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1 IntroductionThe basic idea behind the programming language PROLOG is, that a proof or refutationof Horn formulas can be viewed as an e�cient computation from which one extracts anoutput. Horn formulas (or a program) are conjunctions of Horn clauses, i.e. clauses ofthe form: A1 ^A2 ^ : : : Am ! B, where Ai and B are atomic formulas. The computationof the program consists in �nding an assignment of values to the variables which satis�esall clauses. Two basic methods used for such a computation are uni�ction (to produceassignments) and resolution of clauses (as a method of logical inference). The problemof testing a set of Horn formulas for satis�ability, e.g. using unit resolution is known tohave linear time solution algorithms, see e.g. [DG 84], [IM 87].The new development of Prolog query languages, cf. [GR 87], strongly motivated thesearch for general e�cient solutions for quanti�ed Horn clauses. In this paper we presentsuch an e�cient solution for the evaluation problem of quanti�ed propositional Hornclauses. The algorithm works in O(n3) time. We stress in this paper polynomial timesolutions for this problem, rather than the design of new data structures to make it workfaster. We do hope though to present a linear time or O(n log n) time algorithm in asubseguent paper. Sch�afer in [Sch 78] claimed a polynomial time algorithm for the aboveproblem, but he did not give a proof.It is interesting to note, that the evaluation problem for quanti�ed Boolean formulas, evenif restricted to formulas containing at most three literals per clause, is PSPACE-complete,[GJ 79]. In [APT 79] a linear time algorithm has been design for the case of quanti�edBoolean formulas in conjunctive normal form with at most two literals per clause.Our result in this context entails suprising algorithmic e�ciency of the evaluation prob-lem for quanti�ed Horn clauses and opens the possibility of several natural query-likeextensions of standard PROLOG.2 TerminologyWe will mainly deal with propositional and quanti�ed propositional formulas. We denoteby PV the in�nite set of propositional variables. The propositional connectives \and",\or", and \not" are designated by the symbols 00^00, \_00, and 00:00. We shall have occasionto deal with the following special sets of propositional formulas: literals, all propositionalformulas, clauses, conjuntive normal forms (conjunctions of clauses), Horn clauses (clausescontaining at most one positive literal), totally negative clauses (clauses containing onlynegative literals), negative conjunctive normal forms (conjunctions of totally negativeclauses). These will be denoted respectively by LI, FML, CL, CNF, HC, TNC,NCNF.In case we allow the propositional constants 0 and 1 to occur, the corresponding sets areindexed by C, e.g. CNFC;HCC; etc.The universal (existential) quanti�er will be denoted by 8 (9) as usual. For any set P ofpropositional formulas Q�P is the set of all formulas of the form Q1X1 : : : QnXno where2



n is an arbitrary natural number, each Qi is either 8 or 9, o 2 P andfX1; : : : ;Xng is aset of propsitional variables. If fX1; : : : ;Xng contains all variables occuring in o, we callQ1X1 : : : QnXno closed. Likewise 9�P is the set of all formulas of the form 9X1; : : : ;9Xnowith o 2 P.As usual we distinquish free and bound occurences of variables in quanti�ed propositionalformulas. For X 2 PV and t a constant symbol the formula o(t=X) arises from o byreplacing every free occurence of X in o by t.We say that a variableX occurs in a clause � if eitherX or :X is a disjunctive componentof �. In contrast we say that X is a literal of � if X is a disjunctive component of �.Thus X occurs in :X _ Y _ :Z, but X is not a literal of this clause.3 Gerneralized Unit ResolutionIt is well known, that a formula of the form9X1 : : :9Xk�where � is a cojunction of Horn clauses, is true if and only if the empty clause is notderivable from � by unit resolution. We �rst generalize the operation of unit resolutionto the case of arbitrary quanti�er pre�xes.Let � be a formula of the form 8 ~X19~Y1 : : :9~Yk�18 ~Xk�wherefor all i; 1 � i � k ~Xi = Xni�1+1; : : : ;Xni with n0 = 0Since we want to treat formulas with arbitrary quanti�er pre�x, we allow n1and nk to be 0, while for all i; 1 < i < k we require ni 6= 0.for all i; 1 � i < k ~Yi = Ymi�1+1; : : : ; Ymi , where all mi 6= 0.� = �1 ^ : : : ^ �rwhere all �i are Horn clauses:we may furthermore assume without loss of generality:for every i; 1 � i � r, there is no variable Xj , such that both literals Xj and:Xj occur in �iIn the given representation of � we assume implicitely, that no propositional variableoccurs both existentially and universally bound. This is clearly no restriction.An X-literal (Y-literal) is a literal of the form Xi or :Xi (resp. Yi or :Yi). A pureX-clause is a clause consisting exclusively of X-literals. In particular the empty clauseis a pure X-clause. 3



A clause �j is called a Yi-unit clause if Yi occurs positively in �j and Yi is the onlyY -variable occuring in �j.A clause �j is called a Y -unit clause if Yi-unit clause for some i.When we say, that the variable Xi is before Yj , we refer to the order of occurences in thepre�x of �, i.e. Xi is before Yj if np�1 < i � np;mq�1 < j � mq and p � q. Analogouslywe use the phrase Xi is after Yj .Let �p be a Yi-unit clause and �q a clause containing the literal :Yi. The resolvent  of�p and �q is obtained byforming the disjunction �p _ �q,if for some variable Xj both literals Xj and :Xj occur in �p _ �q, then stop.No resolvent exists in this case.omitting all occurences both negated and unnegated of the variable Yi,omitting all occurences of X-variables, that are not before any Y -variableoccuring in the modi�ed disjunction,A unit resolution step on the formula �8 ~X19~Y1 : : :9~Y k � 18 ~Xk(�1 ^ : : : ^ �k)is performed by adding the resolvent  of a Y -unit clause �p and a clause �q containingthe literal :Y to the matrix of �, thus obtaining8 ~X19~Y1 : : :9~Yk�18 ~Xk(�1 ^ : : : ^ �k ^  )Lemma 1: Let P be obtained from � = 8 ~X19~Y1 : : :9~Yk�18 ~Xk� by omitting in anyclause of � all X-literals for those X, that are not before any Y -variable occuring in thisclause, then P is true if and only if � is true.Proof: If P is true, then � is, of course, also true. So let us assume that � is true.There are functions fi for all i, 1 � i � mk�1, the number of arguments of fi equals thenumber of X-variables that are before Yi, such that for any sequence a1; : : : ; ank of 0 and1 the formula�(a1; : : : ; ank ; f1(~a1); : : : ; fmk�1(~amk�1))is true, where bi = fi(a1; : : : ; an) for the appropriate number n of arguments.Let �i be a clause in the matrix of �. Let �i = �i;1_�i;2, where �i;1 contains all Y -literalsfrom �i and those X-literals of �i, such that X occurs before Y for some Y -literal in �iand �i;2 contains all literals :Xj or Xj such that Xj is not before any Y -variable occuringin �i.Let us �x an assignment a1; : : : ; ank of 0 and 1. We will use bi as an abbrevation for fi(~a1).We will show, that�i;1(a1; : : : ; ank ; f1(~a1); : : : ; fmk�1(~amk�1)) 4



is true.Let a01; : : : ; a0nk be another assignment of values 0 and 1 to the X-variables which agreeswith the �xed assignment except possibly for variables Xj that are not before any Y -variable in �i. The assignment ~a0 is chosen to have the property, that �i;2(~a0;~b0) is false.This is possible since by assumption on � the pure X-clause �i;2 contains no complemen-tary pair Xj , :Xj .Since � is true under the assignment a01; : : : ; a0nk ; b01; : : : ; b0mk�1�i;1 has to be true. Since�i;1 contains only X-variables Xi for which ai = a0i and since for all variables Yj in �i;1the function fj does not have any of the changed X-values among it arguments, �p;1 isalso true under the original assignment ~a.Lemma 2: Let P be obtained from � by a resolution step, then P is true if only if �is true.Proof: If P is true, then � is, of course, also true. To prove the converse direction we�rst observe, that adding to � the ordinary resolvent of two clauses, without omitting anyvariables leads to a logically equivalent formula �0. Now Lemma 1 is used to pass from8 ~X19~Y1 : : :9~Yk�18 ~Xk�0 to P.Theorem 3: Let � be a formula of the form 8 ~X19~Y1 : : :9~Yk�18 ~Xk�� is true if and only of no pure X-clause can be derived from � by Y -unit resolution.Proof: Let �0 be obtained from � by Y -unit resolution, such that the matrix �0 of �0contains a pure X-clause  . By assumption on � and the de�nition of unit resolution  cannot contain a complementary pair. Thus �0 is obviously false. By Lemma 1 also �has to be false.Now let us assume, that no pure X-clause can be derived from �. Let o be the conjuntionof � together with all resolvents, that can be derived by Y -unit resolution and let P bethe formula with the same pre�x as � and the matrix o. We will show that P is true,which immediately yields also the truth of �.Let an arbitrary assignment ~a = a1; : : : ; ank of 0 and1 be given. We de�ne the assignmentsbi for the variables Yi as follows:� If there is a Yi-unit clause in o that is not already made true under the partialassignment ~a, then let bi equal 1.� Let bi equal 0 otherwise.We prove by induction on the number s of Y -variables in �, that �(~a;~b) is true, for anyclause � of o.If s = 0, then � would consist entirely of X-variables. By assumption this is not possible.5



Let s = 1. If � is a Yi-unit clause, then � is either already true on the basis of theassignment ~a or bi has been de�ned to be equal to 1. So let us assume that the onlyY -literal in � is :Yi. If no Yi-unit clause occurs in o, that is not true on the basis of ~aalone, then bi is aquel to 0 and � is true. Finally it remains to consider the case that ocontains a Yi-unit clause �0, that is not already true under the partial assignment ~a. Bythe Horn property all X-literals in �0 are negative. We may therefore draw the conclusionthat for all variables Xj in �0 aj = 1. By assumption � and �0 cannot have a resolvent,i.e. for some j Xj occurs in � and :Xj occurs in �0, which implies that � is true, sinceaj = 1.Induction step. Let � contains s+1 Y -literals, where we may now assume s > 1. By theHorn property � has to contain a negative Y -literal :Yi. If there is no Yi-unit clause in o,that is not already true under the assignment ~a, then bi = 0 and � is true. Otherwise let�0 be such a clause. The resolvent  of � and �0 contains s Y -literals and is thus true byinduction hypothesis. Since the disjunctive part of  stemming from �0 is not true, thepart stemming from � has to be. Thus also � is true.4 ExamplesExample 1 Let� = 8X9Y ((X _ :Y ) ^ (:X _ Y ))The second clause is a Y -unit clause. Its resolvent with the �rst clause would contain thecomplementary pair x and :X and is thus not performed. No pure X-clause is derivable,� is true.Example 2 Let� = 8Y 9X((X _ :Y ) ^ (:X _ Y ))Again the second clause is a Y -unit clause. Its resolvent with the �rst clause is the emptyclause since all occurences of X-variables are dropped. Thus the formula is false.Example 3 Let� = 9Y18X9Y2((:Y1 _X _ :Y2) ^ (:Y1 _ :X _ Y2) ^ Y1)The only Y -unit clause is Y . The resolvents with the �rst and second clause are X _:Y2and :X _ Y2 respectively.The second clause is again a Y -unit clause. No resolution with the �rst clause is possible,because a complementary pair would arise. This � is true.Example 4 Let� = 8X18X29Y19Y2((X2 _ :Y2) ^ (Y2 _ :Y1) ^ (:X2 _ Y1) ^ (:X1 _ Y1))6



Using the Y -unit clauses :X2 _Y1 and :X1 _ Y1 we obtain by resolution with the secondclause two new Y -unit clauses Y2 _ :X2 and Y2 _ :X1. Only the second of these can beused to continue resolution with the �rst clause to obtain X3 _ :X2. Thus is false.Lemma 4: Let � be a formula of the form 8 ~X9~Y �. Then � is false if and only if forsome assignment ~a = a1; : : : ; an of values 0 and 1 with at most one occurence of 0, theformula 9~Y �(a1; : : : ; an), is false.Proof: One implication of the lemma is trivial. So let us assume that 8 ~X9~Y � is false.Let �0 be the conjunction of � together with all clauses, that can be derived from � byY -unit resolution. By Lemma 1 8 ~X9~Y �, is equivalent to 8 ~X9~Y �0. By our assumptionthe latter formula is false and thus contains by virtue of Theorem 3 a pure X-clause�. Let ~a = a1; : : : ; an be an assignment of values 0 and 1 to the X-variables, such that�(a1; : : : ; an) is false. Since � is a Horn clause, we may choose ~a, such that at most one 0occurs. Obviously 9~Y �0(a1; : : : ; an) is false and therefore by the equivalence stated abovealso 9~Y �(a1; : : : ; an) is false.Lemma 5: The truth of an 89-quanti�ed conjunction of Horn formulas can be decidedin polynomial time.Proof: Let � = 8 ~X9~Y �. The algorithm consists in all assignments ~a with at most once0 the truth of 9~Y �(~a). There are (number of X-variables) + 1 many assignments ~a withat most one 0. The reduction of �(~a) to a conjuction �1 of Horn clauses not containingthe constants 0 and 1 can be a�ected in linear time. Finally the satis�ability of �1 can bedecided in linear time. Thus the overall running time of the algorithm may be boundedby (length of input)2.5 An AlgorithmLet � be a formula of the form 8 ~X19 ~Y1 : : :9~Yk�18 ~Xk�be given.Let N� be the set of clauses in �, that are not pure X-clauses and contain only negativeY -literals. Let P� be the set of clauses in �, that contain at least one positive Y -literal.7



for all clauses C in N� dolet SC be the set of positive X-literals in C. fThus SC may be a singleton set orthe empty setgif SC is empty then doremove all occurences of all X-literals in P� and C obtaining P 0� and C 0apply standard unit-resolution to P 0� and C 0.if the empty clause can be derived terminate with \� is false"otherwise terminate with \� is true".end ifif SC = fXrg then dofor all variables X di�erent from Xr remove all X-literals from P�obtaining P 0�.begin 1let L be the set of Y -unit clauses that may be derived from P 0� bystandard unit resolution without talking the obstacle Xr intoconsideration and such that Y occurs before Xr in the pre�x of �.for all Y 2 L remove all occurences of the literal :Y in all clausesin P 0�remove all clauses containing a Y -literal, with Y occuring beforeXr in the pre�x of � obtaining P 00� .let U be the set of Y -unit clauses in P 00� not containing the literal :Xr.let R be the empty setwhile U is not empty dofor Y 2 Udoremove all occurences of the literal :Y in all clauses in P 00� .remove all clauses in P 00� containing the literal Y .add new Y -unit clauses not containing :Xr to Uremove Y from Uadd Y to Rend forend whileend 1if all Y -variables in C occur among the variables in L [R, then is \� is false"otherwise \� is true".end ifend forThe complexity of the above algorithm is O(n3) observing that unit-resolution can beperformed in linear time. 8
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