A FAST PARALLEL ALGORITHM FOR COMPUTING ALL MAXIMAL
CLIQUES IN A GRAPH AND THE RELATED PROBLEMS
(EXTENDED ABSTRACT)

Erias DAHLHAUS
AND
MAREK KARPINSKI *

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF BoNN, 5300 BoNN 1

Abstract.

We design a fast parallel algorithm for determining all mazimal cliques (mazximal independent sets)
in an arbitrary graph, working in O(log®(nM)) parallel time and O(M®n?) processors on a CREW-
PRAM, where n is the number of vertices and M the number of maximal cliques. It entails the
existence of deterministic N(C-algorithms for several important graph classes with a polynomially
bounded number of mazimal cliqgues (mazimal independent sets) in the number of vertices. Our result
surprisingly generalizes the recent fast NC-algorithms of [NNS] and [DK 1] for computing all maximal
cliques on chordal graphs to the arbitrary classes with polynomially many maximal cliques. Examples
of these important classes of graphs besides chordal and strongly chordal graphs [NNS], [DK] are circle
and circular graphs [Go], [GHS], K4\e graphs, circular arc graphs, expander graphs, and edge graphs
[Ga]. They arise in a number of applications [Ga], [TIAS], [MC], [GMS].

All computational solutions for the set of all maximal cliques or maximal independent sets up to
now were inherently sequential and strongly restraining efficient parallelization [TIAS], [CN]. Our
result implies that the problem of finding the maximum clique or the lexicographically first maximal
clique is efficiently parallelizable for every class of graphs with polynomially many cliques. It stands in
contrast to the status of these problems for an unbounded case (N P-completeness and P-completeness
[Co]). It also provides another class of problems ([GK]) with superpolynomial (exponential) monotone
lower bound complexity [AB], [Ra], and within the uniform Boolean circuits of O(log®n) depth and

polynomial size. The following general enumeration problem has also been proved to be in NC': Given

*Supported in part by Leibniz Center for Research in Computer Science and the DFG Grant KA 673/2-1

1

an arbitrary graph (G, and a natural number K in unary, determine K cliques of G or determine there
are less than K cliques in G. We apply the new universal algebra method of the Galois connection for

the lattice structure of bipartite complete graphs and the recent completeness results on such lattices.

1. Introduction.

Several important graph classes have a number of cliques which is polynomially bounded by the
number of vertices. The best known examples are chordal graphs [Go], circular arc graphs, and edge
graphs [Ga]. For these classes polynomial time algorithms are known which compute the set of all
cliques. A first general algorithm which enumerates all cliques of a graph and executable in polynomial
time with respect to the number of vertices and the number of cliques was the algorithm of Bierstone
[TIAS]. For further developments in this direction see also [CN]. Quite recently fast parallel algorithms
were discovered which compute the set of all cliques in the chordal graphs [NNS], [DK 1]. Surprisingly,
generalizing these algorithms, we present here a parallel algorithm which enumerates the cliques of an
arbitrary given graph. In Section 2, we give basic definitions and known fundamental results. Section 3
presents a global description of the divide-and-conquer algorithm. Section 4 outlines the fine structure
of the algorithm (based on the Galois connection). Section 5 discusses some possible applications and

related research topics.

2. Basic Definitions and Results

A graph G = (V, F) consists of a set V' of vertices and a set F of edges. A (maximal) clique of G is
a maximal (w.r.t. to set theoretic inclusion) complete subgraph of (G. In what follows, a clique will be

identified with the set of its vertices.

The class of computation problems computable by a log space uniform sequence of Boolean cir-
cuits of O(logk n) depth and of polynomial size is denoted by NC*. NC = J, NC is identical with
the class of problems solvable by parallel random access machines (PRAM) in polylog time and in
polynomially bounded number of processors. In this paper we shall employ the model of the concur-
rent read/exclusive write parallel random access machine (CREW-PRAM). We denote the number of
vertices by n, the number of edges by m, and the number of cliques by M.

The basic result on the sequential complexity of computing all cliques is the following

Theorem 1([CN], [TIAS]): There is an algorithm which computes the set of all cliques of any graph
and which needs O(n + m) space and O((n - m)M) time.

In the next section we will present a most global description of our parallel algorithm.

3. Global Description of a Parallel Algorithm

We assume that G = (V| F) and V = {vy,--- ,v,}. We start with the top-most level description of
the algorithm.

Algorithm:
Input: (V,E), V ={vy, - ,v,}.

Procedure CLIQU E(V, E) (=set of cliques of G = (V, F)).

If |V| =1 then CLIQUE(V,E):={V} else

begin:

Construct (1 to be the subgraph of ¢ induced by {vq,--- ’U'_n/z_'}

Construct (5 is the subgraph of G induced by {U'_n/z_'+1’ S Un}

Do in parallel:

U:=CLIQUE(Gy) (=set of cliques of GG1)
W= CLIQU E(G3) (=set of cliques of G3)

Foreachu e U jv € W do

begin:

Procedure COMP_MAX (D,)

(Dyv:={cCuUwv:cis complete and maximal in ¢ restricted to u U v})
Eyo:={c€ Dy, :cisacliquein G}

end

CL[QUE(C) = Uueg Eu,v

€
end

end Procedure CLIQUFE
Output CLIQUE(V, F)

The Correctness of the Algorithm

Let Gy and (3 be defined as in the algorithm and V; and V; be their vertex sets, respectively. Let
¢ be a clique of G = (V| F). Then ¢N V; and ¢ NV, are subsets of cliques of V; and V3, respectively.
Call these cliques u and v, respectively. Then ¢ € D, , and therefore ¢ € £, ,.

A First Remark on the Complexity

Cliques can be checked by a CREW-PRAM in time O(logn) using O(n?) processors. The recursion
depth of the procedure is '_log2 n'.

We have to check the parallel complexity of the computation of D,,, Procedure

COMP_MAX(D,..).

4. The Fine Structure of the Algorithm: The Computation of the Set D, , of Maximal
Complete Subgraphs of G Restricted to u Uwv

The complete sets u and v are disjoint. Each maximal complete subgraph of GG restricted to v U v
corresponds to a maximal complete bipartite subgraph of the bipartite graph (u U v, E'), where £’ is

the set of edges of I which join any vertex of u to a vertex of v. In [Wi] we find the following result:

Theorem 2 [Wi]: The maximal complete bipartite subgraphs of a bipartite graph form a lattice

structure in the sense of universal algebra.

The lattice structure is related to a Galois connection [Bi 1], [Bi 2] and is defined as follows. First,

we define an auxiliary closure operator:

Let A be any subset of U. Then
Ay =Py(A)={rev:Vye A{y,z} € £}
and

Ay = Pi(Ag) = Ay ={yeu:Vee A {yz} €FE}

Observation: A; U A; forms a maximal complete bipartite subgraph, and all maximal complete

bipartite subgraphs are of this form.
Now we define the lattice operations V, A:

Al U AQ\/Bl U B2 = (A1UB1)1 U (AQQBQ):Pl(AQQBQ)U (AQQBQ)
Al U Ag/\Bl U B2 = (AlﬂBl)l U (Al mBl)Q = (AQQBQ) U PQ(AQQBQ)

We observe the following:

Lemma 1: For any maximal complete bipartite subgraph 4y Ay of (u U v, £'), we have
AU Ay = Y ({ah U {a}a).

We can now state the following algorithm to compute all maximal complete bipartite subgraphs of
(uU, E").
Procedure COMP_MAX (D,)
1) i:=0,Up:={0; U ot U{{a}s U {a}s : a € u}
2) Repeat: i :=i+ 1

U :=UNION(U;_1):={rVvs :r,selU,_1}

Until U, = U;_

3) Output D, , = U;

Analysis of the Algorithm

By induction it is easily seen that U; contains at least all A;, Ay, s.t. the size of A; is at most 2°.

Therefore the repeat loop is executed at most O(logn) times.

The computation of A; and A, from A needs O(logn) time and O(n?) processors. This is also true
for the computation of V. Clearly the size of U; is bounded by M.

The computation of U; from U;_; has to be partitioned into the following subprocedures:

1
2
3

For each s, € U; 1 compute sV 1;
erase duplicates in Uy;

press U; into an array of length of at most M by sorting.

1
2) e can be executed in O(logn) time by O(M*n) processors;

e can be executed in O(logn) time by O(M?*n?) processors;

)
)
)
)
)
3) e can be done in O(log M) time by O(M?) processors (see for example [Hi], [Cl]).

Consequence: U; can be computed from U;_; in time max (O(logn), O(logM)) by
max(O(M*n), O(M?*n?)) processors.

We can conclude with the following:

Theorem 3: The set of all cliques of any graph can be computed by a CREW-PRAM in time
max(O(logn)?, O(log M)?) in max(O(M®n), O(M*n?)) processors.

An extended analysis of the algorithm allows us to solve the following problem in NC"

Input: A graph G and a natural number K in unary description

Output: K cliques of (G, if they exist; otherwise the information “there are less than K cliques”.

Sketch of an Algorithm:

We consider the algorithm which computes the set of all cliques of a graph. We start the algorithm
and stop as soon as we have a section of the divide-and-conquer method which has K or more cliques.
We extend these cliques of the section to the cliques of the whole graph by one of the known M[S-
algorithms (see [Lu], [GS]).

5. Possible Applications and Related Research Topics

The immediate consequence of the results of this paper is that the problems of computing all cliques
(and mazimal independent sets) are efficiently parallelizable for several important classes of graphs.
The results also entail the existence of uniform Boolean circuits of O(log3 n) depth and poly-size for
computing all cliques for arbitrary classes of graphs, provided the number of cliques is bounded by
a polynomial. This seems to be related to the recent results of [GK] on parallel enumeration of all

perfect matchings in bipartite graphs with polynomially bounded permanents.

A related problem is a fast parallel clique decomposition of a graph. [Ta] has designed an algorithm

depending on a highly sequential subroutine for computing minimal orderings. Since the number of

clique separators in an arbitrary graph is polynomial in the number of vertices, one can ask for the
fast parallel enumerator of all the clique separators. We have been able to put the problem of clique
separators in NC', and therefore also the problem of the clique decomposition of an arbitrary graph.
This is connected to the general problem of the elimination orderings, and the problem of Gaussian

elimination on sparse matrices. We shall deal with these topics in detail in the final version of this
paper.

In the context of our results for the various subclasses of perfect graphs, the general question of
parallel computation of the maximum clique or mazimum independent set for perfect graphs ([GLS])

becomes even more exciting.

Acknowledgements

We are grateful to Avi Wigderson, Eli Upfal, Noga Alon, Seffi Naor, and Alex Schaffer for many

stimulating discussions which were starting points for the present paper.

References

[AB] Alon, N., and Boppana, R.B., The Monotone Circuit Complexity of Boolean Functions,
Manuscript, MIT 1986

[AM] Auguston, J.M. and Minker, J., An Analysis of Some Graph Theoretical Cluster Tech-
niques, J. ACM 17(1970), pp. 571-588

[Bi 1] Birkhoff, G., Subdirect Unions in Universal Algebra, Bull. Amer. Soc. 50(1944), pp.
764-768

[Bi 2] Birkhoff, G., Lattice Theory, 3" ed. Amer. Soc., Providence 1967

[CN] Chiba, N., and Nishivuki, T., Arboricity and Subgraph Listing Algorithms, STAM J.
of Comput. 14(1985), pp. 210-223

[C1] Cole, R., Parallel Merge Sorting, Proc. 27" IEEE FOCS (1986), pp. 511-516

[CV] Cole, R., and Vishkin, U., Approximate and Exact Scheduling with Applications to

List, Tree and Graph Problems, Proc. 27" IEEE FOCS (1986), pp. 478-491

[Co] Cook, S.A., A Taxonomy of Problems with Fast Parallel Algorithms, Information and
Control 64 (1986), pp. 2-22

[DK 1] Dahlhaus, E., and Karpinski, M., The Matching Problem for Strongly Chordal Graphs
is in NC', Research Report No. 855-CS, Department of Computer Science, University
of Bonn 1986

[DK 2]

[GHS]

[GJ]

[NNS]

Dahlhaus, E., and Karpinski, M., Fast Parallel Computation of Perfect and Strongly
Perfect Elimination Schemes, IBM Research Report # RJ 5901 (59206), IBM Almaden
Research Center, San Jose 1987; submitted for publication

Gabor, C.P., Hsu, W.L., and Supowit, K,J., Recognizing Circle Graphs in Polynomial
Time, Proc. 26" IEEE FOCS (1985), pp. 106-116

Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the Theory

of N P-Completeness, Freeman:San Francisco 1979

Gavril, F., Algorithms for Minimum Coloring, Maximum Clique, Minimum Coloring
by Cliques, and Maximum Independent Sets of a Chordal Graph, STAM J. Comput.
(1972), pp. 180-187

Goldberg, M., and Spencer, T., A New Parallel Algorithm for the Maximal Independent
Set Problem, Proc. 28" IEEE FOCS (1987), pp. 161-165

Golumbic, M.C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New
York 1980

Grigoriev, D.Yu., and Karpinski, M., The Matching Problem for Bipartite Graphs
with Polynomially Bounded Permanents is in NC, Proc. 28" IEEE FOCS (1987), pp.
166-172

Grotschel, M., Lovész, L., and Schrijver, A., The Ellipsoid Method and its Conse-
quences in Combinational Optimization, Combinatorica 1(1987), pp. 169-197

Hirschberg, D., Fast Parallel Sorting Algorithms, Communications of the ACM
21(1978), No. 8, pp. 657-661

Luby, M., A Simple Parallel Algorithm for the Maximal Inpedendent Set Problem,
Proc. 17" ACM STOC (1985), pp. 1-9

Mulligan, G.D., and Corneil, D.G., Corrections to Bierstone’s Algorithm for Generating
Cliques, JACM 19(1972), pp. 244-247

Naor, J., Naor, M., and Schaffer, A., Fast Parallel Algorithms for Chordal Graphs,
Proc. 19" ACM STOC (1987), pp. 355-364

Razborov, A.A., Bound on the Monotone Network Complexity of the Logical Perma-
nent, Matem. Zametk 37 (1985); in Russian

Tarjan, R., Decomposition by Clique Separations, Discrete Mathematics 55(1985), pp.
221-232

Tsukiyama, S., Ide, M., Ariyoshi, H. and Shirakawa, 1., A New Algorithm for Gener-
ating All the Maximal Independent Sets, SIAM J. Comput 6(1977), pp. 505-517

[Wi]

Wille, R., Subdirect Decomposition of Concept Lattices, Algebra Universalis 17(1983),
pp. 275-287

