation problein. As an application of



the results of scction 2 and section 3 we describe a method to construct test
scts A which distinguish any two given k-sparse polynomials. However, we
do not know whether these test sets contain enough clements such that a
non-adaptive interpolation algorithin can be derived. Even less do we know
whether such an algorithm can be found in NC.

Finally, we shall show that 1 + 2k — [2!‘-:‘-1_| cvaluations over GF(q")
cnable us to reconstruct f, where f € GF(q)[No, ..., Xu=1] is a polynomial
satisfying degy.(f) < ¢ for all i. TFurthermore, this algorithm is in NC
modulo the problem of finding an NC-algorithm to calenlate discrete loga-
rithms. To do this we combine three tools in order to recover f: generalized
Necwton identitics, uniqueness of the g-adic representation of the exponents
of non-zcro clements in GF(g") with respect to a primitive element, and
finally, the Frobenius automorphisin y = y? of GF(q") which keeps fixed
all clements of GF(g).

In [GKS88| closcly related problems have been studied by Grigoriev,
Karpinski and Singer. There it was shown that for given n, k and q one
can find test scts for the ‘f = 07-problem of order k(1 + (n — 1)(:)),
provided that one works over a slight extension ficld GF(q") of GF(q) with
m = 2log,(kn). Furthermore an NC-interpolation algorithm is developped
in this situation. This contrasts in a rather intriguing way to our lower
bound Z!-':g’ . (’I') for the number of necessary queries in case m = 1.

Our results may have useful applications in the arca of learning ma-
chines, which we would like to investigate in subsequent papers.

1 Notations

The most gencral sctting of the questions we are interested in are the follow-
ing oncs: For any two scts .X' and ¥ and any subsct P C XY of mappings
from ¥ into .\ onc may ask for minimal test sets A of ¥ which will allow
to distinguish different mappings in P. Hence we define

B(P):={B|BCY, Vf,ge P3Ibe B (f(b)+# g(b))}
and for f € P we define

AP, f)={A|ACY, Vg e P\ {f} Jue A (g(a) # f(a))}



and
c(P,f) :=min{#A| A € AP, [)}.

If X = K is an arbitrary ficld and 7 a lincar subspace, then ¢(P,0) =
dimP, hence for arbitrary P we conclude ¢(7,0) < dim span;P. There-
fore, w.lo.g. onc may restrict onc's attention to thosc subscts P C KV
which span the whole space K.

In this note we consider the following special case: For a finite ficld
GF(q) of prime power order g the ring of (polynomial) maps from GF(q)"
into GF(q) is isomorphic to GF(q)[Xq,...,-X,-1], the polynomial ring in n
indcterminates, modulo the ideal gencrated by X§ — NXo, ..., X7, — X, 1.
Woe identify its clements with the polynomials f € GF(q)[Xo,... . Xuai]
satislying degy,(f) < ¢ for all i.

Let PP (g) denote the set of all such polynomials f which in addition are
k-sparse, i.c. the positive integer k is an upper bound for the number of
non-zcro cocflicients of f. For given g we want to discuss upper and lower
bounds for the number

ci(q) :=¢(P,0)

where P consists of all polynomials in P}(q), considered as maps from
GF(q)" into GF(q). In this casc we also write A}(g) for A(P,0) and Bi(q)
for B(P). More generally, for given q and m we shall consider

C:('L m) = c(p"-a ﬂ)

where P,, again consists of all polynomials in Py (q), but now considered
as maps from GF(g™)" into GF(q™). In this case we also write Af(q, m)
for A(P,n,0) and B} (g, m) for B(P,.).

2 Test Sets and Upper Bounds

To derive upper bounds for cj(q,m) by constructing cvaluation scts in
A} (g, m) the following observation appears to be crucial.

Lemma 2.1 Let n = ny +n, , A}' € A]!(q,m) and A}? € A7) (q,m) for
all ky - ky < k. Then Uy, .ipcn Al X Ap! i3 @ member of A7 (q, m).

(1]



Proof. Consider 0 # f € Py(q) as a polynomial in the indeterminates
Xnyyerey Xn—t With polynomial cocfficients in K[Xo,...,X,,-1]). The corre-
sponding number k; of terms of f is of course bounded by k, one of the
ks non-zero polynomial cocfficicnts, say fg, has at most k; = [f;] terms.
Hence there exists an clement o) € 4} such that fs(a{") # 0. Con-
sequently, f(a'", X,,,...Xu-) is a non-zcro ky-sparse polynomial in n,
indeterminates for which we can find an o' € 4}? with f(@®,a!?) #£0. o

Corollary 2.2 For an arbilrary improper partition © = (xg,...,7,-y) of
n,ie. m; €ENand TiZjm=n —inshort x| n — and for all x < k
let AT be an arbitrary set from A%'(q,m). Then U,,.c,...«,_, <k ATl X AT %

coo X A7! is a member of Aj(q,m).

Obviously, corresponding results also hold for arbitrary ground fields of
arbitrary characteristic, zero or prime. Corollary 2.2 will be used in con-
junction with the following result.

Theorem 2.3 Let f € GF(q)[Xo,...,Xu-1] be a k-sparse polynomial, k >
2, satisfying degy (f) < q, for all i, and let w be a primitive clement of
GF(q"). Then f is the zero-polynomial if and only if £(0,...,0) = 0 and
feo= f(u:‘"',tu"“’l S ,w"“’h') =0, for all i salisfying 0 <i<kandq Jiin
case t > 0. Any sel consisling of one clement which has no zero components
is a lest sel for the case k = 1.

Proof. If f € GF(q)[Xo,...,X.] satisfics degy,(f) < g, for all 1, then f
is a linear combination over GF(q) of the q" monomials X" := Xg*-...-

Lo . |

X;21', where o ranges over all maps in q" := {0,...,q — 1}{0-n=1);

R S
ﬂeqn
Now assume f(0,...,0) = ¢q,...0y = 0 and f; = 0 for all i satisfying 0 < i < k
and q /i in casc i > 0. By the propertics of the Frobenius automorphism
we have

fia=(fi)"\1<j-q<k



and hence f; = 0 for all 1 satisfying 0 < i < k. The mapping

Q:q"\ {(0,...,0)} = GF(q") \ {0}

defined by
na — H wﬂv.qr
0w
is bijective since Q, = w(X2*1") 5o from the g-adic cxpansion of the expo-

nent we can recover a. Let A be any k-subset of @™\ {{0,...,0)} containing
the support supp(f) := {a:ca # 0} of f. Then

fi= > caflh = Y e,

s€qm\{(0,...,00) a€A

for all 0 < i < k. Thus we obtain the following matrix cquation

(0 Vogick.aen * (Ca)aen = (fi)ogick-

The k-square matrix (£2) is a non-singular Vandermonde madtrix since the
(1, arc pairwise different. Hence f is the zcro-polynomial. The case k =1
is clear. a

The test set given in this theoremn is an clement of Aj (g, n) and hence
ci(g,n) <1+ k— |(k—1)/q]. To state the main result of this scction we

necd the following test sets
v (q,m) =

{a = (a.)ogven—1 €EGF(q™)" 1a, =", v=p-m+,0<c<m, ¢, €
{0,1},i, =00r 1 <i, < k such that q Ji,,2*0"==". ] (1+4i,) <k},

{f'“ﬂ #OI

where w is a primitive element in GF(q™). Corollary 2.2 and Theorem2.3
together imply:

Theorem 2.4 Let f € GF(q)[Noy...,Xu-1] be a k-sparse polynomial, k >
2, satisfying degy . (f) < q for alli. Then f is the zero-polynomial if and
only if it vanishes at all elements of T7'(q,m).



Proof. Use the partition x := (m,...,m,m;) of n with m; < m in
Corollary 2.2 and choosc the test sets A7* according to Theorem 2.3. Note
further that the occurence of a block of zcros implies that the corresponding
x, is at least 2 while in the other cases it is at least 1 +14,,. o

Corollary 2.5 Dcfine

UB(n,k,q) := > (:) = #T(q,1).

w=(mgy kg Y
M0 AT 35S g1y =T g

Then we have
ci(q) S UB(n,k,q)

as well as

¢ila,m) S UB(T~1,k ™).

Note that UB(n,k,q) < (n- (g — 1))!'%*), More precise estimates can be
derived from Ch.10 §11 in the book by MacWilliams and Sloane [MS72].
In [GKS88] it is shown by Grigoriev, Karpinski and Singer that ¢} (q, m)
<k(l+(n- 1)(;)), once m satisfics [;g_;_"'.?:_.lﬁ -1>(n- 1)(;) which is
certainly true for m > 2log (kn). Using their results instead of Theorem

2.3, the above method can be applied similarly to yicld

aams ¥ (). o= 16 - ni- 207,

x=(xy w3 )0

277 .3%3 ... <}
where ., L
- m —— 1 .
ng := maz{n: [5:,?1—(‘1—:1—)] -1>(n-1) (2))}

This result is interesting for n > ¢q™/2k.
In the next two corollaries important special cases are considered.



Corollary 2.6 Lei f € GF(2)[Xo,..., Xuz1] be a polynomial salisfying

degy.(f) <2, for alli and whichk is k-sparsc. Then f is the zero-polynomial

if and only if all f(a) = 0 for all @ € A, = T;'(2,1), the set of all ele-

ments from GF(2)" having al most |logzk| zero positions. Hence cj(2) <
Llogs k] (n

Yot (-) elements.

Corollary 2.7 Let w be o primitive element in GF(q). Then the ael
{(1,...,1)} U {a € GF(q)" : a, € {0,w} for czacily one v and a, = 1
elscwhere } i3 a test sct to decide whether a binomial i3 0 and hence

. 14+n, 1ifg=2
%(9)5{14_2”’ Fopdid”

3 Lower Bounds

In this section we determine lower bounds for ¢j(q,m). As every k-sparsc
polynomial can be split into a difference of a |k/2)-sparse and a [k/2]-
sparsc polynomial, a set A € Aj(g,m) las to contain an clement where
these polynomials have different values. Hence the map

#pfkfzJ(Q) — #GF(‘I'")AJ = (f(a))ren

must be injective. Thercfore

#'pfkfzj(Q] < #GF(¢™)*,
that is
W2l g, _
(1/m) - tog (Y- () - (@ - 1) < cita,m)

i=0
Besides this trivial result our first aim is to show that in case m =1 it
is not possible to decide the question whether a k-sparsc polynomial is the
zero polynomial knowing only polynomially many (in k and n) evaluations.
We show that the number of necessary evaluations in this case is pseudo-
polynomial: Q(n'°5*) = Q(k'"&") as long as k is substantially smaller than
2=,



Theorem 3.1 Assume A € A}(q), that is, A is a fest sel of cvaluation
points in GF(q)" which enables us to decidc whether a k-sparse polynomial
f € GF(q)[Xoy. .-, Xn=it] salisfying degy.(f) < g for all i, is the zero-

polynomial. Then for every subsét T C {0,...,n—1} such that #T < |log;k|

the sel A of contains an clement aT = (al,...,aT_\) withT = {i : a] =0}.

Hence A has at least z}‘;g* g ('l‘) elemenls, i.e.

Lok, k]
n "
> (7) <a

i=0
Proof. For every subset T C {0,...,n — 1} such that #T < |logyk| definc

a polynomial
pri= I-[(:::-’_l -1)-[] =
i€T T
These polynomials have the following propertics:
1. pr is k-sparsc.

2. pr(a) =1ifand only if {i :a; =0} = T.

The first property follows from 2#T < 2llemk) < k. the sccond from the fact
that the zeros of 27! — 1 arc exactly the clements of GF(q) \ {0}. Hence,
to distinguish such a polynomial and the zcro-polynomial, there has to be
an clement a7 as claimed in the sct A. o

In case ¢ = 2 we may combine Corollary 2.6 and Theorem 3.1 to deter-

mine cj(2) exactly:

Theorem 3.2

(2) = ij (’:)

=0

The next result where upper and lower bounds coincide is the case
n=1=nm

10



Lemma 3.3
. min {k+1,q}), ifk>2

c*(“')z{L ifhk=1"

Proof. (Compare the proof of Theorem 7 in [BT88]). If k = q, then indeed
c,(q) = g, since any map GF(q) — GF(q) is in Piq). Hq>k 2> 2and
A C GF(q) has cardinality k, then if 0 ¢ A the polynomial f:= 77! =1
is k-sparsc and vanishes on A. If 0 € A then f := [T.eayo}(X —a) is a
non-zcro polynomial in GF(q)[.X] of degree at most k—1. f and X - f have
at most k monomials and the latter vanishes on A. Finally, if k = 1, onc
needs precisely once evaluation to check whether f = 0 holds. o

The next result covers the casc of binomials and the proof of the theorem
may give a hint about the difficultics which may arise while trying to prove
sharp lower bounds for k > 3.

Theorem 3.4 Let ¢ > 2 and lel w be a primitive element of GF(qj.
Assume A € Al(q), that is A is a sel of evalualing poinls in GF(q)"
which enables us {o decide whether a binomial f = ¢, X® + cp X" satisfying
degy.(f) < g for alli, is the zero-polynomial. Then A contains n clements

a™ = (a{",...,a)),0 < pu < n of the shape
a =0 if and only if pu=v.

Furthermore A contains n + 1 further different clements a™™\n < ;0 < 2n
having no zero companents, i.e there exist 0 < U < q — 1 such that

alt )= w"s'm,(] <p <0< v<n. In particular we have

c3(9) =2n 4 1.

Proof. Assumc a sct A € Aj(k) is given. We define

poi= (X7 =1)- [ X, e Py(a), 0Sv <
n#e

These polynomials have the property

po(a) =0if and only if a, =0,a, £ 0 for i # 1.

11



Hence the first assertion {ollows.

Now suppose thal there are at most 2 < n clements with no zcro com-
poncnts. We shall construct a binomial which vanishes on A. For that
purposc we construct some o ="(agy...,,-;) € {0,...,9 — 2}" and some
¢ € GF(q) such that @ # (0,...,0) and a™ := [I"Z} at* = c for all cleinents
a € A having no zecro componcnts. We denote these elements and their
cxponcents with respect to w as in the theorem by a0 < 1 < 7 and
b, If ¢ = w? then the last condition is cquivalent to

wZems e = o 0< i < i
which is equivalent to
(0 oguciogven * (@ )oguen = (d, ..., d)" over Z/(q — 1)Z.
EE thie Bt
(Z/(q~1)Z)" = (Z/(g - 1)Z)" defined by (5" )ocu<ioguen

is not injective, then clearly there exists some non-trivial e for d = 0
satisfying the above equation. If the map is injective and therefore bijective,
in particular n = 71, then we may choosc d = 1 and « as the unique and
necessarily non-trivial pre-image of (1,...,1). In any case

f = ;Yo . .Y] i .-Y,,_...g . (..Y“ - wd)

will vanish on A. Hence in a set 4 € Aj(q) there arc at least n+ 1 clements
without zero components. 9

Let us finally remark that cven in the case m = 1 our upper bound
UB(n,k,q) docs not coincide with c}(q), ¢.g. it can be shown that ¢}(3) <
32, while UB(4,4,3) = 33. Necvertheless it appears to be very close to

cr(q)-

4 Interpolation

We first solve the problem to distingnish two k-sparse multivariate poly-
nomials over GF(q). With the notation of Scction 1 we have to construct

12



clements of B} (q, m). Fortunately, all the work is reduced to the construc-
tion of the test sets in Section 2 by the following

Lemma 4.1 B}(q,m) = A} (q, m)

Proof. Assume B € Bj(q,m) and 0 # h € Pj(q), then there exist
polynomials f,g in P{(q) such that h = f — g. Furthermore, there exists

some b € B with f(b) # g(b), hence h(b) = f(b) — g(b) # 0 which implics
B € A3(q,m). On the other hand assime 4 € A3 (q,m) and f,g in
Pr(q). Then b := f — g is in P (g). Furthermore, there exists ana € 4
with h(a) # 0, hence f(a) # g(a) which implics 4 € B} (q,m). o

It is also clear that the lower and upper bounds carry over at once. Let
us remark that for any A € Aj,(gq,m) the cvalnation map

Va:Pi(a) = GF(q")", f = (f(a)aea)

is injcctive. In particular there exist a lefl inverse
Ta: GF(q™)" = Pi(q):

However, it is by no means clear whether the construction of an algorithm
which represents some €4 can be done uniformly for n,k, q and .

In the following theorem we construct a sct of 142k — | %51 cvaluation
points which enable us to reconstruct f in case m = n.

Theorem 4.2 Let f € GF(q)[{Xo,...,X,—1] be a k-sparse polynomial sal-
isfying degy,(f) < q for alli, and let w be a primitive element of GF(q").
Then in order {o construct f il suffices 1o know the values f(0,...,0) and

fir= fw', w9 . w9 ) =0 for all i satisfying 0 <i< 2k and q [1i.

Proof. Assumc that f € GF(q)[X,...,X, -] satlisfies degy (f) < q for
all i. Then we have

F= 3 6 X%

oe(l!l

13



We usc the notation of the proof of Theorem 2.3. In addition we can assume
that

f(ﬂ,...,[}) :Qn..,.n)=01

otherwise we construct f — £(0,...,0).

For any subsct A of 9"\ {(0,...,0)} we denote by ¢;(A) the i-th clementary
symmetric polynomial in [A| indeterminates, evaluated at (Q.)aes. Now
substituting 2,, a € A, for X in the polynomial

141 _
[T(X = p) = 3 (-1)"epyy-;(4) - X7 € GF(q")[X] (1)

PEA j=0

viclds the generalized Newton identities [MS72, p. 244]

141 .
0=3 (1), (A)0, o€ A

i=0

Fixing an i (0 < ¢ < ¢q"), multiplying the equation corresponding to o
by c,f%, and summing over all @ € A results in the following system of

cquations
14l

0=3 ()" e j(A)fisj 0<i<q
j=0
As ¢g = 1, for an arbitrary superset 4 of supp(f) the cquations for 0 < i <
|A| are equivalent to the matrix equation

(fiss)o<ijciar ((“l]w_j clAi—j(A)) = ~(fispaocicia-  (2)

0gji<|A|
The matrix (fiyj)ocij<ja) cquals (Q))D, (), where D, = diag((ca)aea)
is a |A|-square diagonal matrix, scc [LN83, 9.48, 9.49]. Hence the cardi-
nality k& of supp(f) cquals the rank of the k-square matrix (fisi)ogijeus
furthermore (fi+;)oci j<i i non-singular and we can calculate the polyno-
mial [Tagsuppcs) (X — 2a) from (2) and (1) for A = supp(f). Finding all the
roots gives {€14:a € supp(f)} which cnables us to recover supp(f). The
solution of
(Wogickmen * (6a)nea = (filogick-

gives the complete polynomial f. This proves the theorem. o

14



Now we present and analyze the algorithm, which can be derived from
the last theorem.

Interpolation Algorithm. Let f € GF(q)[Xo,...,Xa-] be a k-sparsc
polynomial satisfying degy.(f) < q, for all i; 2k < q".

INPUT:

step 1.

step 2.

step 3.

step 4.

step 6.

step 6.

step 7.

step 8.

ouUTPUT:

Oracle for f.
Take a primitive element w in GF(q").

Ask the oracle for the 1 + 2k~ [3-'5;-'-1] values f(0,---,0) and
fiy where 0 < i < 2k and q [ i in casci> 0.

For all 0 < i < 2k which satisfy i = q'- iy, 1 € 5, s maximal,
caleulate f; = f;,9").

Determine k, which is the rank of the matrix (fixj)o<ijck-
Solve the equation (fis;)oqijci® ((—I)E‘jc;_j(supp(f))osjd =
"(fi+.')og€<i-

Find all the roots Q., a € supp(f), of the polynomial
Tizo(—1)""e;_;(supp(f)) - X".

Calculate the g-adic expansion of the exponents of the Q, with
respect to w to get supp(f).

Solve the system of lincar cqnations (2 )ocici. sen * (Calaca =
(f")ogids for A := supp(f).

(co ) a)oEmpp(n'

Oncce a primitive clement w is given, we compnte the rank of the k-square
matrix (fiy;) within O(k*®) arithmetic processors and O(log? k) parallcl
time [M86]). The same bounds arc valid for step 5. We use [G84] for
factoring the univariate polynomial of step 6. This costs O(log? k) parallel
time and roughly the same number of processors as above. Step 7 heavily
rclics on the problem to calculate discrete logarithms, see c.g. [COS86].
Step 8 is of O(k**) size and O(log? k) parallel time.

15



With respect to the number of querics the algorithm is optimal in casc
n =1 and 2k < q. To sce this let A be a subsct of GF(q) with at most 2k
clements. Then similar considerations as in the proof of Lemma 3.3 cnables
us to construct two different k-sparse polynomials which coincide on A.
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