
A FAST PARALLEL ALGORITHM FOR COMPUTING ALL MAXIMALCLIQUES IN A GRAPH AND THE RELATED PROBLEMS(EXTENDED ABSTRACT)Elias DahlhausandMarek Karpinski �Department of Computer ScienceUniversity of Bonn, 5300 Bonn 1Abstract.We design a fast parallel algorithm for determining all maximal cliques (maximal independent sets)in an arbitrary graph, working in O(log3(nM)) parallel time and O(M6n2) processors on a CREW-PRAM, where n is the number of vertices and M the number of maximal cliques. It entails theexistence of deterministic NC-algorithms for several important graph classes with a polynomiallybounded number of maximal cliques (maximal independent sets) in the number of vertices. Our resultsurprisingly generalizes the recent fast NC-algorithms of [NNS] and [DK 1] for computing all maximalcliques on chordal graphs to the arbitrary classes with polynomially many maximal cliques. Examplesof these important classes of graphs besides chordal and strongly chordal graphs [NNS], [DK] are circleand circular graphs [Go], [GHS], K4ne graphs, circular arc graphs, expander graphs, and edge graphs[Ga]. They arise in a number of applications [Ga], [TIAS], [MC], [GMS].All computational solutions for the set of all maximal cliques or maximal independent sets up tonow were inherently sequential and strongly restraining e�cient parallelization [TIAS], [CN]. Ourresult implies that the problem of �nding the maximum clique or the lexicographically �rst maximalclique is e�ciently parallelizable for every class of graphs with polynomially many cliques. It stands incontrast to the status of these problems for an unbounded case (NP -completeness and P -completeness[Co]). It also provides another class of problems ([GK]) with superpolynomial (exponential) monotonelower bound complexity [AB], [Ra], and within the uniform Boolean circuits of O(log3 n) depth andpolynomial size. The following general enumeration problem has also been proved to be in NC: Given�Supported in part by Leibniz Center for Research in Computer Science and the DFG Grant KA 673/2-11

an arbitrary graph G, and a natural number K in unary, determine K cliques of G or determine thereare less than K cliques in G. We apply the new universal algebra method of the Galois connection forthe lattice structure of bipartite complete graphs and the recent completeness results on such lattices.1. Introduction.Several important graph classes have a number of cliques which is polynomially bounded by thenumber of vertices. The best known examples are chordal graphs [Go], circular arc graphs, and edgegraphs [Ga]. For these classes polynomial time algorithms are known which compute the set of allcliques. A �rst general algorithm which enumerates all cliques of a graph and executable in polynomialtime with respect to the number of vertices and the number of cliques was the algorithm of Bierstone[TIAS]. For further developments in this direction see also [CN]. Quite recently fast parallel algorithmswere discovered which compute the set of all cliques in the chordal graphs [NNS], [DK 1]. Surprisingly,generalizing these algorithms, we present here a parallel algorithm which enumerates the cliques of anarbitrary given graph. In Section 2, we give basic de�nitions and known fundamental results. Section 3presents a global description of the divide-and-conquer algorithm. Section 4 outlines the �ne structureof the algorithm (based on the Galois connection). Section 5 discusses some possible applications andrelated research topics.2. Basic De�nitions and ResultsA graph G = (V;E) consists of a set V of vertices and a set E of edges. A (maximal) clique of G isa maximal (w.r.t. to set theoretic inclusion) complete subgraph of G. In what follows, a clique will beidenti�ed with the set of its vertices.The class of computation problems computable by a log space uniform sequence of Boolean cir-cuits of O(logk n) depth and of polynomial size is denoted by NCk . NC = Sk NC is identical withthe class of problems solvable by parallel random access machines (PRAM) in polylog time and inpolynomially bounded number of processors. In this paper we shall employ the model of the concur-rent read/exclusive write parallel random access machine (CREW-PRAM). We denote the number ofvertices by n, the number of edges by m, and the number of cliques by M .The basic result on the sequential complexity of computing all cliques is the followingTheorem 1([CN], [TIAS]): There is an algorithm which computes the set of all cliques of any graphand which needs O(n+m) space and O((n �m)M) time.In the next section we will present a most global description of our parallel algorithm.

3. Global Description of a Parallel AlgorithmWe assume that G = (V;E) and V = fv1; � � � ; vng. We start with the top-most level description ofthe algorithm.Algorithm:Input: (V;E); V = fv1; � � � ; vng.Procedure CLIQUE(V;E) (=set of cliques of G = (V;E)).If jV j = 1 then CLIQUE(V;E) := fV g elsebegin:Construct G1 to be the subgraph of G induced by fv1; � � � ; v n=2 gConstruct G2 is the subgraph of G induced by fv n=2 +1; � � � ; vngDo in parallel:U := CLIQUE(G1) (=set of cliques of G1)W := CLIQUE(G2) (=set of cliques of G2)For each u 2 U ,v 2 W dobegin:Procedure COMP MAX(Du;v)(Du;v := fc � u [v : c is complete and maximal in G restricted to u [vg)Eu;v := fc 2 Du;v : c is a clique in GgendCLIQUE(C) := Su2Uv2V Eu;vendend Procedure CLIQUEOutput CLIQUE(V;E)The Correctness of the AlgorithmLet G1 and G2 be de�ned as in the algorithm and V1 and V2 be their vertex sets, respectively. Letc be a clique of G = (V;E). Then c \ V1 and c \ V2 are subsets of cliques of V1 and V2, respectively.Call these cliques u and v, respectively. Then c 2 Du;v and therefore c 2 Eu;v .A First Remark on the ComplexityCliques can be checked by a CREW-PRAM in time O(logn) using O(n2) processors. The recursiondepth of the procedure is log2 n .We have to check the parallel complexity of the computation of Du;v, ProcedureCOMP MAX(Du;v).

4. The Fine Structure of the Algorithm: The Computation of the Set Du;v of MaximalComplete Subgraphs of G Restricted to u [vThe complete sets u and v are disjoint. Each maximal complete subgraph of G restricted to u [vcorresponds to a maximal complete bipartite subgraph of the bipartite graph (u [v; E0), where E0 isthe set of edges of E which join any vertex of u to a vertex of v. In [Wi] we �nd the following result:Theorem 2 [Wi]: The maximal complete bipartite subgraphs of a bipartite graph form a latticestructure in the sense of universal algebra.The lattice structure is related to a Galois connection [Bi 1], [Bi 2] and is de�ned as follows. First,we de�ne an auxiliary closure operator:Let A be any subset of U . ThenA2 := P2(A) = fx 2 v : 8 y 2 A fy; xg 2 E0gandA1 := P1(A2) := A02 := fy 2 u : 8x 2 A2 fy; xg 2 E0gObservation: A1 [A2 forms a maximal complete bipartite subgraph, and all maximal completebipartite subgraphs are of this form.Now we de�ne the lattice operations _; ^:A1 [� A2 _ B1 [� B2 := (A1 [B1)1 [� (A2 \B2) = P1(A2 \ B2) [� (A2 \ B2)A1 [� A2 ^ B1 [� B2 := (A1 \ B1)1 [� (A1 \B1)2 = (A2 \ B2) [� P2(A2 \B2)We observe the following:Lemma 1: For any maximal complete bipartite subgraph A1A2 of (u [� v; E0), we haveA1 [� A2 = Wa2A1 (fag1 [� fag2).We can now state the following algorithm to compute all maximal complete bipartite subgraphs of(u [� ; E0).Procedure COMP MAX(Du;v)1) i := 0; U0 := f;1 [� ;2g [ffag1 [� fag2 : a 2 ug2) Repeat: i := i+ 1Ui := UNION(Ui�1) := fr _ s : r; s 2 Ui�1gUntil Ui = Ui�13) Output Du;v := UiAnalysis of the AlgorithmBy induction it is easily seen that Ui contains at least all A1; A2, s.t. the size of A1 is at most 2i.Therefore the repeat loop is executed at most O(logn) times.

The computation of A1 and A2 from A needs O(log n) time and O(n2) processors. This is also truefor the computation of _. Clearly the size of Ui is bounded by M .The computation of Ui from Ui�1 has to be partitioned into the following subprocedures:1) For each s; t 2 Ui�1 compute s _ t;2) erase duplicates in Ui;3) press Ui into an array of length of at most M by sorting.1) � can be executed in O(logn) time by O(M2n2) processors;2) � can be executed in O(logn) time by O(M4n) processors;3) � can be done in O(logM) time by O(M2) processors (see for example [Hi], [Cl]).Consequence: Ui can be computed from Ui�1 in time max (O(logn); O(logM)) bymax(O(M4n); O(M2n2)) processors.We can conclude with the following:Theorem 3: The set of all cliques of any graph can be computed by a CREW-PRAM in timemax(O(logn)3; O(logM)3) in max(O(M6n); O(M4n2)) processors.An extended analysis of the algorithm allows us to solve the following problem in NC:Input: A graph G and a natural number K in unary descriptionOutput: K cliques of G, if they exist; otherwise the information \there are less than K cliques".Sketch of an Algorithm:We consider the algorithm which computes the set of all cliques of a graph. We start the algorithmand stop as soon as we have a section of the divide-and-conquer method which has K or more cliques.We extend these cliques of the section to the cliques of the whole graph by one of the known MIS-algorithms (see [Lu], [GS]).5. Possible Applications and Related Research TopicsThe immediate consequence of the results of this paper is that the problems of computing all cliques(and maximal independent sets) are e�ciently parallelizable for several important classes of graphs.The results also entail the existence of uniform Boolean circuits of O(log3 n) depth and poly-size forcomputing all cliques for arbitrary classes of graphs, provided the number of cliques is bounded bya polynomial. This seems to be related to the recent results of [GK] on parallel enumeration of allperfect matchings in bipartite graphs with polynomially bounded permanents.A related problem is a fast parallel clique decomposition of a graph. [Ta] has designed an algorithmdepending on a highly sequential subroutine for computing minimal orderings. Since the number of

clique separators in an arbitrary graph is polynomial in the number of vertices, one can ask for thefast parallel enumerator of all the clique separators. We have been able to put the problem of cliqueseparators in NC, and therefore also the problem of the clique decomposition of an arbitrary graph.This is connected to the general problem of the elimination orderings, and the problem of Gaussianelimination on sparse matrices. We shall deal with these topics in detail in the �nal version of thispaper.In the context of our results for the various subclasses of perfect graphs, the general question ofparallel computation of the maximum clique or maximum independent set for perfect graphs ([GLS])becomes even more exciting.AcknowledgementsWe are grateful to Avi Wigderson, Eli Upfal, Noga Alon, Se� Naor, and Alex Sch�a�er for manystimulating discussions which were starting points for the present paper.References[AB] Alon, N., and Boppana, R.B., The Monotone Circuit Complexity of Boolean Functions,Manuscript, MIT 1986[AM] Auguston, J.M. and Minker, J., An Analysis of Some Graph Theoretical Cluster Tech-niques, J. ACM 17(1970), pp. 571-588[Bi 1] Birkho�, G., Subdirect Unions in Universal Algebra, Bull. Amer. Soc. 50(1944), pp.764-768[Bi 2] Birkho�, G., Lattice Theory, 3rd ed. Amer. Soc., Providence 1967[CN] Chiba, N., and Nishivuki, T., Arboricity and Subgraph Listing Algorithms, SIAM J.of Comput. 14(1985), pp. 210-223[Cl] Cole, R., Parallel Merge Sorting, Proc. 27th IEEE FOCS (1986), pp. 511-516[CV] Cole, R., and Vishkin, U., Approximate and Exact Scheduling with Applications toList, Tree and Graph Problems, Proc. 27th IEEE FOCS (1986), pp. 478-491[Co] Cook, S.A., A Taxonomy of Problems with Fast Parallel Algorithms, Information andControl 64 (1986), pp. 2-22[DK 1] Dahlhaus, E., and Karpinski, M., The Matching Problem for Strongly Chordal Graphsis in NC, Research Report No. 855-CS, Department of Computer Science, Universityof Bonn 1986

[DK 2] Dahlhaus, E., and Karpinski, M., Fast Parallel Computation of Perfect and StronglyPerfect Elimination Schemes, IBM Research Report # RJ 5901 (59206), IBM AlmadenResearch Center, San Jose 1987; submitted for publication[GHS] Gabor, C.P., Hsu, W.L., and Supowit, K,J., Recognizing Circle Graphs in PolynomialTime, Proc. 26th IEEE FOCS (1985), pp. 106-116[GJ] Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the Theoryof NP -Completeness, Freeman:San Francisco 1979[Ga] Gavril, F., Algorithms for Minimum Coloring, Maximum Clique, Minimum Coloringby Cliques, and Maximum Independent Sets of a Chordal Graph, SIAM J. Comput.(1972), pp. 180-187[GS] Goldberg, M., and Spencer, T., A New Parallel Algorithm for the Maximal IndependentSet Problem, Proc. 28th IEEE FOCS (1987), pp. 161-165[Go] Golumbic, M.C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, NewYork 1980[GK] Grigoriev, D.Yu., and Karpinski, M., The Matching Problem for Bipartite Graphswith Polynomially Bounded Permanents is in NC, Proc. 28th IEEE FOCS (1987), pp.166-172[GLS] Gr�otschel, M., Lov�asz, L., and Schrijver, A., The Ellipsoid Method and its Conse-quences in Combinational Optimization, Combinatorica 1(1987), pp. 169-197[Hi] Hirschberg, D., Fast Parallel Sorting Algorithms, Communications of the ACM21(1978), No. 8, pp. 657-661[Lu] Luby, M., A Simple Parallel Algorithm for the Maximal Inpedendent Set Problem,Proc. 17th ACM STOC (1985), pp. 1-9[MC] Mulligan, G.D., and Corneil, D.G., Corrections to Bierstone's Algorithm for GeneratingCliques, JACM 19(1972), pp. 244-247[NNS] Naor, J., Naor, M., and Sch�a�er, A., Fast Parallel Algorithms for Chordal Graphs,Proc. 19th ACM STOC (1987), pp. 355-364[Ra] Razborov, A.A., Bound on the Monotone Network Complexity of the Logical Perma-nent, Matem. Zametk 37 (1985); in Russian[Ta] Tarjan, R., Decomposition by Clique Separations, Discrete Mathematics 55(1985), pp.221-232[TIAS] Tsukiyama, S., Ide, M., Ariyoshi, H. and Shirakawa, I., A New Algorithm for Gener-ating All the Maximal Independent Sets, SIAM J. Comput 6(1977), pp. 505-517

[Wi] Wille, R., Subdirect Decomposition of Concept Lattices, Algebra Universalis 17(1983),pp. 275-287

