Probabilistic NC1~Circuits Equal Probabilistic Polynomial Time

*
Marek Karpinski ¥

*
Rutger Verbeek

Abstract We prove that probabilistic NC1 (Prncl) circuits (i.e. uniform
log-depth poly-size circuits with unbounded error probability)are computationally
exactly as powerful as probabilistic polynomial time. This entails that the
prebabilistic ch—hierarchy collapses at the NC1 level; if unbounded fan-in is
allowed it collapses even at the level 0. BAs a side effect we prove the

identity PrNC = Pr25C = PrzsC1 (Pr2SCk meaning simultaneous polynomial time

and logkn space bounded machines with two-way random tape [KV 84]). The central
problems in computational complexity theory are whether NC =P (Co 83],

ch = NC and SC = NC [Co 79, Ru 81] and the most classical problem whether
LOGSPACE = P. Surprisingly the results of the present paper and [KV 84] give

affirmative answer to all these questions in the probabilistic case.
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1. Probabilistic uniform circuits

The reader is referred to [Co 83] for an extended exposition on uniform circuits.
P

The main definitions are given below.

A circuit € with n inputs is a finite directed acyclic graph, such that each

node nas a label! from {xl,...,xn} U {A,v,1}. A node labelled X, has indegree
(fan-in) O and is called an input node. A node v with label from {A,v} must
have indegree 2, whereas v with label 1 has indegree 1. Exactly one node
does have outdegree (fan-out) O; we call it the output node vy. The fan-out of
the other nodes is unbounded.

The size of C (s(C)) is the number of nodes in C, the depth d(C) is the
length of the longest path in C. Every O-1 assignment to the input nodes
(interpreted as boolean variables) yields unique 0-1 assignment to all the
remaining nodes (including y). In this way one defines a boolean function

fc : {0,1}" » {0,1}, called the function computed by C.

_ L . . ! : ;
A function f : {o,1} = {o,1} is computed by a circuit family <Cn>, ne XN,

if for every n, fc = f [{o,l}n. A circuit family <Cn> is called uniform,
n
if C_ can be constructed from n in O(logn) space [Bo 77, Ru 81].

yc®  is rhe class of all functions computable by a uniform circuit family with
2(1) k

K
s{(C ) =n and d(Cc ) = 0{logn), NC=UNC" .
n n k

We shall extend the notion of a circuit to circuits with unbounded fan-in for
"AND' and 'OR' gates [SSF 81]. The corresponding classes of functions will be

denoted by QNCk and QNC.
A probabilistic circuit [Co 83] is a circuit C with ordinary inputs X,,....X,

and designated coin-tossing inputs z 2o The probability that the output

gree
y 1s one (on input xl,...,xn} is the fraction of input bit-vectors ZyoeeeiZp
for which fé(xl""'xn' zl,...,zm] = 1. We say a function f is probabilistically
computed by <Cn>, if for all n and all XynooosX

1 . S
Pr{fc(xl,...,xn, zl,...,zm) = f(xl,...,xn}} Sitoors (When 5 in the definition above

is replaced by %, f is Monte-Carlo computable by C [co 83]).

k
PrNC is the class of all functions probabilistically computable by an uniform
k
circuit family with depth O(logkn} and polynomial size, PrNC = ﬁ PrNC ;
for unbounded fan-in PrQNCk and PrQNC is defined analogously. (The class PrNC

is the probabilistic version of S. Cook's Monte-Carlo RNC-class [co 83].)



ircuits and two-way random generators
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o-r an =xact definition of two-way random-tape and the corresponding complexity

infermally, a language in PrzsPACE{f[n}) is recognized by a probabilistic
{n)-scace bounded machine with two-way access to a random sequence. The

following depends on the fact that circuits have multiple access to the random

Theorem 1 [KV 84] Probabilistic machines with two-way random-tape that are
simultaneously logn - space and polynomial-time bounded are as
powerful as those without restriction on space:

1
przsc = PP.

The proof of Theorem ! is based on the following construction (Lemmas 1 and 2)
which is adapted from the proof of Lemma 5 of {KV 84] and modified now for

application in uniform circuits.

. . . LS .
Let 1 be a probabilistic strictly n -time bounded one-tape machine. (For

. ; ; ; k_. .
5p there exists k, such that £ 1is strictly n -time computable

L1
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Gi Denote by compM(x) the set of M-computations on input X encoded

i \ *
by ¢c_a,§C 9 $ ... % c k ¢ ¢ I, where the ¢,

s are encedings of

IDs padded with blanks to exactly the same length n+nk and the ai's are the
random bits of the compu;ation, such that C."m Si+1 for the random bit a, -

A stopping 1ID ci'i <n, is identically repeated up to the step n

with arbitrary random bits a, -

We encode now the computations in binary using a coding function h : L ~+ (0,1}1
for an appropriate 1. Denote binCOmpM(x) = h(compM{x)) (for h naturally

*
extended over L ).

. kK ..
Lemma 1 Given an arbitrary probabilistic strictly n -time bounded cne-tape

machine M, there exists a deterministic log-space bounded machine M ,

such that M computes the function £ : f*x {0,1}{0,1}* + {o0,1}:

-1
1 if ye bincompM(x) and h (y) is accepting
f(x,ay) = o if ye bincompM(x} and h-l(y) is rejecting

a if y ¢ bincompM(x)

for xe £ , ac {o/l}, ve [0,1}* (h : 2* -+ {o.l}* as above).



Proof gtandard construction as for deterministic machines

(c£. [HU 79)).

cror a deterministic log n-space bounded machine M with binary input
bincompm(x} will denote now the binary encoding of the computation of M on X,
such that the codes of single configurations have the same length 1 - logn
for an appropriate fixed 1. We denote by <y the code of the ith configuration
consisting of S pi, yi denoting si, the contents of the worktapes and the
state, p,, the binary code of the input position, Yy the input symbol

1

(i.e. y. = %,.). Define TEST (x,y) = 1 if y = bincomp (x) and
Pi M M

c 1if y # bincompm(x).

Lemma 2 Given arbitrary log n-space bounded machine M with binary input,
TEST“(x,y) is computed by uniform poly-size constant-depth unbounded
fan-in circuits,

& e
TEST,, £ QNC .
M

rroof (=zf. Figure 1)

Let t denote an upper bound on the running time of M, 1i.e.

t =n for an appropriate kx depending on M.

C and c,
i-1 i
and generate ? "correctness bit” I which is set to 1 iff
i-1
] ” : s
(Si-l' pi-l) — (si,pi) AO checks, whether o is a legal initial

The circuits Ai(l < i 8 t) compare the configurations

configuration. Furthermore Ai (o £ i s t) outputs ' and an unary

representation of pi, i.e =1 iff j = pi. To do this, it

V..

1]

compares (in parallel) p, with Bj {1 = 3 & n); Bj denoting the

binary ceode of jJ.

The circuits B, (o i s t) select the pi's input bit (using v; . 's),
]

compare it with Y and set the output bit qi to 1t iff r, = 1 and

Y; = *p, - 1f all q.'s are 1, the whole circuit outputs 1.
1



random inputs
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Since the circuits Ai have snly Cf(lecgn) inputs and O(n) outputs,

she standard depth 3 CNF-representation of their functions have poly-

L]

nomial size; since the B,'s have constant depth and polynomial size,

this is true for the whole circuit.
Uniformity of our circuit family is guaranteed by the fact that

A's (1 £ i st) are all identical and the same holds for all Bi‘s.

Theorem 2 Any boolean function computed by a polynomial-time bounded machine
is computed by some uniform family of probabilistic circuits <Cn>

with polynomial size, constant depth, and unbounded fan-in:

o
ProNC O PP.

Proof (cf. Figure 2)
et M be a probabilistic poly-time machine, M the log-space machine

of Lemma 1. The circuit <, has inputs x,y,z,a (x 1is an ordinary
input of size n; Y,z are random inputs of appropriate polynomial

size; o is a single random bit).

input random inputs

SR TR | S I a—

(Figure 1)
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ising the circuit of Lemma 2 1t computes TESTfoy,z} and in addition

the outgut of M called vy (which can be found at a fixed position

o]

in z, Lf =z = bincompqixy}. 1f TESTq(xy,z) = 1, then Cn outputs vy,

otherwise Cn outputs a.

Let p denscte the probability that M outputs 1 on x, n := |x]|.
q := Priy ¢ bincompq(x) and z = bincompﬁtx,y)}.
Then Pr/C outputs 1} = p-gq#+ ;5" Priy é bincompM(x) or z #h&ncompﬁ(xy)}
T Z
1 i 1 1
= pig =l = =% -=)"q > — <= > -
pra+ =l Q=3 (p 2}q > P >3

<=> M accepts X.

pc will stand for the class of boolean functions computed by uniform polynomial-

size circuits,

Lemma 3 The probabilistic uniform poly-size circuit class is included in

probabilistic polynomial time,

Eroof Given uniform family of prokabilistic circuits <Cn3, the simulating
poly~-time bounded machine constructs the circuit Cn in its memory,
using its random generator to assign values to the randem inputs of Cn'
Since the circuit with the random bits fixed behaves deterministically
we can simulate it in deterministic polynomial time (cf. [Bo 77]).
Since the random pads required for the circuit and the machine have
the same length, the probabilities for accepting and rejecting are
identical in both models.

ol

Theorem 3 The following classes of O-l1-valued functions are all equivalent:

(1) PrNC1 {probabilistic 1log depth)

(2) PrNC (probabilistic poly-log depth, poly-size)

(3) proNc® (probabilistic constant depth, poly-size)

(4) Pr2scI (probabilistic log-space poly-time with two-way
random tape, cf,[XV 84])

(5) PrpcC (probabilistic poly-size)

{6) PP (probabilistic poly-time}

prnct = prye = pronc® = prsc! = prec = pp.

2



Proof The equalities follow from Theorem 1, Theorem 2, Lemma 3 and the fact
k+1

k :
that for all k, PrQNC <« PrNC (decompose a gate with unbounded

fan-in n > 2 into a logn-depth circuit, cf. (co 831).

we define the classes of probabilistic k-bounded alternation-depth circuits as

. ‘ k ; '
uniform circuit families with 0O{log n) levels of AND and OR gates with unbounded
fan-ins and negations pushed to the ingv*s {(cf. [Co 83]). Denote the corresponding

k
classes of functions by prapc’, k =1,..., PrancC = E PrADC .

ul
Thecrem 4 The probabilistic alternation-depth hierarchy collapses at level 1,

PrADCl = PrADC = PP.

o C . : 1
proof By Theorem 2 PP & PrQNC and this is contained in PradDC .

k k
On the other hand PrADC < PrQNC .
u

It is well known .BG 81], [AB-~0 84] that nonuniform deterministic poly-size
circuits are as powerful as Monte-Carlo ones. By {AB-0O 84 ] the same is true

for corresponding deterministic and Monte-Carlo classes of unbounded fan-in.

8y [FSS B84 ] and Theorem 3, the class of uniform probabilistic circuits of
constant depth ( PrQNCD) is not included in the class of nonuniform deterministic
polynomial size circuits of constant depth (the parity function is in P and

therefore in PrQNCO, but not in nonuniform QNCO].
o ; o
Theorem 5 proNC. ¢ nonuniform QNC™. o

3., Conclusion

; . o . . v :
There are natural functions in PrQNC , which are not 1in RQNCO, e.g. majority
and parity. The positive answer to the question "are the probabilistic uniform
log-depth circuits equivalent to the Monte-Carlo uniform log-depth circuits”

1 < spp

would require a breakthrough in complexity theory since PrNC1 # RNC
unless Monte-Carlo poly-time equals probabilistic poly-time. One level higher
a negative answer to the same question (with logn replaced o3y logzn), i.e.
PrNC2 # RNC2 would imply probabilistic LOGSPACE 1is unequal to probabilistic

polynomial time.



Finally we indicate another application of our result towards probabilistic
versions of the parallel WRAMs of [csv 821: any such (both deterministic
and probabilistic) WRAM with a polynomial number of processors can be
simulated by some PrwWRAM with a polyromial number of processors in logn

parallel time.
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