On the Computational Complexity of
Quantified Horn Clauses

Marek Karpinski
Department of Computer Science
University of Bonn

5300 Bonn 1

Hans Kleine-Biining
Institut fur angewandte Informatik und formale Beschreibungsverfahren
University of Karlsruhe

4100 Duisburg 1

Peter H. Schmitt
Scientific center of IBM Germany
Heidelberg

Abstract

A polynomial time algorithm is presented for the evaluation problem for quan-
tified propositional Horn clauses. This answers an open problem of [IM 87].

1 Introduction

The basic idea behind the programming language PROLOG is, that a proof or refutation
of Horn formulas can be viewed as an efficient computation from which one extracts an
output. Horn formulas (or a program) are conjunctions of Horn clauses, i.e. clauses of
the form: A; A Ay A ... A, = B, where A; and B are atomic formulas. The computation
of the program consists in finding an assignment of values to the variables which satisfies
all clauses. Two basic methods used for such a computation are unifiction (to produce
assignments) and resolution of clauses (as a method of logical inference). The problem
of testing a set of Horn formulas for satisfiability, e.g. using unit resolution is known to
have linear time solution algorithms, see e.g. [DG 84], [IM 87].

The new development of Prolog query languages, cf. [GR 87], strongly motivated the
search for general efficient solutions for quantified Horn clauses. In this paper we present
such an efficient solution for the evaluation problem of quantified propositional Horn
clauses. The algorithm works in O(n®) time. We stress in this paper polynomial time
solutions for this problem, rather than the design of new data structures to make it work
faster. We do hope though to present a linear time or O(nlogn) time algorithm in a
subseguent paper. Schéfer in [Sch 78] claimed a polynomial time algorithm for the above
problem, but he did not give a proof.

It is interesting to note, that the evaluation problem for quantified Boolean formulas, even
if restricted to formulas containing at most three literals per clause, is PSPACE-complete,
[GJ 79]. In [APT 79] a linear time algorithm has been design for the case of quantified
Boolean formulas in conjunctive normal form with at most two literals per clause.

Our result in this context entails suprising algorithmic efficiency of the evaluation prob-
lem for quantified Horn clauses and opens the possibility of several natural query-like

extensions of standard PROLOG.

2 Terminology

We will mainly deal with propositional and quantified propositional formulas. We denote
by PV the infinite set of propositional variables. The propositional connectives “and”,
“or”, and “not” are designated by the symbols "A” “V” and ”—=". We shall have occasion
to deal with the following special sets of propositional formulas: literals, all propositional
formulas, clauses, conjuntive normal forms (conjunctions of clauses), Horn clauses (clauses
containing at most one positive literal), totally negative clauses (clauses containing only
negative literals), negative conjunctive normal forms (conjunctions of totally negative
clauses). These will be denoted respectively by LI, FML, CL, CNF, HC, TNC,
NCNF.

In case we allow the propositional constants 0 and 1 to occur, the corresponding sets are

indexed by C, e.g. CNFq, HC¢, etc.

The universal (existential) quantifier will be denoted by V (3) as usual. For any set Y of
propositional formulas * 3" is the set of all formulas of the form QX ...Q,X,. where

n is an arbitrary natural number, each @); is either V or 3, 0 € S and{X;,..., X, } is a
set of propsitional variables. If {Xj,..., X, } contains all variables occuring in o, we call

(1X1...0Q,X,0 closed. Likewise 3* 3 is the set of all formulas of the form 3.X;,...,dX,.
with o € 3.

As usual we distinquish free and bound occurences of variables in quantified propositional
formulas. For X € PV and ¢ a constant symbol the formula o(¢/X) arises from o by
replacing every free occurence of X in o by .

We say that a variable X occurs in a clause ¢ if either X or =X is a disjunctive component
of ¢. In contrast we say that X is a literal of ¢ if X is a disjunctive component of ¢.
Thus X occurs in =X VY V=7, but X is not a literal of this clause.

3 Gerneralized Unit Resolution

It is well known, that a formula of the form
X, .. 3 X

where ¢ is a cojunction of Horn clauses, is true if and only if the empty clause is not
derivable from ¢ by unit resolution. We first generalize the operation of unit resolution
to the case of arbitrary quantifier prefixes.

Let ® be a formula of the form

VX,3Y; ... 3V VX,

where

forall 7,1 <: <k)?Z = X, _ 41y Xy, with ng =10

Since we want to treat formulas with arbitrary quantifier prefix, we allow n;
and ny to be 0, while for all 1,1 < ¢ < k we require n; # 0.

forall 7,1 <i<k 1_/; =Y, 41>+ Ym,, where all m; # 0.

d=01N.. N

where all ¢; are Horn clauses:
we may furthermore assume without loss of generality:

for every 1,1 <1 < r, there is no variable X, such that both literals X; and
—X; occur in ¢;

In the given representation of ® we assume implicitely, that no propositional variable
occurs both existentially and universally bound. This is clearly no restriction.

An X-literal (Y-literal) is a literal of the form X; or =X, (resp. Y; or =Y;). A pure
X-clause is a clause consisting exclusively of X-literals. In particular the empty clause
is a pure X-clause.

A clause ¢; is called a Y;-unit clause if Y; occurs positively in ¢; and Y; is the only
Y-variable occuring in ¢;.

A clause ¢; is called a Y-unit clause if Y;-unit clause for some 1.
When we say, that the variable X; is before Y, we refer to the order of occurences in the

prefix of @, i.e. X; is before Y, if n,_1 <t <n,,m,_; <j <m, and p < ¢q. Analogously
we use the phrase X; is after Y.

Let ¢, be a Y;-unit clause and ¢, a clause containing the literal =Y;. The resolvent ¢ of

¢, and ¢, is obtained by

forming the disjunction ¢, V ¢,,
if for some variable X; both literals X; and =X, occur in ¢, V ¢,, then stop.
No resolvent exists in this case.

omitting all occurences both negated and unnegated of the variable Y;,

omitting all occurences of X-variables, that are not before any Y-variable
occuring in the modified disjunction,

A unit resolution step on the formula ¢
VX3V, . 3V E — 1VX (b1 AL A dy)

is performed by adding the resolvent » of a Y-unit clause ¢, and a clause ¢, containing
the literal =Y to the matrix of ¢, thus obtaining

VX3V 3V VXL (DL A A G ATD)

Lemma 1: Let > be obtained from ¢ = V)?ﬁlﬁ . ..Eli_/}ﬁ_lV)_()kqb by omitting in any
clause of ¢ all X-literals for those X, that are not before any Y-variable occuring in this
clause, then Y is true if and only if ¢ is true.

Proof: If)" is true, then ¢ is, of course, also true. So let us assume that ® is true.
There are functions f; for all ¢, 1 <1 < my_q, the number of arguments of f; equals the
number of X-variables that are before Y, such that for any sequence a4, ..., a,, of 0 and
1 the formula

dlary ...y an,, f1(aY), ..., fr,_ (@™1))

is true, where b; = f;(a1,...,a,) for the appropriate number n of arguments.
Let ¢; be a clause in the matrix of ®. Let ¢; = ¢;1V ¢; 2, where ¢, ; contains all Y-literals
from ¢; and those X-literals of ¢;, such that X occurs before Y for some Y-literal in ¢,

and ¢; ; contains all literals =X; or X; such that X; is not before any Y-variable occuring
n sz
Let us fix an assignment a4, ..., a,, of 0 and 1. We will use b; as an abbrevation for fi(c_il).

We will show, that
dinlar, ..., an,, f1(51)7 oo fon (@m1))

is true.

Let a},...,a), be another assignment of values 0 and 1 to the X-variables which agrees

with the fixed assignment except possibly for variables X; that are not before any Y-
variable in ¢;. The assignment @ is chosen to have the property, that ¢; (@, [;’) is false.
This is possible since by assumption on ® the pure X-clause ¢; 3 contains no complemen-
tary pair X;, =.X;.

Since ¢ is true under the assignment aj,...,a; ,0%,...,0, _ ¢, has to be true. Since
¢;1 contains only X-variables X; for which a; = a} and since for all variables Y; in ¢;
the function f; does not have any of the changed X-values among it arguments, ¢, is

also true under the original assignment a.

Lemma 2: Let Y be obtained from ® by a resolution step, then >~ is true if only if ®
is true.

Proof: If 3 is true, then ® is, of course, also true. To prove the converse direction we
first observe, that adding to ¢ the ordinary resolvent of two clauses, without omitting any
variables leads to a logically equivalent formula ¢’. Now Lemma 1 is used to pass from

VX3V, . 3V Y X to S

Theorem 3: Let ® be a formula of the form V)?ﬁlﬁ ... Ell_/);ﬂ_lV)_()kqb

® is true if and only of no pure X-clause can be derived from ¢ by Y-unit resolution.

Proof: Let ® be obtained from ® by Y-unit resolution, such that the matrix ¢ of ¢’
contains a pure X-clause ¢». By assumption on ® and the definition of unit resolution
cannot contain a complementary pair. Thus @ is obviously false. By Lemma 1 also ®
has to be false.

Now let us assume, that no pure X-clause can be derived from ¢. Let o be the conjuntion
of ¢ together with all resolvents, that can be derived by Y-unit resolution and let 3~ be
the formula with the same prefix as ® and the matrix 0. We will show that 3~ is true,
which immediately yields also the truth of ®.

Let an arbitrary assignment @ = ay, ..., a,, of 0 andl be given. We define the assignments
b; Tor the variables Y; as follows:

o If there is a Y;-unit clause in o that is not already made true under the partial
assignment @, then let b; equal 1.

o Let b; equal 0 otherwise.

—

We prove by induction on the number s of Y-variables in vy, that x(d,b) is true, for any
clause y of o.

If s = 0, then y would consist entirely of X-variables. By assumption this is not possible.

Let s = 1. If x is a Y;-unit clause, then y is either already true on the basis of the
assignment @ or b; has been defined to be equal to 1. So let us assume that the only
Y-literal in y is =Y;. If no Y;-unit clause occurs in o, that is not true on the basis of @
alone, then b; is aquel to 0 and y is true. Finally it remains to consider the case that o
contains a Y;-unit clause x’, that is not already true under the partial assignment @. By
the Horn property all X-literals in y’ are negative. We may therefore draw the conclusion
that for all variables X; in \' «; = 1. By assumption y and y’ cannot have a resolvent,
i.e. for some j X; occurs in y and =X, occurs in x’, which implies that x is true, since
a; = 1.

Induction step. Let y contains s + 1 Y-literals, where we may now assume s > 1. By the
Horn property x has to contain a negative Y-literal —=Y;. If there is no Y;-unit clause in o,
that is not already true under the assignment @, then b; = 0 and y is true. Otherwise let
Y’ be such a clause. The resolvent 1) of y and x’ contains s Y-literals and is thus true by
induction hypothesis. Since the disjunctive part of ¢ stemming from Y’ is not true, the
part stemming from y has to be. Thus also x is true.

4 Examples

Example 1 Let
¢ =VXIY(XVY)A(-XVY))

The second clause is a Y-unit clause. Its resolvent with the first clause would contain the
complementary pair and =X and is thus not performed. No pure X-clause is derivable,
d is true.

Example 2 Let
¢ =VYIX(XVY)A(-XVY))

Again the second clause is a Y-unit clause. Its resolvent with the first clause is the empty
clause since all occurences of X-variables are dropped. Thus the formula is false.

Example 3 Let

¢ =IVIVXIV (Y1 VX VY A (RYT V=X VYY) AY))

The only Y-unit clause is Y. The resolvents with the first and second clause are X V =Y,
and =X VY, respectively.

The second clause is again a Y-unit clause. No resolution with the first clause is possible,
because a complementary pair would arise. This @ is true.

Example 4 Let
¢ =VXiVXodVidYa (Xo vV -Yo) A (Yo VY A (R X VYY) A (2X VYY)

Using the Y-unit clauses X5 VY] and = X; VY] we obtain by resolution with the second
clause two new Y-unit clauses Y3 V =X, and Y5 V =X . Only the second of these can be
used to continue resolution with the first clause to obtain X3V —=X5. Thus is false.

Lemma 4: Let ® be a formula of the form V)?H?qb. Then @ is false if and only if for
some assignment @ = ay,...,a, of values 0 and 1 with at most one occurence of 0, the

formula 317¢(a1, e, p), is false.

Proof: One implication of the lemma is trivial. So let us assume that V)?H?qb is false.
Let ¢o be the conjunction of ¢ together with all clauses, that can be derived from ¢ by
Y-unit resolution. By Lemma 1 V)?H?qb, is equivalent to V)_()Elf}qbo. By our assumption
the latter formula is false and thus contains by virtue of Theorem 3 a pure X-clause
x. Let @ = ay,...,a, be an assignment of values 0 and 1 to the X-variables, such that
x(a1,...,a,) is false. Since y is a Horn clause, we may choose d, such that at most one 0
occurs. Obviously 317¢0(a1, ..., ay) is false and therefore by the equivalence stated above

also 317¢(a1, oy ap) is false.

Lemma 5: The truth of an V3-quantified conjunction of Horn formulas can be decided
in polynomial time.

Proof: Let & = V)?H?qb. The algorithm consists in all assignments @ with at most once
0 the truth of 317¢(5). There are (number of X-variables) 4+ 1 many assignments @ with
at most one 0. The reduction of ¢(d) to a conjuction ¢, of Horn clauses not containing
the constants 0 and 1 can be affected in linear time. Finally the satisfiability of ¢; can be
decided in linear time. Thus the overall running time of the algorithm may be bounded
by (length of input)*.

5 An Algorithm

Let ® be a formula of the form
VX,3Y, ... 3, VX

be given.

Let Ny be the set of clauses in ¢, that are not pure X-clauses and contain only negative
Y-literals. Let P4 be the set of clauses in ¢, that contain at least one positive Y-literal.

for all clauses €' in N, do

let S¢ be the set of positive X-literals in C'. {Thus SC may be a singleton set or
the empty set}

if S¢ is empty then do

remove all occurences of all X-literals in Py and C obtaining P; and ¢’
apply standard unit-resolution to P} and C".

if the empty clause can be derived terminate with “® is false”
otherwise terminate with “¢ is true”.

end if
if S¢ = {X,} then do

for all variables X different from X, remove all X-literals from P,
obtaining Pj.
begin 1
let L be the set of Y-unit clauses that may be derived from P by
standard unit resolution without talking the obstacle X, into
consideration and such that Y occurs before X, in the prefix of ®.
for all Y € L remove all occurences of the literal =Y in all clauses
in P}
remove all clauses containing a Y-literal, with Y occuring before
X, in the prefix of ® obtaining P}.
let U be the set of Y-unit clauses in P} not containing the literal =.X;.
let R be the empty set
while U is not empty do

for Y € Udo
remove all occurences of the literal =Y in all clauses in P}
remove all clauses in P} containing the literal Y.
add new Y-unit clauses not containing =X, to U
remove Y from U

add Y to R

end for
end while
end 1

if all Y-variables in ' occur among the variables in L U R, then is “® is false”
otherwise “® is true”.

end if

end for

The complexity of the above algorithm is O(n®) observing that unit-resolution can be
performed in linear time.

References

[AvE 82]

[APT 79]

DG 84]

[GR 87]

[GJ 79]

[IM 87]

[Sch 78]

K.R. Apt and M.H. van Emden, Contributions to the Theory of Logic Pro-
gramming, J. ACM vol. 29, 1982, pp. 841-862.

B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the
truth of certain quantified boolean formulas, Inf. Processing Letters, Vol. 8,

1979, pp. 121-123.

W.F. Dowling and J.H. Gallier, Linear-Time Algorithms for Testing the Sat-
isfiability of Propositional Horn Formulae, J Logic Programming, vol 3, 1984,
pp- 267-284.

J.H. Gallier and S.Raatz, HORNLOG: A Graph- Based Interpreter for General
Horn Clauses, J. of Logic Programming, vol 4, 1987, pp. 119-155.

M.R. Garey and D.S. Johnston, Computers and Intractability, A Guide to the
Theory of Np-Completeness, W.H. Freeman and Co., San Fransicao, 1979.

A. Ttai and J.A. Makowsky, Unification as a complexity measure for logic pro-
gramming, J. Logic Programming, vol. 4, 1987, pp. 105-117.

Th.J. Schafer, The Complexity of Satisfiability Problems. Proc. 10 th. Ann.
ACM STOCS 1978, pp. 216-226.

