RANDOMNESS, PROVABILITY, AND THE SEPARATION OF
MONTE CARLO TIME AND SPACE

MAREK KARPINSKI
RUTGER VERBEEK

UNIVERSITY OF BONN

Abstract.

Separation theorems are essential in complexity theory: looking for strict lower and
upper bounds makes sense only in the context of a hierarchy theorem. For probabilistic
complexity classes with deterministically constructible bounds the standard diagonal-
ization techniques can be applied and yield at least as dense hierarchies as in the
deterministic case. For Monte Carlo (i.e. bounded error probability) classes the situa-
tion is quite different. On one hand we can construct arbitrarily slowly growing Monte
Carlo space constructible functions (even far below log log n) [KV 86], on the other
hand the existence of different — even deterministically constructible — bounds is not
sufficient for a proof of separation. Up to now there is no way to separate, e.g., Monte
Carlo Time (n) from Monte Carlo Time (n!°6™). We are able, however, to display a
method of separating Monte Carlo Time (n'°¢™) from (| Monte Carlo Time (2™},

£

Note that the Monte Carlo property of probabilistic algorithms is IT;-complete. For
diagonalization, however, an enumerable set of machines is required. For practical
purposes the only interesting Monte Carlo algorithms are those which are provable in
some reasonable theory (e.g. within Peano arithmetic or Zermelo-Fraenkel set theory).
For such provable complexity classes dense space and time hierarchies are established,
space hierarchies even below log log n or log*n.

0. Introduction.

It is known from [LSH 65] that any meaningful padding-control requires at least
log log n space. Therefore there is ‘no life’ for deterministic machines between O(1) and
O(loglogn).

In contrast to this Freivalds [Fr 81] displayed exponential (and therefore arbitrary
elementary recursive) padding doable in O(1) Monte Carlo space. We prove that even

arbitrary recursive paddings are achievable within O(1) Monte Carlo space (Theorem
1). This enables the proofs of separation results for complexity classes with arbitrarily
small bounds.

For the definition of probabilistic Turing machines (PTMs) see [Gi 77]. If M is a
PTM, then ¢ is the function computed by M.

f is in probabilistic time T(n) (PrTIME(T(n))) if, for some PTM M, ¢ = f and
for all =

1
Pr{M stops after at most t(|z|) steps and outputs ¢u(z)} > 7

If % can be replaced by 73;, we call the corresponding machine a Monte Carlo Tur-
ing machine (MTM). The corresponding time complexity classes are denoted by
MTIME (T(n)). Sets are recognized by PTMs or MTMs computing their charac-

teristic functions.

RTIME(T(n)) (for sets only) are defined in the same way as Monte Carlo classes,
with the restriction that the error probability is 0 on the complement of the recognized
set. f is in probabilistic space (S(n))(PrSPACE(S(n))) if there is a PTM M such that
¢m = f and for all =

1
Pr{M uses on input z at most S (|z|) space and outputs om(z)} > 3>

If in addition M always stops with probability 1, then f € PrTSPACE(S(n))
(cf.[We 83]). MSPACE(S(n)), MTSPACE(S(n)), RSPACE(S(n)), and
RTSPACE(S(n)) are defined in the same way as for the time complexity classes.
A function f : IN — IN will be called Monte Carlo (MC-)constructible if there is a
MTM M with space bound f(n) for which for all n there is some z, |z| = n, such that
ém = f(n). If M satisfies the above for z = 0™, then f is called fully MC-constructible.

1. Small Monte Carlo Space Constructible Functions.

We use two machine models

(i) off line two counter Turing machines (2CTs) [HU 79, p.171] and
(ii) classical (unary input) three counter (Minsky) machines (3CMs) [Mi 61].

A configuration of a 3CM M is to be encoded in the form 09t+112127233% where ¢
is the state of M, z; is the content of the i-th counter for ¢ = 1,2, 3. The code of a
computation is a sequence of encoded M-configurations according to its transition table.
3CMs are able to compute all partial recursive functions (with unary input/ output) [Mi
61 |, whereas 2CMs are not. [Ba 62]. In the case of 2CTs, configurations are encoded

2

by 09F11#12#2 (note that we do not mind the input). 2CTs are able to compute all p.r.
functions (input/output binary) [HU 79].

Given 3CM M and an accepted input n, comp m(n) will denote the code of the
accepting computation on n. If n is not accepted, compu (n) is undefined. In the same
way compt (z) is defined for 2CT T.

Lemma 1. For every 3CM M, {compu(n)|n € IN} € MSPACE(O(1)).

PROOF. The recognition of the set {compu(n)} is based on the idea of Freivalds’
example {o2°102‘ 1021 k€ IN} (Fr 81] (cf. also Lemmas 1 and 2 of [Fr 81]) used

for the exponential padding. A deterministic finite automaton can check whether the
sequence of states is correct (the next state depends only on the zero-tests and the
current state). What remains is to compare the (non-zero) contents of the counters
in succeeding configuration by a sequence of tests of roughly the form “Is n = m
in 170+t1™?" (the differences +1 or -1 can be handled in the finite control). These
tests are performed by tossing 8n coins on 1* and 8m coins on 1™. This procedure
is repeated until two times the outcomes of all the 8n or 8m tosses were ‘heads’. If
this happens both times on the same substring, decide ‘n # m’; otherwise decide
‘n = m’. It n = m, Pr{outcome is ‘n = m’} = }; if n # m, Pr {outcome is ‘n=m} <

2
o (l—éj) <27,
Thus, in a sequence of £ tests the probability that all tests give the result

o4 ifn;=m;foralls,1 <1 <€
‘ng =my’ 18
< 27%6 otherwise.

Thus we must “compare” Pr{all £ tests have outcome ‘n = m’} with 2—¢ or, better,
with 2—¢-3. This is done in a way similar to the single comparisons:

begin repeat
tl := true; t2 := true;
fori:=1to fdo
begin compare n; with m;;
if ‘n; #m;’ then tl := false;
toss a coin;
if the outcome is ‘tail’ then t2 := false;
end;
toss 3 coins;
if one of them is ‘tail’ then t2 := false;
until tl or t2;
if tl1 then write (‘(Vi)n; =m,’)
else write (‘(3t)n: # m;’)

end

Observe that this algorithm requires finite storage only (using a two way input tape,
i and £ need not be stored). '

The probability analysis is quite simple:

If (Vi)n; = m;, then Pr {answer is #} < I—;gﬂ <1,
if (31)n,; # my, then Pr{answeris =} < %7 <3 0

Lemma 2. For every recursive function f : IN — IN there is a 3CM M such that
for all n, f(n) < |compu(n)| < |comppu(n +1)|.

PROOF Given recursive f, there is a 3CM M; computing f. We construct a 3CM
M, computing f : n — f(0) f(1) -+ f(n) in a canonical way. Then for all n, f(n) <
f'(n) < |compyu(n)| < lcompu(n +1)]. 0

Theorem 1. For every unbounded nondecreasing (u.nd.) recursive function f there
is an w.nd. MC-constructible minorant g with g(n) < f(n) for all n.

PROOF. Given f : IN — IN, F(n) := max{m | f(m) <n}. Take 3CM M of
Lemma 2 for the function F, i.e. satisfying F(n) < |compu(n)| < |compu(n + 1)|.

Define g(n) = min{m | |compy(m)| > n}. Construct by Lemma 1 an MTM T
with space O(1) that recognizes all strings having a prefix of the form compn(m) and
outputs m for such a word and 0 otherwise. Obviously on input w the output is at most
g(|w|). For the input of the form comp am(g(n))or=leempx(a(sDl T computes exactly

g(n). 0

The function g constructed above has an important predictability property: for all n
there is an z with |z| = n, such that the MTM constructing g either outputs g(n) (with
probability > %) or outputs 0. We call such a function predictably MC-constructible.

2. Monte Carlo Constructibility and Diagonalization.

For most complexity measures constructibility of the bounds and closure under com-
plement provides everything one needs for a separation (via diagonalization) of com-
plexity classes with different bounds. '

In the case of probabilistic classes with MC-constructible bounds the argument fails:
Vz Pr{M uses at most S(n) space} > § and Vz Pr{M outputs ¢ m(z)} > 3 does not
imply that Vz Pr{M outputs ¢ (z) within space 5 (n)} > 3, and hence ¢ is in gen-
eral not in PrSPACE(S(n)).

For Monte Carlo classes, Yz Pr{M outputs ¢x(z)} > % and Vz Pr{M uses not more
than S(n) space} > Z implies Vz Pr{M outputs ¢x(x) within space S(n)} > 2, and

4

hence ¢ € SPACE(S(n)). If M is Monte Carlo and terminating with probability 1,
the error probability can be reduced to an arbitrarily small constant (e.g. —;) without
changing the space and time bound by more than a constant factor.

Remark. For PTMs the well-known speed-up theorem for deterministic or non-
deterministic TMs (speed-up by a constant factor by enlarging the alphabet) seems
not to be valid, since the degree of branching in random choices is exactly 2 for this
model. 0

Thus it seems possible to show a proper hierarchy for arbitrarily small bounds at
least for the MTSPACE classes. For non-terminating MTMs it can be shown that

MSPACE(f(n)) € MTSPACE(2*'™) (see [KV 86]).
But for Monte Carlo complexity classes some other difficulty arises: beside the con-

structibility and closure under complement another property is required for diagonal-
ization, namely recursive enumerability of the machines to be diagonalized.

The class of Monte Carlo machines is II;-complete. Of course there might be an
enumerable subset such that for any Monte Carlo machine there is an equivalent one in
that subset working in the same space (or time) bound, as it is the case for deterministic
or probabilistic space classes with deterministically constructible bounds (in this case
take the recursive set of explicitly bounded machines). But such a situation seems
improbable in the Monte Carlo (or R) case.

A similar situation arises also in the case of some deterministic time complexity
classes, where an explicit clock apparently requires additional time (e.g. for one-tape
Turing machines); this is the reason why the time hierarchy is not dense for such classes
(to our knowledge).

If we restrict ourselves to classes of “provable” machines (i.e. to enumerable subsets
of the complexity classes), the hierarchy becomes dense.

Example. We consider deterministic one-tape Turing machines.

L; := {M|M is a one-tape TM and there is K with ¢ = ¢k and there is a proof in
Peano arithmetic for the fact that M is t(n)-space bounded }

one-tape-TIMEPTve¥e(f) ;= {¢pu|M € Ly}.
It is easy to show that for time-constructible f,g with g & O(f)

one-tape-TIM EProve¥¢(f(n)) 2 one-tape-TTM EPrv2¥¢(g(n)).

We do not know, however, if under these assumptions one-tape-TIM E(f(n)) 2 one-
tape-TIME(g(n)) or if one-tape-TIM E(f(n)) = one-tape-TIME?P"***¥¢(f(n)). 0O

We shall return to provable classes in section 4.

5

3. Separation by Padding.

We have seen that we have basically no tools for proving

MSPACE(f(n)) 2 MSPACE(g(n)) or
MTIME(f(n)) 2 MTIME(g(n)) for g ¢ O(/)

unless MSPACE(f(n)) (or MTIME(f(n)), respectively) is a provable class. The
lowest provable class containing an arbitrary MC-complexity class is (to our knowledge)
the next deterministic complexity class, i.e.

MSPACE(f(n)) C DSPACE(f(n)?), if f(n) > log n [BCP 83]

MSPACE(f(n)) C DSPACE(log® n), if f(n) <log n
MTIME(f(n)) € DTIME(22/(")),

This implies

(1) MSPACE(f(n)) 2 MSPACE(g(n)), if f, g are MC-space constructible and
g(n) ¢ O(max(log” n, f(n)?))

(2) MTIME(f(n)) 2 MTIME(g(n)), if f, g are time constructible and g(n) ¢
0(22/(™),

Especially for TIM E-classes we have exponential gaps in the hierarchy; and we
cannot prove a strict space hierarchy below log n.

Some gaps can be closed by the padding technique introduced by Ruby and Fischer
[RF 65] and Cook [Co 73], since the translation lemma is valid also for Monte Carlo
classes.

Lemma 3.

(1) If f(n),g(n),gh(n) are fully space constructible, g(n) > log n,h(n) 2> n, then
MSPACE(f(n)) C MSPACE(g(n)) implies
MSPACE(fh(n)) C MSPACE(gh(n)).
(2) If f(n),g(n), h(n) are fully time constructible, g(r), h(n) > n, then
MTIME(f(n)) C MTIME(g(n)) implies
MTIME(fh(n)) C MTIME(gh(n)).

PROOF. Exactly the same proof as for the deterministic or non-deterministic case

(see e.g.[HK 79]). a

Thus we can use, e.g., the technique of Ibarra [Ib 72] to show rather dense space
hierarchies above log n (e.g. MSPACE(log? n) ¢ MSPACE(log? n), if 1<p<gq).

For non-deterministic time and space hierarchies there are several refinements of this
argument (see [Co 73], [SFM 73], [Se 77]), but they all require a universal simulator in
the greater bound, which is seemingly not available in the Monte Carlo case.

Theorem 2. Suppose f, g are fully time constructible, g(n) > 27" for some € >
0, Yk f o (f(n))* < g(n). Then MTIME(f(n)) ¢ MTIME(g(n))

PROOF. Assume MTIME(f(n)) 2 MTIME(g(n)), and w.lo.g. f(r) > n?. Then
for k > [2/¢]

MTIME(2Y™)y ¢ MTIME(g((f(n))¥))

C MTIME(f((f(n))*)) (by Lemma 3)
C MTIME(g(n))

C MTIME(f(n)) (a contradiction).

N

Theorem 2 entails separation of n'°8™ and 2" Monte Carlo time:

MTIME(poly) C MTIME(n'%"™) ¢ (| MTIME(2™)

but the separations

MTIME(n)‘E MTIME(n?)

or even

MTIME(n) $ MTIME(n'*%™)
are still open.

There are even faster growing functions than n'°¢™ for which this inclusion may be
improper,
ezp(n) := 2%, log(n) := [logy(n)],

f(n) == n, f¥+D(n):= fo fO)(n),
fi(n) := ezp®(1 +10g®) (n)).

Then
fo(n) =n+1, fi(n) ~ 2n, fa(n)~n?, fa(n) ~nlo8", fo(n) ~ n0o8™ ™ ™" etc,,

7

and for all ¢, k, € and almost all n

fio(fi(n))k = exp®(1 + log® (ezp® (1 + log(‘}(n)))k) < exp®(1 + k- log®(n)) <
fita(n) < 27

Hence
MTIME(fi(n)) ¢ (| MTIME(2™),
but s
MTIME(n) ¢ MTIME(fi(n))
is open.

4. Provability and the Monte Carlo Dense Time and Space Hierarchies.

Unlike the cases of deterministic and non-deterministic computations the exis-
tence of distinct comstructible complexity bounds does not automatically guaran-
tee the separation of the corresponding Monte Carlo complexity classes. This
is because the definition of Monte Carlo ‘algorithms and the complexity classes
is not effective: the Monte Carlo property is not decidable (in fact it is II;-
complete). This leads to the situation (discussed in section 3) that no one knows
whether MSPACE(logn) # MSPACE(lognloglog n) (more generally, whether
MSPACE(f) # MSPACE(g) for f = o(g)) or MTIME(n™) # MTIME(n™)
or, even much more embarrassingly, whether MTIME(n) # MTIM E(nl°s™) 7?). It
is also clear that for practical purposes the only interesting class of probabilistic algo-
rithms is the class provable within some reasonable theory, e.g. Peano arithmetic or
Zermelo-Fraenkel set theory. In order to prove the correctness of an algorithm design,
so to speak, we must provide a guarantee for being Monte Carlo within some theory.

We are now going to formulate results on the provable Monte Carlo and the ran-
domised complexity classes, both for randomised space and time.

For a fixed sound enumerable theory 7 (e.g., Peano arithmetic) let M™ be the set of all
PTMs M for which “Vz Pr{M outputs ¢ (z)} > %" is a theorem of 7. Let us denote
by MTSPACE(S(n)) and M"TIM E(T(n)) the corresponding complexity classes:

MTSPACE(S(n)) = {#m|M € M" and Vz Pr{M uses at most S(|z|) space} > %’}
M'TIME(T(n)) = {¢u|M € M" and ‘Vz Pr{M works in T(|z|) time} > g*}.

Remark. The bound on the error probability of -}; may seem a bit arbitrary. For
terminating (with probability 1) Monte Carlo machines M, we can decrease the error

8

probability and the probability that M uses more than S(n) space effectively to an
arbitrarily small constant without using more space. For Monte Carlo machines with
very small space bounds which diverge with a probability greater than 0, this may be
false.

It is not known if the Monte Carlo complexity classes contain complete problems. In
case it is indeed so, we have the identities M"SPACE(S(n)) = MSPACE(S(n)) and
MTTIME(T(n)) = MTIME(T(n)), accordingly.

Any provable Monte Carlo complexity class M"SPACE(S(n)) (or M"TIM E(T(n)),
respectively) contains a canonical complete problem (a universal language for
MTSPACE(S(n)) restricted to machines with fixed alphabet or for M"TIM E(T(n))
restricted to a fixed alphabet). Thus MSPACE(S(n)) contains a complete problem
C if and only if MSPACE(S(n)) = M"SPACE(S(n)) for any reasonable sound (ax-
jomatisable) theory 7 containing the theorem ‘C is complete for M TSPACE(S(n)). A
similar statement is true for MTIME.

The above definition can be applied to the polynomial time complexity classes, e.g.
BPPT, the class of all sets recognized by polynomial time bounded error PTMs which
are provably Monte Carlo; or R" the class of all sets recognized by polynomial time
PTMs which have provably one-sided error (randomised). While it is a well-known
open problem whether BPP and R do contain < poi-complete problems, BPP™ and R”
do possess complete problems.

By the construction of Hartmanis and Hemachandra [HH 86] a complete set for BPP
(or R) exists if and only if there is a complete set of the form LNMAJ, where L is in P
(or even in DSPACE(logn), by more careful inspection of the proof) and M AJ is the
set of boolean formulas that are satisfied by more than half of the truth assignments to
the variables, which is complete for PP = PrTIM E(poly) [Gi 77]. Sipser [Si 82] shows
that the existence (or non-existence) of complete sets for R is not relativizable: there
are oracles A, B such that R4 contains a complete set and RE does not. Thus the
known proof methods for complete sets (which all relativize) must fail in a randomised
case.

Let 71, 3 be enumerable theories, 71 C 73, then for all bounds S(n), T(n)

M7 SPACE(S(n)) € M™SPACE(S(n)) € MSPACE(S(n))

and

MTTIME(T(n)) € M™TIME(T(n)) € MTIME(T(n)).

Theorem 3. ([KV 86]) If r is an enumerable theory, g is MC-constructible and
f = o(g), then M"SPACE(f) ¢ MTSPACE(2*).

PROOF. By diagonalization over all machines which are provably (in given 7) Monte
Carlo and working in f(n)-space. Bring the diagonalizing M machine to the “halting

9

with probability 1” form ([KV 86], Theorem 2). The resulting machine M’ works prov-

ably in space 93*™) Application of majority vote provably reduces the error probability
to 3. We have

dm = dmr € MTSPACE(2¥)\ M"SPACE(f).

0

Theorem 4. If ris an enumerable theory, g is MC-constructible, g(n) > logn, and
f =o(g), then M"SPACE(f) ¢ M™SPACE(yg).

PROOF. Same diagonalization procedure as in Theorem 3. By [Si 81], for every
Monte Carlo machine M working in space g(n) such that g(n) > log n, there exists an
equivalent Monte Carlo machine halting with probability 1 and working in the same

space g(n). 0

The summary of Monte Carlo space separation results is given in Fig. 1.
We are now going to prove the hierarchy result on Monte Carlo time classes.

Theorem 5. If 7 is an enumerable theory, g is MC-time constructible, and f(n) -
log f(n) = O(g(n)), then MTTIME(f) & M'TIME(g).

PROOF. By diagonalization similar to Theorem 4.]

At the end we formulate dense hierarchy theorems (both for space and time) for the
randomised classes, R"SPACE and R"TIME.

Theorem 6. There exists a dense hierarchy in {RSPACE(S(n))}, S(n) > logn.

PROOF. RSPACE(S(n)) = NSPACE(S(n)) ([Gi 77]). The rest follows from
[SFM 73] and [Se 77]. ' 0

Theorem 7. If r is an enumerable theory, then there exists a dense hierarchy in
{R"TIME(T(n))}.

PROOF. The notion of a “universal simulator” of [SFM 73] generalizes to the provably
randomised case. This enables us to prove a dense hierarchy for provably randomized
time classes R"TIME(T(n)) (almost as dense as those of non-deterministic time, cf.
[SFM 73]). 0

The summary of Monte Carlo time separation results is given in Fig. 2.

Remark Unlike the non-deterministic case (where two tapes are as powerful as k
[Se 77]), k+1 tapes seem to be more powerful than k in the Monte Carlo and randomised
case. Therefore a strict inclusion in Theorem 5 and 7 seemingly requires that f(n)-

10

log f(n) = o(g(n)) (for MTTIME) or f(n + 1) -log f(n) = o(g(n)) (for RTIME).
Using padding techniques (i.e. Lemma 3, which is also true for the provable classes for
any reasonable theory), this can be relaxed to f(n)-log® f(n) = O(g(n)) (or f(n+1)-
log® f(n) = O(g(n))) for any € > 0. The restriction to k-tape machines (k > 2) yields
a proper inclusion if f(n) = o(g(n)) (or f(n + 1) = o(g(n))) (using the construction of
Firer [Fu 82)).

In the probabilistic (unbounded error) case, a tape reduction as in the non-
deterministic case is available and the complexity classes are closed under complement
(which yields a standard diagonalization). Thus the probabilistic time hierarchy (with-
out restriction on the number of tapes) is even more dense than the deterministic or
non-deterministic hierarchies.

5. Randomised Circuits.

A parallel model of Monte Carlo computation (randomised uniform boolean circuits)
was introduced in [Co 85]. The mode of computation are randomised uniform boolean
circuits. RNC* is the class of Monte Carlo circuits {C,}, n € IN, in log*-depth
(depth(C,) = O(log* n)) and n®(Wsize (size (C,) = n®M)). Uniformity means that
the mapping n — C, (C, is a binary string coding of the circuit Cy) is computable
in deterministic log(size (C,))-space (cf.[Co 85]). The circuits C, are Monte Carlo
circuits if their bitwise error probability is bounded away by 3 (cf[Co 85]). We define
RNC = |JRNC* (by analogy to the deterministic NC = |J NC*). [KUW 85] suggest

k k

that the randomised (Monte Carlo circuits) would be exponentially more powerful than
the deterministic ones, i.e. NC # RNC.

It is clear that for arbitrary uniform probabilistic circuits families the property of
being Monte Carlo is II;-complete (the sequential randomised machines alike).

Denote by MC, the set of all probabilistic circuits C of n inputs which sat-
isfy the Monte Carlo property (MCP), i.e. fulfilling the formula vz € {0,1}"
[Pr{C outputs 1} ¢ [1,2]]. The ‘brute force’ algorithm to check the circuit for the

Monte Carlo property costs 27" time. Therefore, for every probabilistic circuit C
on n inputs can give 2" Y proof (guarantee), say in the Propositional Calculus (Po).
The problem, though, is: can we find for all Monte Carlo circuits C another equivalent
Monte Carlo circuit C' with the small boolean (propositional) proof g for the MCP.
Using the techniques of [Ad 78],[BG 81] and [AB-O 84] we can prove the following
statement: for arbitrary Monte Carlo circuits C there exists an equivalent Monte Carlo
circuit C’ with small (polynomial) propositional proof for the MCP. Adleman [Ad 78]
notices that the circuit C’ can be chosen to be deterministic.

In designing RN C-algorithms R = {C,}, a (‘fabrication’) guarantee g,, for all circuits
C, of being Monte Carlo, C, € MC,, must be provided by their designers along

with the correctness proof for R. It is always done in some obvious proof system.
Therefore, for practical purposes a much stronger notion of the randomised uniformity
is needed (for detailed discussion see [KV 87]). Let us fix some sound axiomatizable
proof system 7 in which we are ready to formulate and check up our proofs (guarantees).
Call it our circuit guarantee-system (g-system) according to .

We call a class of Monte Carlo circuits {(n)} strongly uniform provided the mapping
n +— (Cpn,dn), gn is a proof for ‘C, € MC ’, is computable in the log (size(C,) +
size(g,))- deterministic space.

Denote now by RINC¥ the class of all problems solvable by strongly uniform Monte
Carlo log*n-depth, poly-size circuits. RINC = |J RINCE.
k

The Circuit Value Problem (CV) ([La 75], [Go 77] is known to be log space complete
(N C’'-complete [Co 85]) for P (even when restricted to the monotone boolean circuits).
Let us now define the Provably Randomised Circuit Value Problem,

RICV = {(C,z;9)|C(z) =1, g is a proof for ‘C € MC|,,'}.

Define also

RICVE = {(C,z;9)|C(z) = 1, gisaprooffor ‘C € MC,, and depth (C) <
log |z|}.

The theorems below on the completeness of the Randomised Circuits Value Problem
were proven in the accompanying paper [KV 87] on parallel computation and were
motivated by the completeness results of section 3.

Theorem 8. For every sound axiomatizable proof system r, RCV is complete for
BPP", and RICV* is NC*complete for RINC*.
=€

Since, if BPP has a complete problem, then BPP = BPP" for all sound systems ,
and also BPP™ < NC*RICV, we have:

Theorem 9. If BPP has a complete problem, then the Randomised Circuit Value
Problem RICV is complete for BPP, and RICV* is NC*-complete for B??;f" for all

k, for certain sound axiomatizable systems .

Theorems 8 and 9 once more raise the question of provability of the BP P-class and
connect it directly with the problem of the existence of a natural complete circuit value
problem in BPP (and RNCF¥). An interesting outcome of our Theorem 9 is that if
BPP has a complete problem, then for every Monte Carlo circuit there exists (within
the same depth and size) an equivalent Monte Carlo circuit with the small and easy to
compute MCP certificate, and vice versa. The nonexistence of complete sets in BPP
entails impossibility of easy MCP circuit certificates.

Acknowledgements.

The authors thank Steve Cook, Charlie Rackoff, and Ruediger Reischuk for a number
of interesting conversations during the last Oberwolfach Complexity Theory conference
in November 1986. It was Steve Cook’s suggestion to test limits of classical “padding”
techniques in separating randomised classes.

13

References

[Ad 78]

[AMa 77

[AB-O 84]

[AW 85]

[Ba 62]

[BCP 83

[BG 81]

[BGM 82]

[BGS 75]

[BS 83

[Co 71]

Adleman, L.,
Two Theorems on Random Polynomial Time
Proc. 19" IEEE FOCS (1978), pp. 75-83

Adleman, L., and Manders, K.,
Reducibility, Randomness and Intractability
Proc. 9" ACM STOC (1977), pp. 151-163

Ajtai, M., and Ben-Or, M.,
A Theorem on Probabilistic Constant Depth Computations
Proc. 16" ACM STOC (1984), pp. 471-474

Ajtai, M., and Wigderson, A.,
Deterministic Simulation of Probabilistic Constant Depth Circuits
Proc. 26* IEEE FOCS (1985), pp. 11-19

Barzdin, Ya.M.,,
On One Class of Turing Machines (Minsky Machines)
Algebra and Logic Seminar, Novosibirsk 6, (1962), pp. 42-51 (Russian)

Borodin, A., Cook, S., and Pippenger, N.,

Parallel Computation for Well-Endowed Rings and Space-Bounded
Probabilistic Machines

Information and Control 58 (1983), pp. 113-136

Bennet, C., and Gill, J., ;

Relative to a Random Oracle A, PA # NP4 # co-NP* with Proba-
bility 1

SIAM J. Comput. 10 (1981), pp. 96-114

Babai, L., Grigoryev, D.Yu., and Mound, D.M.,
Isomorphism of Graphs with Bounded Eigenvalue Multiplicity
Proc. 14t* ACM STOC (1982), pp. 310-324

Baker, T., Gill, J., and Solovay, R.,
Relativizations of the P = NP ? question
SIAM J. Comput. 4 (1975), pp. 431-442

Berman, P., and Simon, J., _
Lower Bounds on Graph Threading by Probabilistic Machines
Proc. 24t* IEEE FOCS (1983), pp. 304-311

Cook, S.A.,
The Complexity of Theorem-Proving Procedures
Proc. 3" ACM STOC (1971), pp. 151-158

16

[Co 73]

[Co 85]

[Fe 57]

[Fr 81]

[Fii 82]

[Gi 77]

(GJ 79]

[Go 77]

[HH 86]

[HU 67]

[HU 79]

(b 72]

Cook, S.A.,
A Hierarchy for Non-deterministic Time Complexity
J. Comput. System Sci. 7 (1973), pp. 343-353

Cook, S.A.,
A Taxonomy of Problems with Fast Parallel Algorithms
Information and Control 64 (1985), pp. 1-22

Feller, W.,
An Introduction to Probability Theory and its Applications
John Wiley, New York 1957

Freivalds, R.,
Probabilistic Two-Way Machines, MFCS ‘81
Springer LNCS 118 (1981), pp. 33-45

Fiirer, M.,
The Tight Deterministic Time Hierarchy
Proc. 14* ACM STOC (1982), pp. 816

Gill, J.,
Computational Complexity of Probabilistic Turing Machines
SIAM J. Comput. 6 (1977), pp. 675-694

Garey, M.R., and Johnson, D.S.,

Computers and Intractability: A Guide to the Theory of NP-
Completeness

W.H. Freeman, San Francisco (1979)

Goldschlager, L.M.,

The Monotone and Planar Circuit Value Problema are Log Space Com-
plete for P

SIGACT News 9 (1977), pp. 25-29

Hartmanis, J. and Hemachandra, M.,

Complexity Classes without Machines: On Complete Languages for
UP

Proc. 13** ICALP ’86, Springer, LNCS 226 (1986), pp. 121-135

Hopcroft, J.E., and Ullman, J.D.,
An Approach to a Unified Theory of Automata
The Bell System Technical J., vol. 46, no. 8, (1967), pp. 1793-1829

Hopcroft, J.E., and Ullman, J.D.,
Introduction to Automata Theory, Languages, and Computation
Addison-Wesley, Reading, Ma., (1979)

Ibarra, O.H.,
A Note Concerning Non-deterministic Tape Complexities
J. ACM 19 (1972), pp. 608-612

17

[Ju 84]

[KUW 85]

[KV 86]

KV 87]

[La 75]

[LSH 65]

[Mi 61]

[Ra 82]

[Ro 67]

[RF 65]

Jung, H.,

On Probabilistic Tape Complexity and Fast Circuits for Matrix Inver-
sion Problems

Proc. 11** ICALP 84, Springer LNCS 172 (1984), pp. 281-291

Karp, R.M., Upfal, E., and Wigderson, A.,
Are Search and Decision Problems Computationally Equivalent
Proc. 17t* ACM STOC (1985), pp. 464-475

Karpinski, M., and Verbeek, R.,

On the Monte Carlo Space Constructible Functions and Separation
Results for Probabilistic Complexity Classes

Research Report #854-CS, University of Bonn (1986), submitted to
Information and Control

Karpinski, M., and Verbeek, R.,

Randomised NC-Classes and the Provably Randomised Circuit Value
Problem

Research Report # 8511-CS, University of Bonn (1987), to be submit-
ted

Ladner, R.E.,
The Circuit Value Problem is Log Space Complete for P
SIGACT News 7 (1975), pp. 18-20

Lewis, P.M., Stearns, R.E., and Hartmanis, J.,

Memory Bounds for Recognition of Context-Free and Context-Sensitive
Languages

Proc. 6t* IEEE Symp. on Switching Circuit Theory and Logical Design
(1965), pp. 191-202

Minsky, M.L.,

Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics
in the Theory of Turing Machines

Annals of Math. 74 (1961), pp. 437-455

Rackoff, C.,
Relativized Questions Involving Probabilistic Algorithms
J. ACM 29 (1982), pp. 261-268

Rogers, H.,
The Theory of Recursive Functions and Effective Computability
McGraw-Hill, New York (1967), pp. 1-482

Ruby, S., and Fischer, P.C.,

Translational Methods in Computational Complexity

IEEE Conference Record on Switching Circuit Theory and Logical De-
sign, Ann Arbor (1965), pp. 173-178

18

[Se 77]

[Si 82]

[Si 83]

[SS 77]

[We 83]

Seiferas, J.1.,
Techniques for Separating Space Complexity Classes
J. Comput. System Sci. 14 (1977), pp. 73-99

Sipser, M.,
On Relativization and the Existence of Complete Sets
Proc. 9" ICALP 82, Springer LNCS 140 (1982), pp. 521-531

Sipser, M.,
Borel Sets and Circuit Complexity
Proc. 15" ACM STOC (1983), pp. 61-69

Solovay, R., and Strassen, V.,
A Fast Monte Carlo Test for Primality
SIAM J. Comput. 6 (1977), pp. 84-85

Welsh, D.J.A.,
Randomised Algorithms
Discrete Applied Mathematics 5 (1983), pp. 133-145

19

