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Abstract.

The intensive study of fast parallel and distributed algorithms for various routing (and com-
munications) problems on graphs with good expanding properties [PU1], [PU2|, [SS] is being
carried out recently. The parallel solutions for expanders that already exist [PU 2] required
an extensive randomization and an application of a randomized subroutine for the Maximum
Matching Problem. In this paper we attack the problem of fast parallel algorithms for con-
structing Perfect Matchings and Hamiltonian Cycles on Dense Graph-Networks (undirected
graphs of minimal degree L'%l) Somewhat surprisingly, we design fast deterministic parallel
algorithms for constructing both the Perfect Matchings and the Hamiltonian Cycles on the
Dense Graphs.

The algorithm for constructing Perfect Matchings on dense graphs works in O(log? n) par-
allel time and O(n®) processors or O(log* n) parallel time and O(n*) processors on a CREW-
PRAM. The algorithm for constructing Hamiltonian cycles on dense graphs works in O(log® n)
parallel time and O(n*) processors on a CREW-PRAM.

Our method of the parallel solution involves a development of new dense graph combinatorics
suitable for fast parallelization.

1. Introduction.

We call graphs G = (V, E) with minimal degree I—‘;—L dense. Dirac [Di] showed that each
dense graph has a Hamiltonian cycle. The proof induces a polynomial time algorithm for
constructing a Hamiltonian cycle for any dense graph. From Dirac’s result follows easily
the theorem of Konig that each dense graph with an even number of vertices has a perfect

*Supported in part by Leibniz Center for Research in Computer Science and the DFG Grant KA 673/2-1



matching (see [Bo]). Our problem is to construct Hamiltonian cycles and perfect matchings in
dense graphs in parallel. Although the construction of a Hamiltonian cycle in NC induces a
perfect matching, we shall present separate algorithms for the perfect matching problem and
the Hamiltonian cycle problem. This has two reasons: First, the algorithm for the construction
of a perfect matching is simpler and it is in NC?, while the Hamiltonian cycle algorithm is
in NC®. Second, dense matching procedures are used as subroutines for the construction of
a Hamiltonian cycle. Section 2 introduces some foundations on graph theory and the parallel
complexity theory. Section 3 presents a parallel algorithm for the perfect matching problem,
and section 4 presents a parallel algorithm for the general construction of a Hamiltonian cycle
in dense graphs.

2. Basic Definitions and Notations.

A graph G = (V,E) consists of a set V of vertices and a set E C {[z,y] | z,y € V} of
(undirected) edges. Loops and multiple edges are not allowed. The degree d(v) of a vertex v
is the size of {z | [v,z] € E}.

A matching of (V, F) is a subset M C E, s.t. any two e;,e; € M have no common vertex. A
perfect matching is a matching which covers all vertices of V. A Hamtltonian cycle is a cycle
which passes all vertices.

NC* is the class of functions f computable by a (logspace) uniform sequence (C, )., of
switching circuits, s.t.
1) for each input z of length n, Cy, (z) = f(z)
2) The size of C, is bounded by a polynomial
3) The depth of C, is bounded by O((logn)*
NC = | )i NC*

(For more details see [Co]). NC is also the class of problems computable by a PRAM
(parallel random access machine) in polylog time with a polynomial processor bound. Here
we use CREW-PRAMs (concurrent read/exclusive write). For more details see [Go]. For any
rational number u, the largest integer < u is denoted by "u" and the smallest integer > u is
denoted by |u].

3. Construction of a Perfect Matching for Dense Graphs.

In this section we will present an N C?-algorithm constructing for each dense graph a perfect
matching. The key of the algorithm is the following result.

Lemma 1. There is an NC?-algorithm constructing for each graph a nonextensible (also
called maximal) independent set.

Remark [Lu]: The above algorithm implemented on an EREW-PRAM (parallel random
access machine without concurrent read and concurrent write) needs O(|V[*| E|) processors in
the worst case. Goldberg and Spencer [GS] could diminish the number of processors on the
expense of parallel time.

Lemma 2. (GS]: There is an EREW-PRAM algorithm computing a maximal independent
set with O(|E|) processors and a time O((logn)*).
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An immediate consequence is the following

Lemma 3.([Lul; see also [KW]): For each graph a nonextensible matching can be constructed
in NC2.

Remark: For the construction of a nonextensible matching we need O(|E|*) processors in
the worst case.

Lemma 3 can be derived from Lemma 1 by construction from a graph G = (V, E) a graph
G'=(V',E'),s.t. V' = E and two edges of E are joint by an edge G’ iff they have a common
vertex. Clearly a nonextensible matching in G is the same as a nonextensible independent
set in G'. The number of processors which are needed for the construction of a nonextensible
matching can easily be derived from the construction of . Using the algorithm of Goldberg
and Spencer, we get the following variation of Lemma 3.

Lemma 4. There is an EREW-PRAM-algorithm computing a maximal matching with
O(|£]?) processors in time O((logn)*). Now we can state the main result of this section.

Theorem 1. For each dense graph of an even number of vertices a perfect matching can be
constructed in NC?.

For the PROOF we state a straight line algorithm, s.t. each single step can be executed in
NC?,

Input: a dense graph G = (V, E).

First step: Compute any nonextensible matching M, of G (using a Maximal Independent
Set Algorithm).

Comments: Each edge contains at least one verter appearing tn M, , otherwise M, would be
extensible.

At least Lc%i vertices belong to an edge of M.

End of Comments.

Second step: Let {z,, -,z } be the set of vertices of G not belonging to an edge of M,
and define G’ = (V', E') as follows:

The vertex set V' consists of the edges of M, and of the unordered pairs {z3_,,2:}, 1 =
1,--+,k. The edge set is defined as follows: {22:-1,23:} and {y,2} € M, are joined by an
edge in E' iff [z,;_,,y] and [z,:,2] € E or [Z2i-1,2] and [z,;,9] € E.

Comment: Note that G is bipartite.

End of Comment.

Third Step: Compute a nonextensible matching M, of G".

Comments: Each vertez of G' of the form {Z2i-1,3:} belongs to an edge of M,.

We shall prove this claim by the following statement.

Lemma 5. Let k be defined as above as the number of pairs {z;_1,%3;}. The degree of
each vertex {z,,_,,z,;} is at least k.



PROOF. Assume that {z;,_,,Z; } has degree £. Then at most £ of the |V'|/2 — k pairs in the
matching M can be touched more than twice by the edges emanating from z,;_, or z,;. The
number of edges touching z,;_, or z;; and an edge e € M, which is touched more than twice,
can be bounded by 4¢£.

Thus
V] =2(IV]/2) < d(z2i-1) +d(z3:) S 4L+2(|V]/2 -k~ ) = [V|-2(k- ) < [V] -2

This is a contradiction.

End of Comments.

Fourth step: for each {z;;-.,23:} as above consider the [u,v] € M, which is joined by an
edge of M,. W.log. [z3.-1,4], [22:,v] € E. Delete [u,v] from M, and add [z;;,,u| and
[z2:,v] to M.

Comment: M, is changed to a perfect matching.
End of Comment.

Last step: Output M,.

The correctness of the algorithm follows from the comments. The algorithm defines an
N C?-function because each step is in NC2, O

Remark: If we want to check the number of processors we have to check the number of
processors of each step and take the maximum. We need a large number of processors in the
first and the third step. But G’ has only |V|/2 vertices and at most | E|/2 edges. Therefore the
number of processors on a CREW-PRAM can be bounded by O(|E|*) for the whole algorithm
if we use Luby’s algorithm as a subroutine. If we use the algorithm of Goldberg and Spencer,
we need a time O(log* n), but only O(|E|?) many processors on a CREW-PRAM. It can also
be easily checked that the a.lg'(_)rithm constructs for each graphr_ (‘V,E) with an odd vertex

number n and minimal degree - a maximum matching of size 2-.

The next question is the parallel complexity of matching for graphs of a minimal degree
a|G|, st. e < ;.

Theorem 2. For a < ; the existence problem for a perfect matching restricted to graphs
G = (V, E), s.t. minimal degree is a|V|, is NC-hard for the general matching problem. This
means that an NC-algorithm for the matching problem restricted to graphs of minimal degree
- a would deduce an algorithm for the general perfect matching problem.

PROOF. Let G = (V,E) be any graph. We construct a graph G' = (XUY U V, E') as
follows: X forms a complete subgraph of G' and Y forms an independent set in G'. Each
vertex of X and each vertex of V' are joined by an edge in E'. Vertices of V are joined by an
edge in G' iff they are joined by an edge in G. X and Y have the same power.

Claim: G has a perfect matching iff G' has a perfect matching: Let M' be a perfect
matching of G'. Then M’ defines a bijection between X and Y, because Y is independent
and all edges of Y go to X. Therefore no edges between V and X are in M’. That means M"
restricted to V defines a perfect matching on G.
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Let M be a perfect matching on G and f be a bijection between X and Y. Then clearly a
perfect matching on G’ is defined.

The minimal degree of G' is the power of X and by definition |G'| = 2|X| + |G|. Set X so

large that
X m—
2ix|+je] ¢
But that means
| X| = 75516l
But for & < 3 we have —%— >0 0

A similar proof technique was also used by A. Broder |Br] for showing that determining the
permanent of “dense” bipartite graphs is #P-hard.

4. The Parallel Complexity of the Construction of a Hamiltonian Cycle.

At first we construct a maximum matching by the previous maximum matching procedure
for dense graphs. There remains at most one vertex z not covered by the maximum matching.
That way we get a collection of disjoint paths covering the whole graph G = (V, E).

Consider now a maximum matching M on G. This can be computed in NC?. Let ¢' =
(V',E') where V' = MU{z} and [{z:,2:},{t1,¥:}| € E’ iff one z; is adjacent to a y;. One
of the {z,,z,} can be equal {z}. We have to check the degree of any vertex of G'. Each
adjacency of two edges of M needs at most four edges. Let d be the degree of some e € V' in
G'. Thendd+2>nifz¢ V' and4(d—1)+4<nifze V.

In the first case n is even. Then 4d > n —2 and 2d > % — 1. For the case that n is divisible

[ | r b |
by 4,d > % — ; and therefore d > 2. For the case that n is not divisible by 4 d > 2= "22 .
Also in the latter case the perfect matching algorithm for dense graphs presents a maximum
matching on G'.

In the second case we can easily see that n > 2+l, Therefore n > 2L > Ll we may

l4] = 2]
now assume that we have at most T—-’;‘——J- disjoint paths.

Our aim is now to paste paths and cycles together by dense matching techniques until we
get a Hamiltonian cycle.

Consider any path p = (z;,+-+ ,z,,) of a dense graph.

Lemma 6. Let n be the number of vertices (n = |V|), a; be the number of edges leaving
z, and not touching any other vertex of p = (z;,-+* ,z), a,, be the number of edges leaving
z,, and not touching any other vertex of p. Then one of the following statements is true:

i) a; +a, >n—m
ii) [z1,2m| € E
iii) thereisani,s.t. 1 <i<j—1,s.t. [21,%m],[Zi,%:] € E. 0

Statements ii) and iii) give us the possibility to make p a cycle.
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PROOF. Assume i) and ii) are not true. Let b, be the number of edges # {z,,z,} leaving
z, and touching some z, «-- z,,_, and let b,, be the number of edges leaving z,. and touching
some Ty -T2,

Therefore
a,+b+12>%anda, +b, +12 5% and a; +b, +a,, +b, >n—2,
Now a, +a,, <n—m and that means b, +b,, > n—2—(a, +an) > m—=2= {2, , Tp-,|.

We say (z,,k) € E, < [21,%c4+1] € E and (zm,k) € E,. ¢ [2,.,2:] € E. k ranges over 2
until m — 2. iii) is satisfied if and only if one finds a k, s.t. (z,,k) € E, and (z,.,k) € E,,.
But k ranges over m — 3 elements and |A| := |{k|(z:,k) € E,}| = b, and |B| := |{k|(z.n, k) €
E,. }| = b, . This means A and B have a nonempty intersection. 0

Now we describe the steps we want to do repeatedly and in parallel:

1) Concatenation of two paths: From p = (z4,*** ,Zn), ¢= (¥1,°** 1¥Um, ), and {zZ,n, ., } EE
formpﬁq = (xis°°' 3Tm, s Y1y " ,ym,)-

2) Insertion of a path into a path or cycle: From p = (z1,-++,2.),9 = (v1,"** ,¥m) and
(213 %:)s (225 U] € E form p™* (2, Ziga ) g 1= (Zay 000 s i3 Yaioe s Yo Tinna* 3 %0)

Figure 1: Insertion: The old paths are assigned by broken lines, the newly generated path is
assigned by bold lines

3) Making a cycle to a path: For a cycle C := (z;,":+,Zm,%,) let C,, :=
(I{+15“'!Im1$11'”sxi)°
1) Making a path to a cycle
a) Ifp:= (—’Em“' sxm)s[xl!xi+!]a[zmsxi]eEthenpcyc(mis$€+1) = (Iu"‘ 1 Tis T s Tm—1,
'a$i+la$1]
b) If p= (2., ,%a) and [z,,2,] € F, then p¢ := (zy, -+ , 2., 1,).

Call a path p proper iff it suffices condition i) of the previous lemma. Otherwise we can
make p a cycle by 4 a) or 4 b). We can make insertions in parallel if they use different edges
(2, Zi41]. This means it is sensible to make a choice for each proper path of an insertion or
concatenation by maximal bipartite matching. For each path p = (z;,--- ,z,) let 1 := 1, be
the number of endvertices of another path, adjacent to z; or z,,, and 5 := 7, be the number
of path edges in which p can be inserted.

Lemma 7. Let P:= {p;, -+ ,px} be a set of pairwise disjoint paths, s.t. U:.:__lp,- =V, and
(V, E) be dense, then for each proper path p € P we have 1, + 5, > k
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Figure 2: Making a path a cycle. The old path is assigned by a broken line, the cycle is
assigned by a bold line.

PROOF. We have 2(k — 1) endpoints of paths not belonging to p. Let u be the number of
vertices not belonging to p and a, be the number of vertices adjacent to z; and not belonging
to p and a,, be the number of vertices adjacent to z,, and not belonging to p. Let £ be the
number of path endpoints adjacent to z, or z,,. That means £ := 2(k — 1) — £ is the number
of path endpoints not adjacent to z, or z,,. We know that a, +a,, > v. But that means that
the number ¢ of vertices adjacent to z, and z,, not belonging to p is greater than #'.

We consider vertices v adjacent to z, and z,, such that no path neighbour of v is adjacent
to z, or z,, and call such a v fsolated. We call a subpath (u,,-+-,u:) an isolated chain iff
(u:)f_, alternates between isolated vertices and vertices not adjacent to z, or z,,. Clearly for
u = u;, U u is not adjacent to z; or z,, or u is an endpoint of any p;. Consider maximal
isolated chains and delete from them the isolated vertices which are endpoints of some p;. Call
these subpaths alternating subpaths. They have the property that they have at least as many
vertices not adjacent to z, or z, as vertices adjacent to both z, and z,. If we delete all vertices
belonging to an alternating subpath, then the sum of all numbers of vertices not belonging to
p adjacent to z, and z,,, resp., remains greater than the number ¢ of the remaining vertices
not belonging to p. Also the number of vertices adjacent to z, and z,, not belonging to p
remains greater than £'. Call the collection of these vertices A. Some v € A are at the end of
some p;. But these are at most £. Call the set of the remaining vertices B and let £ = | B|.
All remaining v € A have the property that at least one path neighbour w is adjacent to z,
or z,, . But then p can be inserted into {v,w}.

Consider subpaths (v, ++ ,v,,), s.t. v5,+++,v,,_, are adjacent to both z, and z,, and v,
and v, are adjacent to z, or z,,. Each v € B is in such a subpath, and each subpath has the
length of at least two vertices. Therefore we have at least - path edges in which p can be
inserted.

But i, +7, > L+ & >€+£f2;‘2€+?—(£%1:-£=2—(%‘~11 = k — 1. Therefore i, + j, > k.
0

_ An immediate consequence of this lemma is the following: Consider the bipartite graph
H := (V,UV,, E), where

Vi :=={p1, -+ ,px}, Vo := {z|z endpoint of some p, YW{[z:,22]|z;, 2z, neighbours on some P}
and

[p:,z] € E iff for one of the endpoints yof p;, [y,z] € E
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and
[Pi,[z1,22]] € E iff p; can be inserted into [z, ,z,].

Any maximal matching M of H (connected by an MI S-algorithm) covers all proper “ver-
tices”of {py,- -+, P& }-

Now we are ready to state subprocedures to reduce the number of paths:

Procedure CONCATENATION (G, P, M)

G = (V, E) is a dense graph. P = {p;,--- ,Px } is a collection of disjoint paths, s.t. its union
isV and p,, -+ ,p, are proper. M is a maximal matching on I;T, where H is defined as above.
Begin

For each endpoint z of any p; and each p;, s.t. {p;,z} € M pick up an endpoint y of p;, s.t.
ly,z] € E and do (y, z) into F.

(Comment: Each vertex z has at most one y, s.t. (v, z) € F and at most one y, s.t.
(z,y) € F)
End of Comment.)

For each maximal sequence (z,,:--,z,) (called F-chain), s.t. (z;,z:4,) € F for each
r A
t = 1---pset (z5i-,,2,;) into F', where j=1...L

Comments:
i) At most one vertex of any F-chain is not in any directed F’-edge.
i) For each p;, s.t. [p;, ] € M and z € V, one endpomt is in an F-chain (length > 2).
iii) Therefore: At most % of all vertices appearing in an F-chain do not appear in any directed
edge of F".
End of Comments.

For each (z,,z,) € F' concatenate the paths p;,p; belonging to z,,z, resp. by the edge
[Il ] 332]
(Comment: 2 of the paths p;, s.t. there is an z,[p;, z] € M are concatenated.

Let P, be the set of all paths p, s.t. [p,,z]EM and z€ V

Then the number of paths is reduced by at least % |P, |
End of Comment.)

Procedure INSERT (G, P, M)
declaration as in CONCATEN ATION

Begin
For each piy1 = 1---¢, s.b. [p,[y1,4:]] € M and [y,,4.] € p;, (p: ¢ P1) do (pi,p;) € F,. For
each Fl—cycle delete one (z,;,z;) € Fl, which is on the cycle.

Comment: F, is now a directed forest and each p; ¢ P, belongs to one of the trees of F, of
cardinality of at least 2.
End of Comment.

For each pi, s.t. (pi, [1,¥2]) € M and (p;,p;) € F, insert p; into (41, ¥a].
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(Comment: Let P, := {p;[i =1-+-£,p; ¢ P,}. Then the number of paths is reduced by at
least 2| P |).
End of Comment.)

Therefore

Lemma 8. Let P = {p, ---p.} be a set of disjoint paths covering all vertices and £ be the
number of its proper paths. Then the concatenation of the procedures CONCATENATION
and INSERT reduces the number of paths by at least 2.

We will now deal with improper paths (which are extensible to cycles). We assume that we
have at most {i7 disjoint paths. Each (also improper) path p of size |p| has at least 2 —|lpl+1
vertices not in p adjacent to some vertex of p. In case |p| < % there are at least as many
vertices as |p| which are adjacent to some vertex of p, but not in p. Therefore any mazimal
matching M on (PUV, E = {(p,v)|[v,z] € E for some z € p and v ¢ p}) covers all paths of

5 n
size < 2.

We consider the following mapping from the set P; of improper paths to P. f (p) = the path
pof P,st. v € pand (p,v) € M. Each repeated application of f ends in an f-cycle or in a
path p, not in P, or in a path p of size > 2. We make f into a directed forest by making f
undefined for one element of each f-cycle. Each f-tree has cardinality > 2. We decompose f
into trees of depth 1 in the following way:

Mark all f-leaves by 1. Mark f(z) by O if z is marked by 1 and mark y by 1 if all z, s.t.
f(z) = y are marked by 0. (Such marking procedures can be done in NC by an alternating
logspace machine with polynomial tree size (see [Ru])). For each z which is marked by 0, let
T, consist of all y, s.t. f(y) = z and y is marked by 1. Then T, is a tree of depth 1. All T,
are disjoint and only roots of any f-tree do not belong to any 7,. This procedure is called
DECOM(f). The value of DECOM(f) is the set of all these T,. For each 7. we can now
apply the following reduction procedure:

Procedure REDUCE (T,, M)
Begin

make all leaves of T, to cycles; for each leaf p of T, select an edge [u,,v,], s.t. [p,v,] € M
(M is the matching defined as above); each p is made into a path again with u, as its last
vertex; make the root r of T, into a cycle if r is improper; orient r = (V1,000 ,0,).

Let 7, = the 1, s.t. v, = v; for each leaf p of T,. Sort all T, leaves p in ascending order of 7,,.
Denote the j7** leaf of T, by p, and set 1, := tp,. If 7 is a cycle, set for each leaf p; in parallel

" | . L -
pj' =p; ™ (vi, ,vaj+1[ mod ) vs,-.,.”mod ITgl-1)—1

If r is a proper path, set p} 1= p; ~ (vi,, 0,41, ,v,,,); Ph := (vo,--- Ui, —1), ifrisa
proper path.
Begin block marking

If p; is a proper path, then M(p,) =0;

If p; is improper and j maximal, then M(p,) = 1 (if r is a proper path);

If p is improper:
If M(P), 1 moayn) =1, then M(p,) =0 and if M(P;, \(moau)) = 0 then M(p!) = 1.

7
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Figure 3: The construction of the paths p} in T,

end block
(The block can be done in NC because it is in logspace).
For each j:
If M(pl) = 1
then begin

make p; a cycle; make v, the endpoint of pi;p, := p; ~ p} delete

, :—1(mod|r.;-—1);
pj—l(mod|T,|-1}

end.

REDUCE (T.,M) := {p, : p; not deleted }.

end.

Let all p'. be improper. Then REDUCE (T, M) consists of Z=l paths.
k) (2]

In case r is a cycle, it consists of tJ&l:_lT paths.

Let £ be the number of improper p; and m be the number of proper p.. Let £, be the
number of improper paths marked by 1. Then £—¢, < ¢, and REDUCE (T,, M) consists of
m+£— ¢ <m+ £ paths, if r is a cycle; otherwise it consists of < m+ £ + 1 paths.

Therefore
Lemma 9. If REDUCE (T.,M) has m proper paths, then it has at most -ll-T—"-lfll improper
paths. In the case that the root r of T, is improper, REDUCE (T, , M) consists of < -f—'*:fi‘-‘-%
improper paths.

Now we state a procedure which reduces the number of paths by a factor:
Procedure RD(G = (V, E), P) G is dense, P is a collection of disjoint paths covering V.
Begin
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R := {p € P|p is improper };
Q. :={peQlp| <4}.

Compute by MI1S-technique a maximal matching M; on (@, UV, {(p,v)|v is in the neigh-
bourhood of p}); Compute f, : @ — P, st (p,v) € M = v € flp); F, =
DECOM(f,); R:={p|p ¢ Urer, T, p € P} :

O3 := e p, REDUCE(T, M, )UR

Py = {p € Qlpisproper} : Let H := (PRUV' E) where V' :=
{v € V|v is an endpoint of endpoint of some p € Q,}U{z}e is some cdge of any p € Q,}, and
E := {(p,v)|v is adjacert to an endpoint of p and v € V' }U{(p,. {v,, v, }) : the one endpoint
of p is adjacent to v; and the other endpoint of p is adjaccnt to v, ).

Compute a maximal matching M, on H by MIS. 7D is the set of paths generated by
concatenation of CONCATENATION(G,Qz,M;) and INSERT (G, Q,,M,).

end.

Analysis of RD.

Consider f, as a graph, s.t. the vertex set is the union of its domain and its range and the
edge set is defined canonically. Each f;-connected component has a cardinality > 2. In the
case that an f,-component has cardinality = 2, both elements form one tree in DECOM(f,).
Therefore at most § of the improper paths < 2 are not in any T of DECOM(f,).

Let n; be the number of improper and n, be the number of proper paths of P. Let m; be
the number of improper and m, be the number of proper paths in any T of DECOM(f,).
Let m{, be the number of preper paths in TUREDUCE(T, M,). Let k < 3 be the number of
improper paths > :n not in any T of DECOM({,).

Set y := ™ > 2. Then Q, has at most (1 — u)(n; — k) + &lretlime=rmy 4 g iy
proper paths. There remain n, —m, + m, proper paths in Q;. Here after the application of
CONCATENATION and INSERT there remains at most the following number of paths:
(1) — k) 4 ELO =Rl 42 (1 o) = (k) (1= &)+ By 4 & (=, ) 1k <
grzl, —2k+in, +Li(m, —m)+1+k < i (ni+n,)+5(ml -m)+E+1< S p< +ip|+2<
olpl + 2.

That means:

Proposition 1: After Oflogn) applications of RD one gets a number of paths bounded by
13.

Continuation of the algorithm:

The bounded number of paths allows us to work sequentially, not violating the NC-property:

Procedure BP(P)
1) Pick up a proper path p € P if it exists; otherwise any p € P;

2) Insert p into another ¢ € P or concatenate p with any other path q of P, if p is proper;

3) If p is improper, pick up an edge joining p to another ¢ € P. Make p and g cycles and
concatenate them to a path.
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Repeat BP 13 times. Then one has exactly one path. Clearly this path is improper. That
means this path can be made into a cycle. Thus we have constructed a Hamiltonian cycle.

Time and Processor Analysis.
1) The first preparation of a collection of paths of length 2 or 3 needs time O(log* n) and
O(|EJ?) £ O(n*) processors.

2) Determining whether a path is proper or not needs O(logn) time and O(n) processors.
Therefore to determine it for all paths, we need O(logn) time and O(n?) processors.

3) To determine a matching preparing the procedures CONCATENATION and I NSERT,
we need again O(log* n) time and O(n*) processors.

4) For the time and processor analysis of CONCATEN ATION, we first have to consider
the computation of F-chains: This is a connected component and needs O(logn) time and
O(n?) processors (see [Hi]). Then we have to divide the sets into the even and odd points of
each F-chain (constructing F'). This can also be done in O(log n) time by O(n) processors.

To check which paths are concatenated, we need again a time of O(logn) and O(n?) pro-
cessors. To check which paths are concatenated is a connected component problem and needs
a time of O(logn) and O(n) processors.

The new paths need new addresses. This can be done by giving each of them the smallest
address of the paths from which it is built up. This can be done in O(logn) time by O(n)
Processors.

Therefore:
CONCATEN ATION needs O(logn) time and O(n?) processors.

5) To check complexity of the procedure INSERT, we have to discover ﬁ‘,-cycles: This can be
done in O(log n) time by O(n?) processors. The insertion itself is a division of paths followed
by a concatenation of paths which can be done in O(logn) time by O(n?) processors.

6) The maximal matching preparing DECOM needs O(log* ) time by O(n*) processors.
7) Making f into a forest needs again O(n?) processors and O(logn) time.

8) DECOM(f) is an alternating machine with logspace and treesize n. It needs O(log? n)
time and O(n?) processors.

9) The parallel application of the procedure REDUCE for all T, is the reorganization and
concatenation of paths which needs O(n?) processors and O(logn) time.

'10) Therefore RD needs O(log* n) time and O(n*) processors.
11) The procedure BP needs O(logn) time and O(n?) processors.

Therefore

Theorem 3. For any dense graph one can determine a Hamiltonian cycle in time O(log® n)
by O(n*) processors on a CREW-PRAM.

Remark: Using Luby’s algorithm for MIS in the matching procedure, we can also get an
algorithm using only O(log® n) time on a CREW-PRAM.
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5. A Remark on Routing on Dense Graphs.

Dense graphs have an expander property (see[PU1], [PU2]|) of high degree. Edge routing
(that means connecting a set of pairs of vertices by edge disjoint paths) can be done trivially
in AC* ([Co]), because any pair of vertices has a distance of at most two. Therefore any
collection of shortest paths is edge disjoint.

An interesting problem is the vertez routing on dense graphs, which is the connection of a
given set of pairs of vertices by the vertex disjoint paths.

Proposition 2: There is an infinite family of dense graphs with three pairs of vertices, s.t.
vertex routing is not possible.

PROOF. We consider two cliques C,,, C!, of vertex cardinality n and two additional vertices
V1,2, 8.8, v; and v; are joined by an edge to all vertices C,, and C.. Let z,,x, and z, € C,
and ¥1,¥2,¥s € C,,. Then only two of the pairs z;,3; can be routed, because each path from
T; to y; must pass v; and v;. It can easily be checked that the graph constructed as above is
dense. 0

The reason that routing three pairs is not possible is that the graph is only two-connected.

We would like to prove the following statement: Let G be a k-connected dense graph and
(z1,91)y++* s (2, 44) be pairs of vertices of G. Then there is a vertex disjoint collection of
paths connecting each z; by y; , and these paths can be constructed in NC. But we can prove
the following result:

Proposition 2: The construction of a routing of k paths on k-connected dense graphs is as
hard as the construction of a bipartite perfect matching.

PROOF. Consider any bipartite graph (UUV, E), s.t. U and V have the same size k'. Let
U,,U;,Us, U, be copies of U and for 4 € U let u; be the corresponding element of U;. Let V;
and V; be copies of V and let v,,v, be defined analogously for v € V.

Construct a dense graph G := (?,EA") as follows: U,UU; and U,UU; form a clique. V;
and V, form a clique. For {u,v} € E, {w,v;} € E. For {u, v} € E let {u;,v;},{us,v,} €
E’ {ussvl}a{‘?hvl}e » '

G is dense, G is 2k’ connected iff G has a perfect matching. G has a routing between all

(u1,u5) and (uz,u,) iff G has a perfect matching. There is a canonical 1 —1— correspondence

between the routings on G and the pairs (u, yts), (42,%4) and the perfect matchings on G’ :=

(UUU'U VUV, E') where U’ and V" are copies of U and V, respectively, and (u,v) € E' iff

(u,v) € E, (u',v) € E iff (u,v) € E, (u,v') € E' iff (v,v) € E, and («',v') € ' iff (u,v) € E.
0

We consider at last (4 + ¢)-dense graphs, that means, each vertex has degree of at least
(3 +€)n. Then the intersection of neighbourhoods of any two vertices is at least 2(l+en+
2—n=n+2en+2—n=2en+2. Then for any collection of pairs of vertices of size 2¢n + 2
we can find a vertex disjoint collection of paths of length at most 2 by maximal matching:

1) Connect all pairs z;,y:, 8.t. {z,%} € E by an edge and delete them;
2) For all remaining pairs =, say {(z:,%),2} € E iff {z;,2},{z,u} € E. (Each (z;,y:) has
an E-degree of at least 2en + 2).
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3) Compute a maximal matching M on E (which is also a maximum matching) and select for
(z;,%),2 € M the path (z:,2,3:). By the same argument as in proposition 2 we can find
(1 + ¢) dense graphs and 2en + 3 pairs of vertices which cannot be routed.

6. Conclusions.

The sequential deterministic algorithm computing a Hamiltonian cycle for any dense graph
seemns to be related to the probabilistic solution of Angluin and Valiant [AV], which computes
for any graph with high probability a Hamiltonian cycle. It might have seemed possible to
transform Frieze’s [Fr| probabilistic parallel algorithm into a deterministic one. But we were
not successful in dividing any dense graph into two dense graphs of nearly equal size by an
NC-algorithm.
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