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1. Introduction

Special succinct (polylogarithmic in the number of vertices) representations of graphs used in VLSI
design and other contexts cause a blow-up of the complexity of some graph problems which
become hard for higher time and space complexity classes. This interesting phenomenon was
studied recently in a number of papers (see [L 82], [GW 83], [W 84], [L 86], [PY 86], [LW 87a)).

In the present paper we study the computational complexity of graph problems when the graphs are
described by vertex multiplicity graphs. The vertex multiplicity graph representation (for short:
VMG-representation) enables us to describe an independent set of vertices which are connected
with the remaining vertices of the graph in the same way by giving only one vertex and the size of
the independent set. We prove that both UNARY NETWORK FLOW and PERFECT
MATCHING problems are P-complete in VMG-representation. It is believed that none of theses
problems is P-complete in standard representation (as both of them are in RNC, [KUW 85],
[MVY 87]), and it is known that some special cases are in NC [GK 87]. (Let us note also the
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recent result in [DK 87] that PERFECT MATCHING restricted to 3-regular graphs is still
ACO%-hard for the general PERFECT MATCHING problem.) An interesting consequence of our
result is that the VMG-versions of UNARY NETWORK FLOW and PERFECT MATCHING are
not efficiently parallelizable unless P = NC (cf. [C 85]).

Surprisingly we are also able to prove that the following three NP-complete problems do not have
a complexity blow-up in VMG-representation: CLIQUE, MAXIMUM INDEPENDENT SET and
CHROMATIC NUMBER. The are all proven to remain NP-complete problems.

Finally we prove the existence of a graph problem whose VMG-version does have a complexity
blow-up. This problem is some modification of the circuit value problem which is P-complete in
standard representation and PSPACE-complete in VMG-representation.

2. Notation and Basic Definition

A (un)directed vertex multiplicity graph is a triple G = (V,E,b) where (V,E) is an ordinary

(un)directed graph and b: Vi»IN* gives the multiplicity b(v) for every vertex v. Such a vertex
multiplicity graph G = (V,E,b) is considered to be the description or representation of the graph

Lym(G) with vertex set {(v,i): ve V and 1 <i < b(v)} and edge set {((v,i),(u.j)): (u,v)eE, 1 <i
b(n) and 1 < j < b(n)}.

The subscript VM to a graph problems means that the graphs are given in VMG-representation.
Since the graphs can possibly described more succinctly using the VMG-representation, the
complexity of a VMG-version of a graph problem cannot be less than the complexity of the graph
problem in standard representation.

The complexity of the VMG-version of a graph problem heavily depends on how the vertex
multiplicities b(v) are described in an instance to thaisproblem. If they are described in unary then
the YMGe-representation of a graph cannot be very succinct and the complexity of the VMG-version
of a graph problem will not differ very much from the complexity of that graph problem in standard
representation. In what follows we consider only the case that the vertex multiplicities are described
in binary.



3. Network Flow and Matching

In this section we mainly consider the two problems UNARY NETWORK FLOW and PERFECT

MATCHING which are not known to be P-complete (and believed not to be because they are in

RNC, see [C 85], [KUW 85], [MVV 87]). We show that the VMG-versions of these problems

become P-complete.

UNARY NETWORK FLOW

Instance: A directed acyclic graph G = (V,E) with the source se V and the sink te V, a capacity
function c: E-»INT whose values are given in unary, a natural number f.

Question: Does there exist a flow of at least f units from s to t in G, i.e. does there exista ¢: E

— IN* such that ¢ <c, E(u,v)e gdu,v) = E(v'w)e £0(v.w) for all ve V~{s,t) and
z'(1=',,\.\.r)<5 gd(s,w) = E‘(u,t)e gd(ut) 2£?

If the values of the capacity function are given in binary we obtain the problem BINARY
NETWORK FLOW which is shown to be Sl"gm-cornplctc for P in [LW 87b]. As mentioned

above, UNARY NETWORK FLOW is not believed to be Slogm-complctc for P. We are able to

prove

Theorem 1. UNARY NETWORK FLOWy) is <198, .complete for P.

Proof. By reduction from BINARY NETWORK FLOW. An edge (v,w) with capacity c is
replaced by the two edges (v,u) and (u,w) with capacity 1 where u is a new vertex with multiplicity
¢. The vertices v and w obtain multiplicity 1.

That UNARY NETWORK FLOWy;) is in P is seen by the following reduction to BINARY
NETWORK FLOW:

(V.E,c,b)e UNARY NETWORK FLOWy/\q ¢ (V,E,c’) e BINARY NETWORK FLOW

where c'(v,w) = c(v,w)b(v)'b(w), for all (v,w). a

Since the latter reduction also works for BINARY NETWORK FLOWVM we have



Corollary 2. BINARY NETWORK FLOWyq is <198 complete for P. O

Now consider the perfect matching problem.

PERFECT MATCHING
Instance:  An undirected graph G = (V,E).

Question: Is there an E'SE such that every ve V belongs to exactly one e€ E ?

PERFECT BIPARTITE MATCHING is the restriction of PERFECT MATCHING to bipartite
graphs. PERFECT MATCHING can be considered as a subproblem of the following problem.

PERFECT B-MATCHING WITH CAPACITIES.
Instance:  An undirected graph G = (V,E), functions b: Vi=IN* and c: E—=IN*,

Question: s there a function ¢': E—IN* such that ¢' < ¢ and ):%E"Ir ineC'(€) =b(v) forallveV?

Obviously,

(V,E,b)e PERFECT MATCHINGy )\ ¢ (V,E,b,c)e PERFECT B-MATCHING WITH

CAPACITIES
where c(v,u) = b(v)+b(u).

Consequently, since PERFECT B-MATCHING WITH CAPACITIES is in P (cf. [GLS 87]) we
obtain that PERFECT MATCHINGy) is in P. As mentioned above it is not believed that

PERFECT MATCHING is P-complete. However, we can prove that even PERFECT BIPARTITE
MATCHINGy;) is P-complete.

Theorem 3. PERFECT BIPARTITE MATCHINGy); is <198, -complete for P.

Proof. We reduce the P-complete problem BINARY NETWORK FLOW to PERFECT
BIPARTITE MATCHINGy/ps. We start with the classical reduction of UNARY NETWORK

FLOW to PERFECT BIPARTITE MATCHING which works as follows (see e.g. [KUW 87]):

Given a flow network G = (V,E) with capacity function c: E—N* and a natural number f. Let s (t)
be the source (sink) node of G which has indegree (outdegree) 0. It is not hard to see that G has a

maximum flow greater or equal to f if and only if the subsequently defined graph G' = (V{UV,E)



has a perfect matching.

Vi ={(el,i):eeEand | Sisc(e)} v (af,...a},
Va2 =((e,2,i) :ecE and 1 Si < c(e)} L {by,....bs}, and
E'= {((e,1,i),(d.2))) : e,deE, e = (v{,v3) and d = (v,,v3) for some vy,v5,v3e V} U

(((e,2,i),(e,1,1)): ee E)uU((a;,(e,2,1)): e is incident with s]u[((c,l,i),bj): ¢ is incident with t}.

Obviously, G' can be described by the vertex multiplicity graph G" having vertex sets V'y =

((e,1): eeE}U(a} and V') = {(e,2): eeE}JU(b]} and multiplicities b'(e,1) = b'(e,2) = c(e) and
b'(a) = b'(b) =f.

So far the unary case. However, the above reduction (G,c) = G" does also work for flow
networks with capacities given in binary (i.e. with capacities which can be exponentially in the size

of the input). 0O

Corollary 4. PERFECT B-MATCHING WITH CAPACITIES is sl98 .complete for P. O

4. Problems Whose VMG-Versions Have No Complexity
Blow-Up

One example of such a problem is already given in Corollary 2. In this section we shall see that
some of the most popular NP-complete problems belong to this category. To prove this we have
only to check whether the VMG-versions of the problems in question are still in NP. For the
following three problems this is not very hard.

CLIQUE
Instance:  An undirected graph G = (V,E), a natural number k.

Question: Does there exist a clique of size k in G, i.¢e. does there exista V' SV such that #V' =k

and V'xV' €E ?



MAXIMUM INDEPENDENT SET
Instance:  An undirected graph G = (V,E), a natural number k.

Question: Does there exist a independent set of size k in G, i.e. does there exist a V' SV such

that #V'=k and V'xV' SVxV ~E?

CHROMATIC NUMBER
Instance:  An undirected graph G = (V,E), a natural number k.

Question: Does there exist a coloring of G with k colors, i.e. does there exist a c: V= {1,....k}
such that (v,w)e E implies c(v) # c(w) ?

It is well-known that these problems are NP-complete (see [K 72]). We prove that their
VMGe-versions remain NP-complete.

Theorem 5. CLIQUEy M, MAXIMUM INDEPENDENT SETy)4 and CHROMATIC
NUMBERy;) are Slogm-complctc for NP.

Proof. Let G = (V,E,b) be an undirected vertex multiplicity graph. The following obvious
statements show how to reduce the YMG-versions of the above problems to their standard
versions.

Since different vertices (v,i) and (v,j) of Ly/)1(G) cannot belong to one clique we obtain

LyM(G) has a clique of size k <> G has a clique of size k.

Since with (v,i) all other (v,j) can be included in an independent set we obtain
LyM(G) has an independent set of size k <> G has an independent set V' such that 3, b(v) 2 k.
Since for a fixed ve V all (v,i) can have the same color we obtain

LyMm(G) has a coloring with k colors ¢» G has a coloring with k colors. a
The proof of the membership in NP is more involved for the VMG-version of the following
problem.
HAMILTONIAN CIRCUIT

Instance:  An undirected graph G = (V,E).
Question: Does G have a hamiltonian circuit, i.e. does there exist a repitition-free enumeration vy,

V2, «. WV Of V such that (v{,v2), (v2,v3), - » (V- 1.Vm)» (VmpeV1)EE ?



It is well-known that this problem is NP-complete (see [K 72]). We prove

Theorem 6. HAMILTONIAN CIRCUITy) is $l°gm-complcte for NP.

Proof. Let G = (V,E,b) be an undirected vertex multiplicity graph. Assume that Lym(G) has a
Hamiltonian circuit C. For every (v,u)e E we guess the number d(v,u) of occurences of (v,u) in C
(more exactly: the number of different ((v,i),(u,j)) in C). The function d is called the trace of C in
Lym(G).

Consider some (v,u) € E and assume that d(v,u) 2 3, i.e. there exist iy, ig, i3, j1,J2» j3 such that

((v,i)(u,j1))s ((viin),(u,j2)) and ((v,i3),(u,j3)) are in C. There are essentially two cases how
these edges are included in C. They are shown in Figure 1.

(Figure 1)
In cither case we can take away two exemplars of (v,u), one exemplar of v and one exemplar of u,

and we obtain a new graph in which the remaining parts of the Hamiltonian circuit C form a new
Hamiltonian circuit C'. This is shown in Figure 2.

(Figure 2)
And conversely, starting with such a graph and a Hamiltonian circuit C' as shown in Figure 2 we
can add one exemplar of v, one exemplar of u and two exemplars of (v,u) to obtain the
corresponding graph shown in Figure 1 with Hamiltonian circuit C.

Repeating this construction we obtain from b,d the functions b',d' such that d(v,u) € {1,2],

d'(v,u) = d(v,u) (mod 2), b'(v) = b(v)-1/2(d(v,u)-d'(v,u)), b'(u) = b(u)-1/2(d(v,u)-d'(v,u)) and
Lagy(V.E.b) has a HC with trace d & Lyqy(V,E,b’) has a HC with trace d'.

Doing so for every edge (v,u)e E we eventually obtain the functions b, d fulfilling

(1) d(v,u) £ 2 for all (v,u)eE,

(2) b(v) s #V forall veV, and

(3) Lpy(V,E,b) has a HC with trace d &> Lpqy(V,E,b) has a HC with trace d.

Because of (2) the property " Lyqy(V,E,b) has a HC with trace d" can be tested nondetermini-

stically in polynomial time. o



5. An Example of a Problem Whose VMG-Version Has a
Complexity Blow-Up

To obtain such examples we have to make essential use of graphs with high vertex multiplicities. In
the preceding section we have seen that in many cases adding "equivalent” vertices (i.c. vertices
which are connected with all other vertices of the graph in the same way as one particular vertex of
the graph) does not really complicate the problem in question. Thus we are looking for a canonical
way to make equivalent vertices non-equivalent.

Let G = (V,E) be an arbitrary digraph. The vertices v and u of G are said to be equivalent iff
({v)xV)E = ({u}xV)E and (Vx{v})E = (Vx(u))HE. Define #v = #{u: u equivalent to v}. Let
p: V= IN be any function such that {p(u): u equivalent to v} = {1,2, ... ,#v}. Define G(p) =

(V,{(v,u) : (v,u)eE and p(u) = p(v)+1}). Obviously, for two such function p,q the graphs G(p)
and G(q) are isomorphic. Hence the definition G* = G(p) is independent of the special choice of p.

Now we are able to modify every graph problem in such a way that, given a graph G, the graph G*
has to fulfill the property associated with the problem. We shall demonstrate this for the circuit
value problem,

CIRCUIT VALUE*
Instance: A directed graph G whose vertices are labelled by boolean functions, a special vertex of
G which is called the output node, a natural number r and Boolean values a, ... ,a..

Question: Is G* a correct Boolean circuit and does it provide output 1 for input a,, ... ,a; ? This

means: 1. If v is a vertex of G* with indegree m > O then it is labelled with an m-ary
Boolean function. 2. If vy, ... vg are the vertices of G* with indegree O (given in a

fixed order) then s = r and G* provides the value 1 at the output node if ay, ... ,a, are

given as inputs to vy, ... ,V-

We are able to prove that CIRCUIT VALUE* has the same complexity as CIRCUIT VALUE (i.e.
it is P-complete) and that CIRCUIT VALUE*y/) is PSPACE-complete.

Theorem 7. CIRCUIT VALUE* is Slogmwcomplcte for P.



Proof. Since constructing G* from G can be performed in polynomial time we obtain CIRCUIT

VALUE*eP.

For the P-hardness we reduce CIRCUIT VALUE to CIRCUIT VALUE®*. Let C be a Boolean
circuit with the nodes v, ... ,v, . From C we construct the Boolean circuit D by adding new nodes
uj, ... ,up and an edge from v; to u; for every i = 1, ... ,r. Every u; is labelled with the identity

function. Since the new nodes do not have any influence to the output computed by D the Boolean
circuits C and D have the same input-output behaviour. However; all nodes of D are pairwise

unequivalent. Hence D* = D and, consequently, C and D* have the same input-output behaviour.OJ

Theorem 8. CIRCUIT VALUE*y) is Sl°gm-complctc for PSPACE.

Scetch of the proof. Every Boolean circuit presented by a vertex multiplicity graph G has a
level structure such that every level has at most IGl nodes and all input nodes to level i come from
level i-1. Thus such a Boolean circuit can be evaluated in polynomial space.

The PSPACE-hardness can be proved by a master reduction from an arbitrary problem A €
PSPACE to CIRCUIT VALUE®*. Let M be a one-tape Turing machine accepting A using space
p(IxI) for an input x where p is a suitable polynomial. It is very easy to construct to a given input x

to M a vertex multiplicity graph which describes a Boolean circuit C, with the following properties:

- C4 has cPUXD) fevels each consisting of d'p(Ix) nodes (for some constants ¢,d>0),

- if the inputs to the first level correspond to 0-1-encoding of the initial configuration of M on input
x then the values of the nodes of the (i+1)th level correspond to the encoding of the i-th configura-
ion of the work of M on input x,

- the value of the first node of the cP(X.th level is 1 if and only if M accepts x.

The details of this construction are left to the reader. m]

It would be interesting to study also the complexity of A*ypz for other problems A, for example
those dealt with in Section 4.
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